From 813b153ef6b0669c1561fd2b49a6c95d40943a61 Mon Sep 17 00:00:00 2001 From: Anshul Gupta Date: Fri, 23 Feb 2024 20:34:42 -0800 Subject: Adds some analysis for visualizations --- CS105MiniProject.ipynb | 220 +++++++++++++++++++++++++++++++------------------ 1 file changed, 140 insertions(+), 80 deletions(-) (limited to 'CS105MiniProject.ipynb') diff --git a/CS105MiniProject.ipynb b/CS105MiniProject.ipynb index 35b9887..39cffcd 100644 --- a/CS105MiniProject.ipynb +++ b/CS105MiniProject.ipynb @@ -26,6 +26,15 @@ }, { "cell_type": "code", + "execution_count": 1, + "id": "b68b27041fdab1a5", + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T05:05:30.261607Z", + "start_time": "2024-02-24T05:05:30.239183Z" + } + }, "outputs": [ { "data": { @@ -51,29 +60,29 @@ "# Select relevant columns\n", "df = df.iloc[:, [2, 3, 7, 8, 9, 34, 58, 59, 60, 61, 26]]\n", "df" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-24T04:30:18.761606Z", - "start_time": "2024-02-24T04:30:18.740080Z" - } - }, - "id": "b68b27041fdab1a5", - "execution_count": 1 + ] }, { "cell_type": "markdown", - "source": [ - "## Preprocessing" - ], + "id": "f7ee1fc9a8abba2b", "metadata": { "collapsed": false }, - "id": "f7ee1fc9a8abba2b" + "source": [ + "## Preprocessing" + ] }, { "cell_type": "code", + "execution_count": 2, + "id": "3f72adcb3bc0285e", + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T05:05:30.273335Z", + "start_time": "2024-02-24T05:05:30.262297Z" + } + }, "outputs": [ { "data": { @@ -122,19 +131,19 @@ "df.loc[df['Do you currently work?'] == 'No', 'Do you work in a department related to your major?'] = np.nan\n", "\n", "df" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "285236650ff590d8", "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:18.773188Z", - "start_time": "2024-02-24T04:30:18.762221Z" + "end_time": "2024-02-24T05:05:30.281906Z", + "start_time": "2024-02-24T05:05:30.274748Z" } }, - "id": "3f72adcb3bc0285e", - "execution_count": 2 - }, - { - "cell_type": "code", "outputs": [ { "data": { @@ -152,19 +161,19 @@ "# Not working DataFrame\n", "nw_df = df[df['Do you currently work?'] == 'No']\n", "w_df" - ], + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6516c926e6efd1c3", "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:18.781369Z", - "start_time": "2024-02-24T04:30:18.774710Z" + "end_time": "2024-02-24T05:05:30.288976Z", + "start_time": "2024-02-24T05:05:30.282571Z" } }, - "id": "285236650ff590d8", - "execution_count": 3 - }, - { - "cell_type": "code", "outputs": [ { "data": { @@ -178,29 +187,29 @@ ], "source": [ "nw_df" - ], - "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-24T04:30:18.787562Z", - "start_time": "2024-02-24T04:30:18.782006Z" - } - }, - "id": "6516c926e6efd1c3", - "execution_count": 4 + ] }, { "cell_type": "markdown", - "source": [ - "# Analysis" - ], + "id": "7efd20d58edbb05d", "metadata": { "collapsed": false }, - "id": "7efd20d58edbb05d" + "source": [ + "# Analysis" + ] }, { "cell_type": "code", + "execution_count": 5, + "id": "6deea60d8966fa15", + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T05:05:30.394575Z", + "start_time": "2024-02-24T05:05:30.289517Z" + } + }, "outputs": [ { "data": { @@ -220,58 +229,75 @@ "plt.pie(work_counts, labels=work_counts.index, autopct='%1.1f%%', startangle=90, colors=['lightblue', 'lightcoral'])\n", "plt.title('Distribution of People Who Work and Don\\'t Work')\n", "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "The majority of student respondents (70.4%) do **not** work while attending school." ], "metadata": { - "collapsed": false, - "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.032770Z", - "start_time": "2024-02-24T04:30:18.788319Z" - } + "collapsed": false }, - "id": "6deea60d8966fa15", - "execution_count": 5 + "id": "5dbc734405a3858d" }, { "cell_type": "code", "outputs": [ + { + "data": { + "text/plain": "Do you currently live in a house, apartment, or dorm? Apartment Dorm \\\nDo you currently work? \nNo 0.500000 0.131868 \nYes 0.493506 0.064935 \n\nDo you currently live in a house, apartment, or dorm? House Room \nDo you currently work? \nNo 0.362637 0.005495 \nYes 0.441558 0.000000 ", + "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Do you currently live in a house, apartment, or dorm?ApartmentDormHouseRoom
Do you currently work?
No0.5000000.1318680.3626370.005495
Yes0.4935060.0649350.4415580.000000
\n
" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, { "data": { "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAKnCAYAAAAbeozqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY5ElEQVR4nO3deVhUdfvH8c+gAiLuiqkZKQZlCiKI+4Y9qbjmkmJRuFKJZqXinqXmvuSGWOZaLgWa5q6VT5ZpuWaKCWqipKE9Lig6KvP7g3F+jrgwCozE+9V1rss558z33HNk4va+z/ccg8lkMgkAAAC5noO9AwAAAMDjgcQQAAAAkkgMAQAAYEZiCAAAAEkkhgAAADAjMQQAAIAkEkMAAACYkRgCAABAEokhAAAAzPLaO4CskN833N4hIBttXj7S3iEgG/WY94u9Q0A22v3hi/YOAdnI2Y5ZiT1zh5Q9M+x27DtRMQQAAMghzp07pz59+sjf31//+c9/FBMTY9mWkJCg0NBQVa1aVUFBQdq2bZvN4/8rK4YAAAA2MTz+tTKTyaRevXopNTVVCxcu1JkzZxQRESFXV1f95z//Ua9eveTp6ano6Ght3rxZ4eHhWrt2rcqUKZPhY5AYAgAA5AAHDhzQnj17tHnzZpUrV06VKlVS9+7dNXfuXBUsWFAJCQlaunSpXFxc5OHhoe3btys6Olq9e/fO8DEe//QYAAAASkhIULFixVSuXDnLOi8vLx04cEC7du1SpUqV5OLiYtnm5+envXv32nQMKoYAAAAGg70jeKASJUro0qVLSklJUf78+SVJp0+f1o0bN5SUlCQ3Nzer/YsXL67Tp0/bdAwqhgAAAHZkNBqVnJxstRiNxnT7+fj4yM3NTSNHjtSVK1f0559/at68eZYxHB0drfZ3dHS86zj3Q2IIAABgcLDbEhUVJT8/P6slKioqXYhOTk6aOnWqfv75Z/n5+emVV15Rp06d0sI3GNIlgUajUc7OzjadBlrJAAAAdhQWFqYuXbpYrbuz+neLt7e3vv32WyUlJalo0aL68ccfVbRoUT311FP68ccfrfY9e/Zsuvbyg1AxBAAAMBjstjg6OsrV1dVquVtieP78eQUHB+t///ufSpYsqbx58+r7779XQECAfHx89Pvvv+vq1auW/Xft2iUfHx+bTgOJIQAAQA5QpEgRXblyRRMmTFBCQoK+/PJLRUdHq3v37goICFDp0qU1aNAgHTlyRHPmzNH+/fvVvn17m45BYggAAJBDTJkyRQkJCWrZsqUWLFigjz/+WN7e3sqTJ49mzZqlpKQktW3bVqtWrdLMmTNturm1xDWGAAAAOeLJJ5JUoUIFLVq06K7b3N3dtXjx4kcaP2ecBQAAAGQ5KoYAAAA54AbX2YGKIQAAACSRGAIAAMCMVjIAAEAOmXyS1TgLAAAAkETFEAAAgMknZlQMAQAAIImKIQAAANcYmnEWAAAAIInEEAAAAGa0kgEAAJh8IomKIQAAAMyoGAIAADD5RBIVQwAAAJiRGAIAAEASrWQAAAAmn5hRMQQAAIAkKoYAAABMPjHjLAAAAEASFUMAAAAqhmacBQAAAEgiMQQAAIAZrWQAAAAHblcjUTEEAACAGRVDAAAAJp9IomIIAAAAMxJDAAAASKKVDAAAwLOSzagYAgAAQBIVQwAAACafmHEWAAAAIImKIQAAANcYmlExBAAAgCQSQwAAAJjRSgYAAGDyiSQqhgAAADCjYggAAMDkE0lUDAEAAGBGYggAAABJtJIBAACYfGLGWQAAAIAkKoYAAABMPjGjYggAAABJVAwBAAC4xtCMswAAAABJJIYAAAAwo5UMAADA5BNJVAwBAABgRsUQAACAySeSqBgCAADAjMQQAAAAkmglAwAA0Eo24ywAAABAEhVDAAAAbldjRsUQAAAAkkgMAQAAYEZiCAAAYHCw32KDv/76S2FhYapWrZoCAwM1f/58y7aDBw+qQ4cO8vHxUbt27XTgwAGbTwOJIQAAQA7Rt29fubi4KCYmRoMHD9bUqVO1adMmXblyRT179pS/v79iYmLk6+ursLAwXblyxabxSQwBAAAMBvstGXThwgXt3btXb775pp5++mm98MILqlevnrZv3661a9fKyclJAwYMkIeHh4YMGaICBQpo/fr1Np0GEkMAAIAcwNnZWfnz51dMTIyuX7+uo0ePavfu3Xruuee0b98++fn5yWBONA0Gg6pVq6a9e/fadAwSQwAAADteY2g0GpWcnGy1GI3GdCE6OTlp+PDhWrZsmXx8fNSsWTPVr19fHTp0UFJSktzc3Kz2L168uE6fPm3TaeA+hgAAAHYUFRWlGTNmWK0LDw9X79690+0bHx+vRo0aqUuXLjpy5IhGjhypWrVqKSUlRY6Ojlb7Ojo63jXBvB8SQwAAADsKCwtTly5drNbdmeRJ0vbt2/XVV19p69atcnZ2VpUqVXTmzBlFRkaqXLly6ZJAo9EoZ2dnm2KhlQwAAGDHySeOjo5ydXW1Wu6WGB44cEDu7u5WyV6lSpWUmJioUqVK6ezZs1b7nz17Nl17+UFIDAEAAHIANzc3/fnnn1aVwaNHj+rJJ5+Uj4+P9uzZI5PJJEkymUzavXu3fHx8bDoGiSEAAMj1DAaD3ZaMCgwMVL58+TR06FAdO3ZM3377rWbPnq2QkBA1bdpUFy9e1OjRoxUXF6fRo0crJSVFzZo1s+k8kBgCAADkAAULFtT8+fOVlJSk9u3ba8yYMXrzzTfVsWNHubq6KioqSrt27VLbtm21b98+zZkzRy4uLjYdg8knAAAAOUTFihU1b968u27z9vbWihUrHml8EkMAAJDr2dLS/TejlQwAAABJVAwBAAAkCoaSqBgCAADAjIohAADI9bjGMA0VQwAAAEgiMQQAAIAZrWQAAJDr0UpOQ8UQAAAAkqgYAgAAUDE0o2IIAAAASSSGAAAAMKOVDAAAcj1ayWmoGAIAAEASFUMAAACelWxGxRAAAACSqBgCAABwjaEZFUMAAABIIjEEAACAGa1kAACQ69FKTkPFEAAAAJKoGAIAAFAxNKNiCAAAAEkkhgAAADCjlQwAAHI9WslpqBgCAABAEhVDAAAAnpVsRsUQAAAAkqgYAgAAcI2hGRVDAAAASCIxBAAAgBmtZAAAkOvRSk5DxRAAAACSqBgCAABQMTSjYggAAABJJIYAAAAwo5UMAABAJ1kSFUMAAACYUTEEAAC5HpNP0lAxBAAAgCQqhgAAAFQMzagYAgAAQBKJIQAAAMxoJQMAgFyPVnIaKoYAAACQRMUQAACAiqEZFUMAAABIIjEEAACAGa1kAAAAOsmSqBgCAADAjIohAADI9Zh8koaKIQAAACRRMQQAAKBiaEbFEAAAAJJIDAEAAGBGKxkAAOR6tJLTUDEEAADIAWJiYuTl5ZVuefbZZyVJBw8eVIcOHeTj46N27drpwIEDNh+DxBAAAMBgxyWDgoKCtG3bNsvy/fffy93dXa+99pquXLminj17yt/fXzExMfL19VVYWJiuXLli02kgMQQAAMgBnJ2dVbJkScuyatUqmUwm9evXT2vXrpWTk5MGDBggDw8PDRkyRAUKFND69ettOgaJIQAAQA5z/vx5ffLJJ3rvvffk6Oioffv2yc/Pz3KtpMFgULVq1bR3716bxmXyCQAAyPXsOfnEaDTKaDRarXN0dJSjo+M937NkyRK5ubmpadOmkqSkpCRVrFjRap/ixYvryJEjNsVCxRAAAMCOoqKi5OfnZ7VERUXdc3+TyaQvv/xSr776qmVdSkpKukTS0dExXcL5IFQMAQBArmfPimFYWJi6dOlite5+1cLffvtNZ86cUfPmzS3rnJyc0iWBRqNRzs7ONsVCYggAAGBHD2ob3+mHH36Qv7+/ChcubFlXqlQpnT171mq/s2fPys3NzaZYaCUDAADkIPv371e1atWs1vn4+GjPnj0ymUyS0trNu3fvlo+Pj01jP1aJYUpKimJjY3Xw4EElJyfbOxwAAJBLGAwGuy22OnLkSLqJJk2bNtXFixc1evRoxcXFafTo0UpJSVGzZs1sGvuxaCVfv35dEyZM0BdffKEbN25IkvLmzauWLVvqgw8+sKm8CgAA8G929uxZFSpUyGqdq6uroqKi9P7772v58uXy8vLSnDlz5OLiYtPYj0ViOG7cOG3dulWRkZHy9fVVamqq9uzZo1GjRmnKlCmKiIiwd4gAAOBfLCc9K3n//v13Xe/t7a0VK1Y80tiPRWL4zTff6OOPP1aNGjUs6xo0aCAnJyf169ePxBAAACAbPBaJoclkUvHixdOtL1asmC5fvmyHiAAAQK6ScwqGWeqxmHxSs2ZNTZw40WrCycWLFzV58mSrKiIAAACyzmNRMRw8eLBee+011atXT+XLl5ckHTt2TOXKlVNkZKSdowMAAMgdHovEsFSpUvrmm2/03//+V0ePHpWTk5PKly+vOnXqyMHhsShqAgCAf7GcNPkkKz0WiaEk5cuXT40bN1bjxo3tHQoAAECuZLfEMDAwMEPZucFg0ObNm7MhIgAAkFtRMUxjt8Swd+/e99x25coVffbZZzp16pR8fX2zMSoAAIDcy26J4UsvvXTX9Vu2bNH06dN15coVjRo1Su3bt8/myAAAAHKnx+Yaw1OnTmnUqFHaunWr2rZtq379+qlIkSL2DgsAAOQCdJLT2D0xvHHjhubOnavIyEi5u7vr888/p30MAABgB3ZNDHfs2KEPP/xQZ86cUd++ffXaa69xexoAAJDtmHySxm6JYb9+/bRmzRqVLVtWI0aMUKlSpbRr16677lu9evVsjg4AACD3sVti+M0330iSTp48qX79+t1zP4PBoEOHDmVXWAAAIBeiYJjGbolhbGysvQ4NAACAu+CCPgAAAEh6DGYlAwAA2BuTT9JQMQQAAIAkKoYAAABMPjGjYggAAABJJIYAAAAwo5UMAAByPQcHeskSFUMAAACYUTEEAAC5HpNP0lAxBAAAgCQqhgAAANzg2oyKIQAAACSRGAIAAMCMVjIAAMj16CSnoWIIAAAASVQMAQAAmHxiRsUQAAAAkkgMAQAAYEYrGQAA5Hq0ktNQMQQAAIAkKoYAAADcrsaMiiEAAAAkUTEEAADgGkMzKoYAAACQRGIIAAAAM1rJAAAg16OTnIaKIQAAACRRMQQAAGDyiRkVQwAAAEgiMQQAAIAZrWQAAJDr0UlOQ8UQAAAAkqgYAgAAMPnEjIohAAAAJFExBAAA4BpDMyqGAAAAkERiCAAAADNayQAAINdj8kkaKoYAAACQRMUQAACAySdmVAwBAAAgicQQAAAAZiSGAAAg1zMYDHZbbGE0GvXBBx+oevXqql27tiZPniyTySRJOnjwoDp06CAfHx+1a9dOBw4csPk8kBgCAADkEKNGjdJPP/2kuXPnatKkSVq+fLmWLVumK1euqGfPnvL391dMTIx8fX0VFhamK1eu2DQ+k08AAECulxMmn5w/f17R0dGaN2+evL29JUldu3bVvn37lDdvXjk5OWnAgAEyGAwaMmSI/vvf/2r9+vVq27Ztho9BxRAAACAH2LVrl1xdXRUQEGBZ17NnT40ZM0b79u2Tn5+fpTVtMBhUrVo17d2716ZjkBgCAIBcz57XGBqNRiUnJ1stRqMxXYwJCQkqW7asVq5cqaZNm6px48aaOXOmUlNTlZSUJDc3N6v9ixcvrtOnT9t0HmglAwAA2FFUVJRmzJhhtS48PFy9e/e2WnflyhX9+eefWrp0qcaMGaOkpCQNHz5c+fPnV0pKihwdHa32d3R0vGuCeT8khgAAAHYUFhamLl26WK27M8mTpLx58yo5OVmTJk1S2bJlJUmJiYlasmSJ3N3d0yWBRqNRzs7ONsVCYggAAHI9e04+cXR0vGsieKeSJUvKycnJkhRKUvny5fXXX38pICBAZ8+etdr/7Nmz6drLD8I1hgAAADmAj4+Prl27pmPHjlnWHT16VGXLlpWPj4/27NljuaehyWTS7t275ePjY9MxSAwBAECulxNucF2hQgU1bNhQgwYNUmxsrH744QfNmTNHwcHBatq0qS5evKjRo0crLi5Oo0ePVkpKipo1a2bTeSAxBAAAyCEmTpyop556SsHBwYqIiNArr7yikJAQubq6KioqSrt27VLbtm21b98+zZkzRy4uLjaNzzWGAAAAOUTBggU1fvz4u27z9vbWihUrHml8EkMAAJDr2frM4n8rWskAAACQRMUQAAAgRzwrOTtQMQQAAIAkEkMAAACY0UoGAAC5HpNP0lAxBAAAgCQqhgAAAEw+MaNiCAAAAElUDAEAALjG0IyKIQAAACSRGAIAAMCMVjIAAMj16CSnoWIIAAAASVQMAQAA5EDJUBIVQwAAAJiRGAIAAEASrWQAAAAmn5hRMQQAAIAkGyqG8fHx+uabb5ScnKwmTZrI398/K+MCAADINjz5JE2GKoY//fST2rRpo+3bt+vYsWMKDQ3VpEmTsjo2AAAAZKMMVQwnTZqksLAwhYeHS5J27typt956S3/99Zf69++vUqVKKTU1VadPn1aZMmWyNGAAAIDM5kDBUFIGK4ZHjx5Vq1atLK8DAgK0YMECxcbGqmHDhnrjjTf0zz//qHHjxlkWKAAAALJWhiqGTz75pL777ju9/vrrlnXPP/+8Vq9erYSEBBmNRhUuXFgLFizIskABAACQtTJUMezTp4/Gjx+vbt26KTY21rLeYDDoqaeeUsWKFZUvXz4FBARkWaAAAABZxWAw2G15nGQoMfzPf/6jpUuXqly5ckpNTc3qmAAAAGAHGb5dTZUqVVSlShUlJyffc5/NmzfrhRdeyJTAAAAAsstjVrizG5tvcB0SEqJ//vnHal1CQoJ69Oihvn37ZlZcAAAAyGY2J4blypVTcHCwEhMTZTQa9fHHH6t58+a6evWqoqOjsyJGAAAAZAObn5X88ccfa/To0erUqZMcHR2VmpqqcePGqVmzZlkRHwAAQJYziF6y9BCJocFg0NChQ/XEE09o6tSp+vTTT1WzZs2siA0AAADZKEOJYWBg4D2nU4eFhalEiRKW11u2bMmcyAAAALIJTz5Jk6HEsHfv3lkdBwAAAOwsQ4nhSy+9ZPnzW2+9pffee08eHh5ZFhQAAEB2etxuNG0vNs9K3r17t/LmtfnSRAAAADzmbM7wOnfurHfeeUedOnVSmTJl5OTkZLW9evXqmRYcAAAAso/NieGsWbMkScOHD0+3zWAw6NChQ48eFQAAQDaik5zG5sQwNjY2K+IAAACAnT3UxYJXr17VqlWrFB8fr5s3b6pChQoKCgpSkSJFMjk8AACArOdAyVDSQ0w++eOPP/Tiiy8qMjJSiYmJSkxMVFRUlJo1a6a4uLisiBEAAADZwOaK4ejRo1WnTh2NHDnSMjv5xo0bGjp0qD766CN99tlnmR4kAAAAsp7NFcO9e/eqR48eVresyZs3r3r06KE9e/ZkanAAAADZwWCw3/I4sTkxLFmypE6cOJFu/YkTJ1SgQIFMCQoAAADZz+ZWcqdOnTR06FC9/fbb8vb2liTt27dP06ZNU4cOHTI9QAAAgKzGk0/S2JwYduvWTSkpKZo4caIuXLggSSpRooRCQ0PVtWvXTA8QAAAA2cPmxPDkyZPq3bu3evfurXPnzsnJyUmurq5ZERsAAEC2oGCYxubEsFmzZipbtqzq1aunevXqqUaNGlkRFwAAALKZzYnhzp07tXPnTm3fvl0TJ07UiRMn5OfnZ0kUK1asmBVxAgAAIIvZnBi6uLioYcOGatiwoSTp6NGjmjlzpsaPH6/x48fzrGQAAJDj8OSTNDYnhqdOndLu3bu1e/du7dq1S0ePHlX58uXVsWNH+fv7Z0WMAAAAyAY2J4aNGzeWg4OD6tevr7ffflv+/v4qXLhwVsQGAACQLagXprE5MRw/frx+/fVX/fLLLxo0aJCqVq0qf39/VatWTd7e3nJ0dMyKOAEAAJDFbE4MW7VqpVatWkmSzp07p19//VVbt27VjBkzZDAYtG/fvkwPEgAAAFnP5sRQkpKTk7Vr1y7t2LFDO3bs0OHDh/Xcc8+pbt26mR0fAABAluPJJ2lsTgzbtWunw4cPq0SJEqpTp466deum2rVrq0iRIlkQHgAAALKLzYlhy5YtNX78eHl4eGRFPAAAANnOgYKhJMnB1jeEhoaSFAIAANjBpk2b5OXlZbX06dNHknTw4EF16NBBPj4+ateunQ4cOGDz+A91jSEAAMC/SU65xjAuLk6NGjXSyJEjLeucnJx05coV9ezZUy1bttTYsWO1ZMkShYWFadOmTXJxccnw+DZXDAEAAGAf8fHx8vT0VMmSJS1LoUKFtHbtWjk5OWnAgAHy8PDQkCFDVKBAAa1fv96m8W1ODBMSEmx9CwAAADJBfHy8nn766XTr9+3bJz8/P0vl02AwqFq1atq7d69N49ucGDZt2lQdOnTQ/PnzdebMGVvfDgAA8NgxGOy3GI1GJScnWy1GozFdjCaTSceOHdO2bdvUpEkTvfDCC5o4caKMRqOSkpLk5uZmtX/x4sV1+vRpm86DzdcY/vDDD9qwYYPWrVuniRMnqmrVqgoKClLTpk1VrFgxW4cDAADI1aKiojRjxgyrdeHh4erdu7fVusTERKWkpMjR0VFTp07VyZMnNWrUKF29etWy/naOjo53TTDvx+bEsFixYgoODlZwcLDOnTunjRs3auvWrZo4caJ8fX3VokULNW3aVPnz57d1aAAAALuw5+STsLAwdenSxWrd3R4xXLZsWe3YsUOFCxeWwWDQc889p9TUVPXv318BAQHpkkCj0ShnZ2ebYnmkySdJSUlKSkrS6dOnlZqaqgIFCmj58uVq2LChNm7c+ChDAwAA5AqOjo5ydXW1Wu6WGEpSkSJFrJJYDw8PXbt2TSVLltTZs2et9j179my69vKD2JwYHjp0SFOmTFGTJk3Uvn17HThwQF26dNGPP/6oadOmacmSJXr99dc1bNgwW4cGAADAPfzwww+qUaOGUlJSLOsOHTqkIkWKyM/PT3v27JHJZJKUdj3i7t275ePjY9MxbG4lt23bVn5+fgoNDVXTpk1VtGjRdPv4+fkxexkAAOQYOeHJJ76+vnJyctLQoUPVq1cvJSQkaPz48erevbuaNm2qSZMmafTo0erUqZOWLl2qlJQUNWvWzKZj2JwYfvfdd3riiSfuu0+NGjVUo0YNW4cGAADAPbi6umru3Ln66KOP1K5dOxUoUECdOnVS9+7dZTAYFBUVpffff1/Lly+Xl5eX5syZY9PNraUMJoZ3zpS5n/DwcJsCAAAAsLec8uSTZ555RvPmzbvrNm9vb61YseKRxs9QYrhjx44MDZZTTioAAADSy1BiuGjRIsufExMT9cQTT8jBwXreys2bNxUbG5u50QEAAGQDSltpbJ6V3LhxY50/fz7d+pMnT6pz586ZERMAAADsIEMVwy+//FKzZ8+WlDb9uV27dukqhhcvXpSHh0fmRwgAAIBskaHEsE2bNsqXL59SU1M1ePBgdenSRQULFrRsNxgMyp8/v2rWrJllgQIAAGQVB+ZJSMpgYpgvXz61adNGkvTkk0+qWrVqypvX5jvdAAAA4DFmc3YXEBCg7du367ffftP169ctd9i+hdvVAACAnIaCYRqbE8OxY8dq4cKFevbZZ1WgQAGrbdyuBgAAIOeyOTGMjo7W2LFj1apVq6yIBwAAAHZic2KYJ08eeXt7Z0UsAAAAdkHXM43N9zF85ZVXNH36dF25ciUr4gEAAICd2Fwx3Llzp/bs2aP169erePHiypcvn9X2LVu2ZFpwAAAA2YGCYRqbE8O2bduqbdu2WRELAAAA7MjmxPCll16y/PnChQsqWLCgDAYDvXkAAIAczuZrDE0mkyIjI1WjRg3VqlVLp06dUv/+/TV8+HAZjcasiBEAACBLORgMdlseJzYnhjNnztSqVas0duxYOTo6SkqrIv74448aP358pgcIAACA7GFzYrhixQp9+OGHatSokaV9XKdOHY0bN07r1q3L9AABAACymsFgv+VxYnNieO7cObm5uaVbX6hQIW5hAwAAkIPZnBjWrFlTc+fOtVqXnJysyZMnq0aNGpkWGAAAQHa5NZHWHsvjxObEcMSIETp48KDq1Kmja9eu6a233lKDBg106tQpDR06NCtiBAAAQDaw+XY1hQoV0ldffaXt27fr6NGjunHjhsqXL6+6devKwcHmPBMAAACPCZsTwxYtWmjGjBmqVauWatWqlRUxPbIx096zdwjIRpXKFrJ3CMhGA9s+Z+8QkI0u/e+SvUPIdgaDVKJEQZ09e0kmk72jyV7OJQva7diUttLYfB4cHBx0/fr1rIgFAAAAdmRzxbBhw4bq0qWLGjVqpLJly1ruZXhLeHh4pgUHAACQHR63SSD2YnNiePjwYT3//PP6+++/9ffff1tt46QCAADkXDYnhh07dlSdOnVUtGjRrIgHAAAAdmLzNYYffPCBzp8/nwWhAAAA2IeDwX7L48TmxLBGjRpavXq1jEZjVsQDAAAAO7G5lXzu3DnNmjVLs2fPVrFixeTk5GS1fcuWLZkWHAAAQHZ43Cp39mJzYvjyyy/r5ZdfzopYAAAAYEc2J4YvvfRSVsQBAABgN9xZJY3NiWFISMh9T97ChQsfKSAAAADYh82JYY0aNaxe37hxQwkJCdq6davefPPNTAsMAAAA2cvmxPBeTzaJiYnRxo0b1a1bt0cOCgAAIDsx+SRNpj0zunr16tq+fXtmDQcAAIBsZnPFMDExMd26y5cva+7cuSpbtmymBAUAAJCdmHuSxubEMDAwUAaDQSaTyTIJxWQyqXTp0vroo48yPUAAAABkD5sTwztvYG0wGJQvXz6VKFGCqd4AAAA5mM3XGJYtW1bff/+99uzZo7Jly6pMmTL64IMPtHTp0qyIDwAAIMs5GAx2Wx4nNieGU6ZMUWRkpFxcXCzrAgICNGvWLM2cOTNTgwMAAED2sTkxjI6O1tSpUxUYGGhZ99prr2nixIlatmxZpgYHAACQHRzsuDxObI4nJSVFrq6u6dYXLVpUly5dypSgAAAAkP1sTgzr1aun0aNHW9225syZMxo3bpzq1q2bqcEBAABkB4PBfsvjxObEcPjw4bp+/boaN26smjVrqmbNmmrYsKFSU1P1/vvvZ0WMAAAAyAY2366mWLFiWrp0qQ4fPqxjx44pb968evrpp1WxYsWsiA8AAADZxObE8BYvLy95eXllZiwAAAB28bjdNsZeHrfJMAAAALCTh64YAgAA/FtQMExDxRAAAACSHqJi+Msvv9x3e/Xq1R86GAAAANiPzYlhSEjIXdc7OjqqZMmS2rJlyyMHBQAAkJ0caCVLeojEMDY21ur1zZs3deLECY0cOVItW7bMtMAAAACQvR75GsM8efKofPnyGjhwoD7++OPMiAkAACBbORgMdlseJ5k2+eTcuXO6ePFiZg0HAACAbGZzK3nQoEHp1l2+fFk//fSTmjZtmilBAQAAZKfHrHBnN5lyH8MiRYooIiJCrVu3zozhAAAAYAc2J4ZjxozJijgAAABgZw91jeHmzZvVqVMnBQQEyM/PT+3bt9fKlSszOTQAAIDs4WCw3/KwevbsqYEDB1peHzx4UB06dJCPj4/atWunAwcO2H4ebH3D0qVL1b9/f1WvXl1jx47VuHHjFBAQoA8++EBffvmlzQEAAADANmvWrNHWrVstr69cuaKePXvK399fMTEx8vX1VVhYmK5cuWLTuDa3kj/99FO9//77atOmjWXdCy+8oGeeeUazZ89Whw4dbB0SAADArgzKObNPzp8/r/Hjx6tKlSqWdWvXrpWTk5MGDBggg8GgIUOG6L///a/Wr1+vtm3bZnhsmyuG586dU9WqVdOt9/X11V9//WXrcAAAALDBuHHj1Lp1a1WsWNGybt++ffLz85PBPL3aYDCoWrVq2rt3r01j25wYPvfcc3e9nnDFihVWAQIAAODBjEajkpOTrRaj0XjXfbdv365ff/1Vb731ltX6pKQkubm5Wa0rXry4Tp8+bVMsNreS+/fvr9DQUO3YsUM+Pj6SpL179yo2NlazZ8+2dTgAAAC7s+ezkqOiojRjxgyrdeHh4erdu7fVumvXrun999/X8OHD5ezsbLUtJSVFjo6OVuscHR3vmWDei82Joa+vr2JiYrR8+XLFx8fLyclJ1atX15QpU1S6dGlbhwMAAMjVwsLC1KVLF6t1dyZ5kjRjxgxVrlxZ9erVS7fNyckpXRJoNBrTJZAPYnNiGB0drSZNmtz1CSgAAAA5kT0rho6OjndNBO+0Zs0anT17Vr6+vpJkSQQ3bNigFi1a6OzZs1b7nz17Nl17+UFsTgznz5+vDz74QHXq1FGLFi0UGBio/Pnz2zoMAAAAbLBo0SLduHHD8nrixImSpH79+umXX37RJ598IpPJJIPBIJPJpN27d+uNN96w6Rg2Tz5ZvXq1VqxYoeeff16RkZGqXbu2+vbtq02bNtncxwYAAHgcGAwGuy0ZVbZsWbm7u1uWAgUKqECBAnJ3d1fTpk118eJFjR49WnFxcRo9erRSUlLUrFkzm87DQz35xMPDQ+Hh4frmm2/01Vdf6amnnlL//v1Vu3ZtDRo0SLt3736YYQEAAPAQXF1dFRUVpV27dqlt27bat2+f5syZIxcXF5vGsbmVfMuZM2e0YcMGbdy4UXv37pW3t7eCgoKUlJSkN998Uy+//LLee++9hx0eAAAA9zF27Fir197e3lqxYsUjjflQ1xhu2LBB+/btk6enp5o3b64JEyZYzUh++umn9eGHH5IYAgCAHMGek08eJzYnhkuWLFHz5s01atQoeXh43HWfSpUqaejQoY8cHAAAALKPzYnhhg0bHriPl5eXvLy8HiogAACA7GbDHJB/tYeafAIAAIB/HxJDAAAASHqEWckAAAD/Fg70kiU9QmJ4/PhxxcfHKzU1VeXLl1fFihUzMy4AAABkM5sTw4sXL2rQoEHasmWLChcurJs3b+ry5cuqXr26Zs6cqYIFC2ZFnAAAAFmG29Wksfkaw1GjRun06dNau3atduzYoV9//VWrV6/WlStXNGbMmKyIEQAAANnA5orht99+q3nz5qlChQqWdRUrVtTw4cPVo0ePTA0OAAAgO3CJYRqbK4ZOTk5ycEj/NoPBoJs3b2ZKUAAAAMh+NieGgYGB+uCDD3TixAnLuuPHj2vUqFFq0KBBpgYHAACA7GNzK7l///7q1auXXnzxRRUuXFhS2oSUevXqadiwYZkeIAAAQFZzEL1k6SESw0KFCmnRokU6fPiw4uPj5eTkpPLly1tdcwgAAICcx+bEMCEhQXFxcbp8+bJcXV31zDPPqGzZslkRGwAAQLZg8kmaDCeG27dv15gxY3TkyBGZTCbLeoPBoOeff14DBw6Uv79/lgQJAACArJehySfbtm1T9+7d9eyzz2rRokX6+eef9fvvv2vHjh2aP3++KlSooC5dumjPnj1ZHS8AAACySIYqhjNnzlRoaKj69+9vtb5w4cKqUaOGatSoocKFCysyMlJz5szJkkABAACyCk8+SZOhimFsbKxeeuml++7ToUMHHTx4MFOCAgAAQPbLUMXw6tWrllvT3EvRokX1zz//ZEpQAAAA2cmB2SeSMlgxNJlMd33aye0MBoPVpBQAAADkLBmelbxu3Tq5urrec/ulS5cyJSAAAADYR4YSwzJlyuizzz574H6lS5d+5IAAAACyG53kNBlKDL/99tusjgMAAAB2ZvOTTwAAAP5tmHySJkOTTwAAAPDvR8UQAADkehQM01AxBAAAgCQSQwAAAJjRSgYAALkelbI0nAcAAABIomIIAAAgA7NPJFExBAAAgBmJIQAAACTRSgYAABCN5DRUDAEAACCJiiEAAADPSjajYggAAABJVAwBAAC4xtCMiiEAAAAkkRgCAADAjFYyAADI9Zh7koaKIQAAACRRMQQAAOBZyWZUDAEAACCJxBAAAABmtJIBAECuR6UsDecBAAAAkqgYAgAAMPnEjIohAAAAJFExBAAA4FnJZlQMAQAAIInEEAAAAGa0kgEAQK7H5JM0VAwBAAAgiYohAAAAlTIzzgMAAEAO8eeff6pbt27y9fVVw4YN9emnn1q2JSQkKDQ0VFWrVlVQUJC2bdtm8/gkhgAAADlAamqqevbsqaJFi2rFihX64IMPFBkZqdWrV8tkMqlXr14qUaKEoqOj1bp1a4WHhysxMdGmY9BKBgAAuV5OmHxy9uxZPffccxoxYoRcXV319NNPq1atWtq1a5dKlCihhIQELV26VC4uLvLw8ND27dsVHR2t3r17Z/gYVAwBAAByADc3N02dOlWurq4ymUzatWuXfvnlFwUEBGjfvn2qVKmSXFxcLPv7+flp7969Nh2DxBAAAOR6BjsuRqNRycnJVovRaLxvvIGBgercubN8fX3VpEkTJSUlyc3NzWqf4sWL6/Tp0zadBxJDAAAAO4qKipKfn5/VEhUVdd/3TJs2TbNnz9ahQ4c0ZswYpaSkyNHR0WofR0fHByaYd+IaQwAAkOvZ8xLDsLAwdenSxWrdnUnenapUqSJJunbtmvr166d27dopJSXFah+j0ShnZ2ebYqFiCAAAYEeOjo5ydXW1Wu6WGJ49e1abN2+2WlexYkVdv35dJUuW1NmzZ9Ptf2d7+UFIDAEAAHKAkydPKjw8XGfOnLGsO3DggIoVKyY/Pz/9/vvvunr1qmXbrl275OPjY9MxSAwBAECu5yCD3ZaMqlKlip5//nkNHjxYcXFx2rp1qyZMmKA33nhDAQEBKl26tAYNGqQjR45ozpw52r9/v9q3b2/jeQAAAMBjL0+ePJo1a5by58+vjh07asiQIQoJCdFrr71m2ZaUlKS2bdtq1apVmjlzpsqUKWPTMZh8AgAAcr0ccH9rSVKpUqU0Y8aMu25zd3fX4sWLH2l8KoYAAACQRGIIAAAAM1rJAAAg1zPYMAnk34yKIQAAACRRMQQAAMgxk0+yGhVDAAAASKJiCAAAYNONpv/NqBgCAABAEokhAAAAzGglAwCAXI/JJ2moGAIAAEASFUMAAAAqhmZUDAEAACCJxBAAAABmtJIBAECux7OS01AxBAAAgCQqhgAAAHKgYCiJiiEAAADMqBgCAIBcj2sM01AxBAAAgCQSQwAAAJjRSgYAALkeTz5JQ8UQAAAAkqgYAgAAMPnEjIohAAAAJJEYAgAAwIxWMgAAyPV48kkaKoYAAACQ9JhWDP/55x8VLVpUBuaOAwCAbMDkkzR2rxieOXNG77zzjg4dOqRr167p1VdfVZ06dRQYGKjY2Fh7hwcAAJBr2D0xHDFihP755x8VKVJEMTEx+uOPP7R06VIFBgZq5MiR9g4PAAAg17B7K/nnn39WTEyMSpcurc2bN6tx48by8fFRsWLF1KJFC3uHBwAAcgGuXktj94qhk5OTrl27pgsXLmjHjh1q2LChJOnkyZMqXLiwfYMDAADIRexeMXzhhRfUt29fOTs7q3DhwmrYsKHWrl2rjz76SC+99JK9wwMAALkABcM0dk8MR4wYocWLF+vUqVPq2LGjnJycZDQa9cYbb+iVV16xd3gAAAC5ht0Tw7x58yo0NFSSdOHCBaWmpqp169bcqgYAAGQbB/IOSY/BNYYmk0mRkZGqUaOGatWqpVOnTql///4aPny4jEajvcMDAADINeyeGM6cOVOrVq3S2LFj5ejoKEl66aWX9OOPP2r8+PF2jg4AYE8GQ+5ccutnh/3ZvZW8YsUKjR07VtWrV7e0j+vUqaNx48bp7bff1tChQ+0cIQDAXkqUKGjvEOymePHc+9ntgbw0jd0Tw3PnzsnNzS3d+kKFCunKlSt2iAgA8Lg4e/aSvUPIdgZDWlJ47twlmUz2jiZ75eZ/CDwu7N5KrlmzpubOnWu1Ljk5WZMnT1aNGjXsFBUA4HFgMuXOJbd+drsy2HF5jNglMezcubPi4+Mlpd2u5uDBg6pTp46uXbumt956Sw0aNNCpU6doIwMAAGQju7SSnZyc1KZNG3Xt2lW9evXSV199pe3bt+vo0aO6ceOGypcvr7p168rBwe4FTQAAgFzDLonhvHnztHHjRo0dO1br1q3TiBEjVLt2bdWqVcse4QAAgFzO8Lj1dO3EbpNPXnzxRTVo0ECffPKJwsPDFRgYqF69esnJyclqvzJlytgpQgAAgNzFrrOSnZycFB4ermeffVZ9+/bVmjVrLNtMJpMMBoMOHTpkxwgBAEBuwH0U09g1MTx16pTGjx+vTZs2qUWLFgoLC5Ozs7M9QwIAAMi17JIYXrt2TbNnz9a8efNUrlw5LVy4UP7+/vYIBQAAgCsMzeySGDZp0kTJycnq27evQkJClCdPHnuEAQAAgNvYJTH08/NTRETEXZ94AgAAAPuwS2I4adIkexwWAADg7uglS3oMHokHAACAx4NdZyUDAAA8DrjBdRoqhgAAAJBEYggAAAAzWskAACDX48knaagYAgAA5BBnzpxRnz59FBAQoHr16mnMmDG6du2aJCkhIUGhoaGqWrWqgoKCtG3bNpvHJzEEAAC5nsGOS0aZTCb16dNHKSkp+vzzzzVlyhR99913mjp1qkwmk3r16qUSJUooOjparVu3Vnh4uBITE206D7SSAQAAcoCjR49q7969+vHHH1WiRAlJUp8+fTRu3DjVr19fCQkJWrp0qVxcXOTh4aHt27crOjpavXv3zvAxSAwBAABywDWGJUuW1KeffmpJCm9JTk7Wvn37VKlSJbm4uFjW+/n5ae/evTYdg1YyAABADlCoUCHVq1fP8jo1NVWLFy9WzZo1lZSUlO5Rw8WLF9fp06dtOgaJIQAAgB0ZjUYlJydbLUaj8YHvmzBhgg4ePKh33nlHKSkpcnR0tNru6OiYoXFuR2IIAAByPYMd/4uKipKfn5/VEhUVdd94J0yYoAULFmjChAny9PSUk5NTuiTQaDTK2dnZpvPANYYAAAB2FBYWpi5dulitu7P6d7uRI0dqyZIlmjBhgpo0aSJJKlWqlOLi4qz2O3v2bLr28oNQMQQAALmewWC/xdHRUa6urlbLvRLDGTNmaOnSpZo8ebKaN29uWe/j46Pff/9dV69etazbtWuXfHx8bDoPJIYAAAA5QHx8vGbNmqUePXrIz89PSUlJliUgIEClS5fWoEGDdOTIEc2ZM0f79+9X+/btbToGrWQAAIAcYMuWLbp586YiIyMVGRlpte3w4cOaNWuWhgwZorZt28rd3V0zZ85UmTJlbDoGiSEAAMj1csBtDNWzZ0/17Nnzntvd3d21ePHiRzoGrWQAAABIomIIAACQM0qG2YCKIQAAACRRMQQAAJCBkqEkKoYAAAAwIzEEAACAJFrJAAAAMtBJlkTFEAAAAGZUDAEAQK5HwTANFUMAAABIIjEEAACAGa1kAAAAesmSqBgCAADAjIohAADI9XjySRoqhgAAAJBExRAAAIAbXJtRMQQAAIAkEkMAAACY0UoGAAC5Hp3kNFQMAQAAIImKIQAAACVDMyqGAAAAkERiCAAAADNayQAAINfjySdpqBgCAABAEhVDAAAAnnxiRsUQAAAAkqgYAgAAcIWhGRVDAAAASCIxBAAAgBmtZAAAAHrJkqgYAgAAwIyKIQAAyPW4wXUaKoYAAACQRGIIAAAAM1rJAAAg1+PJJ2moGAIAAEASFUMAAACmnphRMQQAAIAkEkMAAACY0UoGAACglyyJiiEAAADMqBgCAIBcjyefpKFiCAAAAElUDAEAALjBtRkVQwAAAEgiMQQAAIAZrWQAAJDr0UlOQ8UQAAAAkqgYAgAAUDI0o2IIAAAASSSGAAAAMKOVDAAAcj2efJKGiiEAAAAkUTEEAADgySdmVAwBAAAgiYohAAAAVxiaUTEEAADIYYxGo1q0aKEdO3ZY1iUkJCg0NFRVq1ZVUFCQtm3bZvO4JIYAAAA5yLVr1/Tuu+/qyJEjlnUmk0m9evVSiRIlFB0drdatWys8PFyJiYk2jU0rGQAA5Ho5ZfJJXFyc3nvvPZlMJqv1P//8sxISErR06VK5uLjIw8ND27dvV3R0tHr37p3h8akYAgAA5BA7d+5UjRo1tGzZMqv1+/btU6VKleTi4mJZ5+fnp71799o0PhVDAAAAO04/MRqNMhqNVuscHR3l6OiYbt/OnTvfdYykpCS5ublZrStevLhOnz5tUyxUDAEAAOwoKipKfn5+VktUVJRNY6SkpKRLJB0dHdMlnA9CxRAAAMCOwsLC1KVLF6t1d6sW3o+Tk5POnz9vtc5oNMrZ2dmmcUgMAQBArmfPySf3ahvbolSpUoqLi7Nad/bs2XTt5QehlQwAAJDD+fj46Pfff9fVq1ct63bt2iUfHx+bxiExBAAAuZ7BjktmCAgIUOnSpTVo0CAdOXJEc+bM0f79+9W+fXubxiExBAAAyOHy5MmjWbNmKSkpSW3bttWqVas0c+ZMlSlTxqZxuMYQAADkejnlBte3O3z4sNVrd3d3LV68+JHGpGIIAAAASSSGAAAAMKOVDAAAcj2DHZ988jihYggAAABJVAwBAADs+ajkxwoVQwAAAEgiMQQAAIAZrWQAAJDr0UlOQ8UQAAAAkqgYAgAA5Mgnn2QFKoYAAACQRMUQAACAG1ybUTEEAACAJBJDAAAAmNFKBgAAoJMsiYohAAAAzKgYAgCAXI+CYRoqhgAAAJBEYggAAAAzWskAACDX48knaagYAgAAQBIVQwAAAJ58YkbFEAAAAJKoGAIAAHCNoRkVQwAAAEgiMQQAAIAZiSEAAAAkkRgCAADAjMknAAAg12PySRoqhgAAAJBEYggAAAAzWskAACDX48knaagYAgAAQBIVQwAAACafmFExBAAAgCQqhgAAAFxhaEbFEAAAAJJIDAEAAGBGKxkAAIBesiQqhgAAADCjYggAAHI9bnCdhoohAAAAJJEYAgAAwIxWMgAAyPV48kkaKoYAAACQRMUQAACAqSdmVAwBAAAgicQQAAAAZrSSAQAA6CVLomIIAAAAMyqGAAAg1+PJJ2moGAIAAEASFUMAAABucG1GxRAAAACSSAwBAABgZjCZTCZ7BwEAAAD7o2IIAAAASSSGAAAAMCMxBAAAgCQSQwAAAJiRGAIAAEASiSEAAADMSAwBAAAgicQQAAAAZiSGAAAAkERimKViYmLk5eWlL7/8MkuPc+7cOa1bty5Lj3EvCQkJ2rp1q12OndMFBgbKy8tLXl5eevbZZ+Xr66tOnTrphx9+sHdoyCSBgYGKiYlJtz4mJkaBgYF2iAjZ4fbv9q3vd0BAgN5880399ddf9g4PuC8Swyy0Zs0aPfXUU/r666+z9DgTJ060W3I2ePBg7d+/3y7H/jcYPHiwtm3bpq1bt2rZsmWqVq2awsLC9NNPP9k7NACP4NZ3+9b3e8qUKTpy5IgiIiLsHRpwXySGWeTcuXPavn27evXqpV9//VUJCQlZdiwed51zFSxYUCVLllSpUqXk6empAQMGqHnz5hozZoy9QwPwCG59t299v+vUqaM+ffpox44dunTpkr3DA+6JxDCLrF+/XgULFlSrVq3k5uZmVTUMDAzU/Pnz1bJlS1WtWlU9e/ZUUlKSZfuWLVvUpk0bValSRf7+/nr33Xd1+fJlSdL06dP11ltv6ZVXXlFAQIBCQkK0YsUKrVixwtKa8vLy0rp169SsWTP5+Pjo3XffVUJCgl577TX5+Pioc+fOOnPmjOV4mzZtUlBQkHx8fNS+fXvt3LnTsi0kJESRkZHq1q2bvL291aRJE0urc+DAgdq5c6dmzJihkJCQLD2fuUnHjh31xx9/6M8//9SFCxc0bNgw1a5dW35+furfv78uXLggSdqxY4cCAwP1/vvvy8/PT3PmzNHAgQM1YcIE9e3bVz4+PgoKCtLBgwc1ZcoU+fv7q379+na77AB3d/r0ab399tsKCAhQjRo1NGrUKBmNRkl3bzmHhIRo+vTpkqTExER17dpVvr6+qlWrlkaOHKnr169LSvsH48yZM1W3bl35+/vrjTfeUGJiYvZ+OFhxdHSUJDk4ONz3uy1J8fHx6tatm6pVq6Z69eppxowZSk1NlZT2e2DAgAEaOXKkfH19FRgYqG3btmnx4sWqXbu2atasqYULF9rlMyLnIzHMImvWrFHDhg3l4OCgwMBArVy50qqyN336dHXv3l3Lli1TSkqKevfuLUk6ceKE3n77bXXu3Fnr1q3T1KlT9dNPP2n58uWW927ZskUtWrTQggULFBkZqWbNmqlZs2b66quvLPtMmzZNY8eOVVRUlDZu3Kjg4GAFBwdr6dKlSkpK0ieffCJJio2NVUREhN58802tWrVKrVq1Uo8ePfTnn39axpo9e7aaN2+ub775Rs8++6yGDRum1NRUDRkyRL6+vuratavlFxUenYeHhyQpLi5O4eHhOnTokGbPnq158+YpPj5eAwcOtOx76tQpGY1GxcTEqEWLFpKkBQsWKCAgQKtWrVKRIkX0+uuv69y5c1q2bJklkbz1Cwb2ZTQa9frrryslJUWLFi3S1KlT9f3332v8+PEZev/IkSPl4uKilStXaubMmdqwYYPl/xWLFy/W6tWrNWnSJC1btkzFixdX165dLYkjsteJEyc0Z84c1atXTwUKFLjvd/uff/5R586d5ebmpi+//FLvv/++Fi9ebJXsrV27VgULFtTXX38tb29v9e3bV9u2bdOiRYsUEhKicePG6Z9//rHXx0VOZkKmS0xMNHl5eZk2btxoMplMph9//NHk6elp+uWXX0wmk8nUqFEj0+jRoy37nzhxwuTp6Wk6fPiw6dixY6YlS5ZYjffOO++YBg0aZDKZTKZp06aZateubbU9IiLCFBERYXnt6elpWrp0qeV1+/btTf3797e8Hj9+vKlr164mk8lk6tevn2nMmDFW44WHh1vWvfrqq6bevXtbth06dMjk6elpOn36tGX7tGnTbDk9MGvUqJEpOjo63frr16+bPD09TdOnTzd5enqajh49atkWFxdn8vT0NMXHx5t+/vlnk6enpykuLs6yPSIiwtSxY0fL688//9z0/PPPm1JSUqzef+bMmSz8ZLilUaNGpsqVK5uqVq1qtVSuXNnUqFEj0+bNm00+Pj6m8+fPW96zdetWU6VKlUzJycmm6OhoU6NGjazGvP0717JlS9PAgQNNRqPRZDKZTL///rspISHBZDKZTPXr1zdt2bLF8r4bN26YatasabUOWePOv/fKlSubfH19Tf369TP9888/lv+P3uu7vWDBAlODBg1M169ft2z/4osvTHXq1DGZTGm/B+rWrWtKTU01mUwm0/fff2/y9PQ0nThxwmQymUwpKSkmT09P0+7du7PxU+PfIq+9E9N/ozVr1sjJyUl169aVJAUEBKhw4cJasWKF/P39JUnVqlWz7F+uXDkVKVJE8fHxatasmRwdHRUZGakjR47oyJEjiouLU+vWrS37ly1b9oExlCtXzvJnZ2dnq/c4OztbWlXx8fFat26dli1bZtl+/fp1S+yS9PTTT1v+7OrqKkm6ceNGhs4FbJecnCwp7e+5UKFCKl++vGWbh4eHChcurKNHj6pgwYKSpCeffNLq/be/dnZ2VokSJeTs7CxJcnJykiTL3z+yXp8+ffTiiy9ardu4caOWLFmi+Ph4Pf300ypcuLBlW7Vq1XTjxg2dOHHigWN3795dgwcP1qZNm1S/fn0FBQWpUqVKunz5sk6fPq133nlHDg7/3xi6evWqjh8/nmmfDfd26+/98uXLmj59uk6dOqX33ntPRYsW1fbt2+/73Y6Pj9fzzz+vvHn//1e0r6+vkpKSdPHiRUlp33ODwSBJlu/3rf/P33rN9xwPg8QwC6xZs0ZXr16Vn5+fZd3Nmze1fv16DRs2TJKsvvC3tjs4OCg2NlbBwcEKDAyUv7+/QkNDtWDBAqt9b/1yv588efJYvb79l8Odx+3Ro4fatGljtf7W/1gkKV++fOneZ2LCS5Y5fPiwJFl+Adzp5s2bunnzpuX1nT8Pd/5s3evvHtmjePHicnd3T7dOuvt3+dbf7c2bNy2/+G93+z/KWrVqpVq1amnz5s36/vvv1adPH/Xo0UPdunWTJH388cdWyYckqyQUWef2v/ePP/5Y7du311tvvaVly5ZZrjW8063v9t1+Lm5d/nHr5+PO77nEdx2Zg5+iTHbs2DEdPHhQQ4cO1cqVKy3LlClTlJycrE2bNklKu7bvlj///FOXLl2Sl5eXvv76a1WvXl2TJk1S586d5e3trT///PO+idjdfnlkVPny5XXy5Em5u7tblmXLlum///3vQ4+JRxMdHa3nn39edevW1cWLF3X06FHLtri4OCUnJ6f7ZY+cqXz58jp+/LjOnz9vWbd3717lzZtXTz31lPLly2eZeCal/YPs5MmTltdTpkzRuXPnFBwcrKioKPXt21cbN25UoUKFVLx4cSUlJVm+16VLl9aECRN07Nix7PyIUNqkk1GjRunQoUOaP3++ypcvf9/vdvny5fX7779bXQ+6Z88eFStWTEWKFLHDJ0BuQmKYydasWaMiRYqoY8eO8vT0tCxBQUGqWLGiVq5cKUlauHChtmzZotjYWA0ePFh16tTR008/rSJFiujw4cPav3+/jh07prFjx+q33367b0sgf/78OnXqlNVM44wKDQ3V2rVrtXDhQp04cULz58/X/PnzrdrH9+Pi4qLjx4/r3LlzNh8b0qVLl5SUlKS///5bhw8f1ujRo7V27VoNHDhQHh4eql+/viIiIrR//37t379fERERql69ujw9Pe0dOjJBnTp1VK5cOQ0YMECHDx/Wzz//rJEjR6pFixYqVKiQKleurPPnz2vRokVKSEjQmDFjrGauHj16VB9++KFiY2N15MgRbd26VZUqVZKU9t2eOnWqvv32Wx0/flxDhw7V7t27VaFCBXt93FzN29tb7du316xZs+Tq6nrf73bLli1lNBo1fPhwxcfHa/PmzZo+fbqCg4MfqRAAZASJYSZbs2aNWrZseddWQXBwsH766SedOXNGL730kiZPnqzg4GCVLFlSU6ZMkZR2K4qqVasqNDRUnTt3VmJionr16qWDBw/e85itW7fWsWPH1KpVK5tbvFWrVtX48eP1xRdfKCgoSMuXL9ekSZNUvXr1DL2/Q4cO+uGHH9S9e3ebjos0H330kerWrav69eurS5cuOnbsmObPn6+AgABJ0rhx41SuXDmFhoaqW7dueuaZZzRz5kw7R43MkidPHs2aNUuS9PLLL+vdd99V48aN9eGHH0pKu743IiJCkZGRatOmjUwmk5o0aWJ5/4gRI1SiRAmFhITo5Zdflpubm4YMGSJJ6tatm9q3b6/hw4erTZs2SkxM1Ny5c2kl29E777yjfPnyacKECff9bru6uurTTz/ViRMn1KZNG40cOVKvv/66wsPD7fwJkBsYTFwslu0CAwMVHh6utm3b2jsUAAAACyqGAAAAkERiCAAAADNayQAAAJBExRAAAABmJIYAAACQRGIIAAAAMxJDAAAASCIxRAYFBgbKy8tLXl5eevbZZ+Xr66tOnTrphx9+sHdoOZ7RaNTy5cstr0NCQjR9+nSbx7n9fQMHDtTAgQMzLcZbAgMDFRMTk+nj3mn69OkKCQnJ8uPkdIcOHdLu3bvtcuzt27crPj7eLseWHv578jBSU1M1c+ZMNWrUSP7+/urRo4f+/PPPbDk2kN1IDJFhgwcP1rZt27R161YtW7ZM1apVU1hYmH766Sd7h5ajrVmzRrNnz87UMYcMGWJ5AkZm+uqrrxQUFJTp4+Lh9OrVS8ePH7fLsUNDQ3X27Fm7HDu7LVy4UPPnz9ewYcO0dOlS5cmTR927d9fVq1ftHRqQ6UgMkWEFCxZUyZIlVapUKXl6emrAgAFq3ry5xowZY+/QcrSsuGNUwYIFVbBgwUwft1ixYnJ2ds70cYHH2bJly9S1a1cFBgaqYsWKmjhxok6fPm23ai2QlUgM8Ug6duyoP/74w9JWuXDhgoYNG6batWvLz89P/fv314ULF+763hdffFHz5s2zWteyZUt9+eWXkqQ9e/YoODhYVatWVWBgoJYsWWLZ726tUi8vL+3YseOuxzp37pz69u2ratWqqU6dOpo8ebJMJpNOnjwpLy8vnTx50rLv7W3MmJgYderUSb169ZKfn59WrVqlkJAQjRw5Uo0bN1bDhg2VnJysv/76S2+88YZ8fHwUGBioGTNm6ObNm5YxQkJCNG3aNNWoUUP+/v4aM2aMTCaTduzYoUGDBunUqVPp4vjrr7/07LPP6vfff7f6HJUqVXpgG+vW+bl06ZKqVKmin3/+2bItOTlZVapU0a+//ipJ2rRpk4KCguTj46P27dtr586d9xz39lZySEiIIiMj1a1bN3l7e6tJkyb3vbRg165dCg4Olo+Pj6pWraoePXro77//vuf+169f1wcffKBq1aqpdu3aVj8rqamp+vTTT9W4cWN5e3srJCREhw8ftmy/82chJiZGgYGBlteTJ09W3bp1Le89cuSIZduvv/6qtm3bytvbWy1bttSGDRvuGeOdzpw5oz59+qh69eqqXLmyXnrpJe3atUuSLD9rq1evVr169eTv769Ro0bpxo0bktL+gTB79mwFBgaqcuXKqlu3rmbMmGEZ+86fu7Zt2+rUqVMaNGiQBg4cqB07digwMFBfffWV6tSpo+rVq+uTTz7RL7/8oqZNm8rX11cDBgxQamqq5XgzZ85U3bp15e/vrzfeeEOJiYlW5/Drr79WixYtVLlyZXXu3FkJCQmSZDmXr732WobbuTExMWrWrJm8vb3Vtm1b/fLLL5ZtgYGBmjBhgurWrWt5JvSdNm3apCZNmqhq1ar68MMPLd+vhxn/559/tulcDRw40OoRpvnz51fevHmVnJycoc8O5CQkhngkHh4ekqS4uDhJUnh4uA4dOqTZs2dr3rx5io+Pv+e1bs2bN7f6pRsfH69jx47pxRdfVHx8vF5//XVVr15dMTEx6t27t8aNG6dNmzY9VJy9evVSUlKSFi9erKlTpyomJkaff/55ht67Z88eVaxYUcuXL1fdunUlpf0SmjBhgmbMmKECBQooPDxcxYsX14oVKzRmzBitXr3aqj28Z88eHTt2TEuWLNGwYcO0cOFC/fTTT/L19dXgwYP1xBNPaNu2bSpdurTlPaVLl5afn5/VOdqwYYOee+45ubu7Zyj2ggULql69elbn7fvvv1exYsXk5+en2NhYRURE6M0339SqVavUqlUrm66fmj17tpo3b65vvvlGzz77rIYNG2b5ZXq7S5cuKSwsTHXq1NE333yjuXPn6sSJE5ozZ849x96zZ4/y5cunlStXqmfPnho7dqzlmraZM2fqs88+0+DBg7VixQqVLVtW3bt315UrVx4Y86ZNm7Rs2TJNnTpV33zzjUqUKKFBgwZJkpKSkhQWFqa2bdtq9erV6t69uwYOHGhJoh+kX79+unnzppYuXaqVK1eqVKlSGjFihNU+M2bM0JQpUzRjxgxt3LjRklitXLlSCxYs0OjRo7V+/Xr16tVL06dPt/qHwe0/d5999pmeeOIJDR482HLZwN9//63Nmzdr0aJFeuONNzR58mR99NFHGjt2rCZPnqy1a9dqy5YtkqTFixdr9erVmjRpkpYtW6bixYura9euun79uuV406dP15AhQxQTE6P//e9/mjp1qqS0Swpube/atesDz0tMTIxGjhypsLAwrVy5UrVr11bPnj115swZyz6rV6/W3LlzNXbsWBkMBqv3x8XFqW/fvgoODlZ0dLRu3LhhSbgfdnxbzlWDBg1UqlQpy1hz5sxR3rx5VaNGjQd+diCnITHEI7nVrrx8+bJiY2O1c+dOTZgwQd7e3vL29taECRP07bff6ujRo+ne26JFC+3du1enT5+WJK1bt05169ZV4cKFtXz5clWqVEnvvvuuKlSooJdeekmvvvqqPv30U5tjjI2N1Z49ezR27FhVqlRJ1atX14gRI1SoUKEMvd9gMOjNN9+Uh4eHihUrJklq2LChqlWrpsqVK+vnn39WYmKiRo4cqQoVKqhGjRqKiIjQwoULLWPcvHnTsr1169Z69tln9dtvv8nR0VEFCxZUnjx5VLJkSeXJk8fq2M2bN9f69estr9etW6fmzZvb9PmbN2+uTZs2WaowGzZsULNmzWQwGDR37ly9/PLLatmypdzd3fXaa6+pfv36VtXZ+2nQoIHatm2rp556Sm+++ab++usvJSUlpdvv6tWreuutt9SrVy+VK1dOfn5+evHFF60qdXcqVaqUBg0apKeeekqhoaEqVKiQDh8+LJPJpMWLF+vtt99W48aN5eHhoZEjRypPnjxatWrVA2M+deqU8uXLpzJlyuipp57SsGHDLP94+fzzz1W7dm29+uqrcnd3V+vWrdWxY0ctWLDggeOaTCa98MILGjZsmDw8PFSxYkW98sorln803dK/f3/5+/urZs2aevvtt7V8+XKZTCaVLl1aY8aMUa1atfTkk08qODhYJUuWtDpHt//cFSlSRHny5LG6bOD69euKiIhQhQoV9Morryg1NVWvvPKKqlatqkaNGum5556zfBc//fRTDRgwQDVq1JCHh4c+/PBDXbhwwarq26VLF9WqVUuenp4KDg7WgQMHJMnyPShcuLAKFCjwwHOzaNEihYSEqE2bNqpQoYL69esnT09PLV682LJPq1atLJPb7hQdHS1/f3+FhobKw8NDw4YNk5ub2yONb8u5ut3y5cs1Y8YMjR07VoULF37gZwdymrz2DgA5261Wiqurq44ePapChQqpfPnylu0eHh4qXLiwjh49qgoVKli918PDQ15eXlq/fr1CQ0O1bt06hYWFSUqrHnp7e1vt7+vrq6VLl9oc47Fjx1SkSBGVK1fOsu6FF16QJKvW7b0UL1483XV1ZcuWtfw5Pj5e58+fl5+fn2Vdamqqrl69qv/973+WMVxdXS3bXV1dLS3E+2natKlGjx6tQ4cOqWTJktq9e7cmTJjwwPfdrlGjRhoyZIj27dsnLy8v/fDDD5akNT4+XuvWrdOyZcss+1+/ft1SGX2Qp59+2uozSbrr5ypZsqTatGmj+fPn69ChQ4qLi9Phw4dVrVq1e4795JNPWlWOChYsqGvXruncuXM6f/68fHx8LNvy5cunypUrZ2iWbPPmzbV48WI1btxYVatW1QsvvKD27dtLko4eParvvvtOvr6+lv2vX79u9TN9LwaDQcHBwVq7dq12796tY8eO6cCBA+kqqLd/5sqVK+uff/7R//73P9WsWVP79u3TpEmTFB8fr0OHDikpKcnq/bf/3N3LrZ/zWz+zt7/H2dlZRqNRly9f1unTp/XOO+/IweH/6wNXr161msxye2Xa1dXVqppoi/j4ePXq1ctqXdWqVa3+vu732eLj4/Xcc89ZXufLl8/q9cOOn5FzdbtTp05p5MiRGjp0qBo3bnzPeIGcjMQQj+TWdV3PPPOM1TVet7t582a664Fuad68uTZu3Kh69erp5MmTlv/ZOjk5pds3NTXVMo7BYLC6Dul+SVa+fPnuue3OltXdxrpbLLevu3HjhipUqKBZs2al2+9WJcfR0THdtoxMOilWrJhq1aqlDRs2yM3NTT4+PnriiSce+L7bubi4qFGjRtqwYYPOnDmjEiVKWJLumzdvqkePHmrTpo3VezI6weRu5/Zun+vMmTNq166dnn/+edWuXVsvv/yyvv/+e+3bt++eY99ZPb019t3+PqS0z3K3NvatbbeULFlS69at048//qjvvvtOc+fO1fLly7Vy5UrduHFDLVu21BtvvGH1/rx5H/y/ytTUVHXt2lUXL15UUFCQAgMDdf36dYWHh1vtd/s5uxWvwWDQl19+qY8++kgdOnTQiy++qIiICL322mtW773XZ79frLcnfrfcOh8ff/xxuqT39irY/b47trhb3Hf+fT3os935c3V7bA87fkbO1e1++uknubm5KTg4+L77ATkZrWQ8kujoaD3//PMqV66cypcvr4sXL1q1X+Li4pScnHzPikuLFi20b98+rVy5Ug0aNLC0pcqXL58uadizZ49lnHz58uny5cuWbbcuir8bd3d3nT9/Xn/99Zdl3cKFC/XWW29ZfrncPlZGqoi3K1++vBITE1WsWDG5u7vL3d1dJ0+e1LRp0+6aeN7pQfu0aNFC3333nbZu3WpzG/mW5s2ba+vWrdq8ebPV7WbKly+vkydPWuJ2d3fXsmXL9N///vehjnMvmzZtUuHChRUVFaXXX39d/v7+SkhIeKgZ2QULFlSJEiW0d+9ey7rr16/r999/z9DPx/fff68vv/xSDRs21AcffKCvv/5ax48f1x9//KHy5cvrzz//tDofW7Zs0erVqx8YV1xcnH755RfNnz9fb7zxhho2bGiZXHP75zx06JDlzwcOHJCbm5uKFi2qJUuWqFevXho8eLDatGmjokWL6ty5c1kya71QoUIqXry4kpKSLJ+zdOnSmjBhgo4dO5bpx7vb93nfvn0ZqsRKaf/w/O233yyvU1NTFRsbm2njZ5SLi4uaNWuWqWMCjxsSQ2TYpUuXlJSUpL///luHDx/W6NGjtXbtWsv1WR4eHqpfv74iIiK0f/9+7d+/XxEREapevbo8PT3vOmaZMmXk7e2tBQsWWCU9nTt31qFDhzR58mQdO3ZMK1as0BdffKFXXnlFklSlShX9+OOP2r59u/744w99+OGH96xuPPPMM6pZs6aGDBmiw4cPa8eOHZozZ47q1KmjEiVKqHTp0po7d64SEhIUExOj77//3qbzUrduXZUtW1b9+/fX4cOH9euvv2rYsGHKnz//Xated8qfP78uXLig48eP37Xy+cILL+j48ePauXOnmjZtalNst9SvX99ysf3tiWFoaKjWrl2rhQsX6sSJE5o/f77mz59v1SLODEWKFFFiYqK2b9+uhIQEzZkzRxs3bkzXqsuo0NBQTZs2Td9++63i4+M1bNgwXbt2zfLZqlSposWLF+v48ePasmWL1U25U1NTNX78eG3atEknT55UTEyM8ufPr6efflqdO3fWgQMHNGXKFB0/flyrV6/W5MmTVaZMGUlpNyNPSkq6awW8UKFCcnBw0Jo1a3Tq1CmtX7/eMrHk9s85evRo/fbbb/rpp5/08ccfW36mixYtqu3bt1ta0O+8846uX79+33Pk4uKio0eP6vz58w91DqdOnapvv/1Wx48f19ChQ7V79+50l3zc79hHjhzRpUuXJKVN3LnXff1CQ0O1ePFirVy5UseOHdPEiRMVGxtraeE/yMsvv6wDBw4oMjJSR48e1bhx46xmUD/q+BnVsGHDDE22AXIyEkNk2EcffaS6deuqfv366tKli44dO6b58+crICDAss+4ceNUrlw5hYaGqlu3bnrmmWc0c+bM+44bFBSkvHnzqmHDhpZ1ZcqUUVRUlH744Qe1bNlSkZGRGjhwoNq1aydJat26tZo0aaK33npL3bt3V4sWLawuRr/ThAkTlD9/fnXs2FHvvfeeOnbsqM6dO8vBwUGjR4/W/v37FRQUpPXr16drIz5Injx5FBkZqdTUVL388svq3bu3GjRooKFDh2bo/TVr1pS7u7tatmxpVU26xdXVVfXr11fVqlVVvHhxm2K7xdHRUS+88IKeeOIJq4v7q1atqvHjx+uLL75QUFCQli9frkmTJql69eoPdZx7adasmVq1aqU+ffqoXbt22rFjhyIiIhQfH/9QyWHXrl3VoUMHDRs2TG3bttXp06e1aNEiy6SIYcOG6fz582rRooU+/fRT9enTx/LewMBA9enTR2PGjFGzZs20du1azZo1S4ULF1bZsmU1e/Zs/fDDD2rRooWmTp2qgQMHqlWrVpLSqtZ169a1qj7f8sQTT2jEiBH65JNP1KJFC82ZM0dDhw5V3rx5dfDgQct+QUFBCgsL07vvvqsOHTqoZ8+ektJuIJ+cnKzWrVurd+/e8vLy0n/+85+7/kzcEhwcrM8//zzDP2u369atm9q3b6/hw4erTZs2SkxM1Ny5czM8oSIkJETjx4+3JL9169bV2rVr77pvUFCQ3nnnHU2bNk2tWrXSzp079dlnn1nuavAg7u7uioyM1Jo1a9SmTRslJSWpQYMGmTZ+Rn322WeZnmwCjxuDKSv6FIANpkyZotOnT2vcuHH2DuWx1alTJ3Xo0MGSGMN+IiIi1K9fP5UsWdKm9926hnbLli168sknsyg6+4mOjpazs/NDX+4A4PHA5BPYTWxsrA4dOqQvvvhCkZGR9g7nsfTzzz9r9+7dio+Pf+g2MjLPiRMn9M8//9icFP7bpaamasWKFZb7HALIuUgMYTcHDhzQqFGj1LlzZ/n7+9s7nMfS119/rS1btujDDz/M0P3ikLXKlSvHP2LuwsHBQfPmzcu0WcwA7IdWMgAAACQx+QQAAABmJIYAAACQRGIIAAAAMxJDAAAASCIxBAAAgBmJIQAAACSRGAIAAMCMxBAAAACSSAwBAABg9n8+C3Nl6E+VxwAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAKsCAYAAABrgZynAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTqElEQVR4nO3dd3gUZfv28XNDSILSq4CIIUrA0EJCj5TAg3QCghQFQhNpij5gqNK7gEIwoBKpSpGA9KpiAUG6KImQgDTBPDSlhpB9/+DN/lhyA1lM2MB+Px57HOzs7My1Q9ZcnPfcMxar1WoVAAAAcAc3ZxcAAACAjIlGEQAAAEY0igAAADCiUQQAAIARjSIAAACMaBQBAABgRKMIAAAAIxpFAAAAGNEoAgAAwIhGEQAA4BFx/fp1DRw4UIGBgQoKClJkZORd1+3evbt8fX3tHt98841D+3P/twUDAADg4ZgwYYIOHDigOXPm6NSpUwoLC1OhQoVUr169FOvGxsZq4sSJqlKlim1Zjhw5HNofjSIAAMAj4MqVK1qyZIk++eQT+fn5yc/PT4cOHdKCBQtSNIoJCQk6ceKESpcurXz58j3wPhl6BgAAeARER0crMTFR/v7+tmUBAQHat2+fkpKS7NaNi4uTxWJRkSJF/tU+aRQBAACcKCEhQZcuXbJ7JCQkpFgvPj5euXLlkoeHh21Z3rx5df36dV24cMFu3bi4OGXNmlXvvvuugoKC1KJFC23ZssXh2h7Loecs/r2cXQIeog2LRjq7BDxEXSN3OLsEPES7R9Z1dgl4iJ7IbHHavp3ZO0zo5Kvw8HC7Zb169VLv3r3tll29etWuSZRke35nYxkXF6dr164pKChIr7/+ujZu3Kju3btr0aJFKl26dKpreywbRQAAgEdFt27d1LFjR7tldzaEkuTp6ZmiIUx+7uXlZbe8R48eateunW3ySokSJfTrr79q8eLFNIoAAAAOsTjvbDwPDw9jY3inAgUK6Pz580pMTJS7+60WLj4+Xl5eXsqePbvdum5ubilmOBcrVkyHDx92qDbOUQQAAHgElCxZUu7u7tq7d69t2a5du1S6dGm5udm3dP3799eAAQPslkVHR6tYsWIO7ZNGEQAA4BGQJUsWhYSEaNiwYdq/f782bdqkyMhItW/fXtKtdPHatWuSpODgYK1cuVLLly/XH3/8ofDwcO3atUuvvfaaQ/ukUQQAALBYnPdwwIABA+Tn56cOHTpo+PDh6t27t+rWvTXpKygoSGvWrJEk1a1bV0OHDlVERIQaNWqkr7/+Wp9++qmefvppxw6L1Wq1OvSORwCznl0Ls55dC7OeXQuznl2LU2c9B7zltH1f3fWh0/Z9P0xmAQAAcOJkloyMowIAAAAjEkUAAAAHzxV0FSSKAAAAMKJRBAAAgBFDzwAAAExmMeKoAAAAwIhEEQAAgMksRiSKAAAAMKJRBAAAgBFDzwAAAExmMeKoAAAAwIhEEQAAgMksRiSKAAAAMCJRBAAA4BxFI44KAAAAjGgUAQAAYMTQMwAAAJNZjEgUAQAAYESiCAAAwGQWI44KAAAAjGgUAQAAYMTQMwAAAJNZjEgUAQAAYESiCAAAwGQWI44KAAAAjEgUAQAASBSNOCoAAAAwolEEAACAEUPPAAAAblwex4REEQAAAEYkigAAAExmMeKoAAAAwIhGEQAAAEYMPQMAAHCvZyMSRQAAABiRKAIAADCZxYijAgAAACMSRQAAAM5RNCJRBAAAgBGNIgAAAIwYegYAAGAyixFHBQAAAEYkigAAAExmMSJRBAAAgBGNIgAAAIwYegYAAGAyixFHBQAAAEYkigAAAExmMSJRBAAAgBGJIgAAAOcoGnFUAAAAYESjCAAAACOGngEAAJjMYkSiCAAAACMSRQAAACazGHFUAAAAYESjCAAAACOGngEAABh6NuKoAAAAwIhEEQAAgMvjGJEoAgAAwIhGEQAAAEYMPQMAADCZxYijAgAAACMSRQAAACazGJEoAgAAwIhEEQAAgHMUjTgqAAAAMKJRBAAAgBFDzwAAAExmMSJRBAAAgBGJIgAAcHkWEkUjEkUAAAAY0SgCAADAiKFnAADg8hh6NiNRBAAAgBGJIgAAAIGiEYkiAAAAjEgUAQCAy+McRTMSRQAAABjRKAIAAMCIoWcAAODyGHo2I1EEAACAEYkiAABweSSKZiSKAAAAMKJRBAAAgBFDzwAAwOUx9GxGoggAAAAjEkUAAAACRSMSRQAAABiRKAIAAJfHOYpmJIoAAAAwolEEAACAEUPPAADA5TH0bEaiCAAAACMSRQAA4PJIFM1IFAEAAGBEowgAAAAjhp4BAIDLY+jZjEQRAAAARiSKAAAABIpGJIoAAAAwIlEEAAAuj3MUzUgUAQAAYESjCAAAACOGngEAgMtj6NmMRBEAAABGJIoAAMDlkSiakSgCAADAiEYRAAAARjSKAAAAFic+HHD9+nUNHDhQgYGBCgoKUmRk5H3fc+LECfn7+2v79u2O7UycowgAAPDImDBhgg4cOKA5c+bo1KlTCgsLU6FChVSvXr27vmfYsGG6cuXKA+2PRhEAALi8R2Eyy5UrV7RkyRJ98skn8vPzk5+fnw4dOqQFCxbctVFcsWKFLl++/MD7ZOgZAADgERAdHa3ExET5+/vblgUEBGjfvn1KSkpKsf758+c1ceJEjRgx4oH3SaIIAABcnjMTxYSEBCUkJNgt8/DwkIeHh92y+Ph45cqVy2553rx5df36dV24cEG5c+e2W3/cuHFq1qyZnn/++QeujUYRAADAiWbOnKnw8HC7Zb169VLv3r3tll29ejVF85j8/M5Gc+vWrdq1a5dWrVr1r2qjUQQAAHCibt26qWPHjnbL7mwIJcnT0zNFQ5j83MvLy7bs2rVreu+99zR06FC75Q+CRhEAALg8Zw49m4aZTQoUKKDz588rMTFR7u63Wrj4+Hh5eXkpe/bstvX279+v48eP680337R7f9euXRUSEuLQOYs0igAAAI+AkiVLyt3dXXv37lVgYKAkadeuXSpdurTc3P5vfnKZMmW0YcMGu/fWrVtXo0aNUrVq1RzaJ40iAABweY/C5XGyZMmikJAQDRs2TGPGjNFff/2lyMhIjR07VtKtdDFbtmzy8vJS0aJFU7y/QIECypMnj0P75PI4AAAAj4gBAwbIz89PHTp00PDhw9W7d2/VrVtXkhQUFKQ1a9ak6f5IFAEAAB4RWbJk0fjx4zV+/PgUr8XExNz1ffd67V5oFAEAADL+yLNTMPQMAAAAIxJFAADg8h6FySzOQKIIAAAAIxJFAADg8kgUzUgUAQAAYESjCAAAACOGngEAgMtj6NmMRBEAAABGJIoAAAAEikYkigAAADCiUQQAAIARQ88AAMDlMZnFjEQRAAAARiSKAADA5ZEompEoAgAAwIhGEQAAAEYZauj56tWr+uOPP5SUlKRnnnlGWbNmdXZJAADABTD0bJYhGsUbN25o4sSJ+vzzz5WYmChJcnd3V+PGjTV8+HB5eHg4uUIAAADXkyGGnsePH69vvvlGERER2rlzp3bs2KHp06dr586dmjJlirPLAwAAjzmLxeK0R0aWIRLFVatW6cMPP1SlSpVsy2rUqCFPT0/17dtXYWFhTqwOAADANWWIRtFqtSpPnjwplufOnVuXL192QkUAAMClZOxgz2kyxNBz5cqV9f777+vSpUu2ZX///bcmT55slzICAADg4ckQieLAgQPVvn17vfjii/L29pYkHTlyREWKFFFERISTqwMAAHBNGaJRLFCggFatWqXvvvtOcXFx8vT0lLe3t6pVqyY3twwRegIAgMdYRp9U4iwZolGUpMyZM6t27dqqXbu2s0sBAACAnNgoBgcHp6p7t1gs2rRp00OoCAAAuCoSRTOnNYq9e/e+62tXrlxRZGSkTp48KX9//4dYFQAAAJI5rVFs1qyZcfnmzZs1bdo0XblyRaNGjVKLFi0ecmUAAACQMtA5iidPntSoUaO0ZcsWNW/eXH379lXOnDmdXRYAAHABjDybOb1RTExM1KxZsxQREaGiRYtqwYIFDDcDAABkAE5tFLdv364RI0bozJkz6tOnj9q3b8/lcAAAwEPHZBYzpzWKffv21erVq1W4cGENGzZMBQoU0K5du4zrVqhQ4SFXBwAAAKc1iqtWrZIknThxQn379r3rehaLRQcPHnxYZQEAABdEoGjmtEYxOjraWbsGAABAKnBCIAAAAIycPusZAADA2ZjMYkaiCAAAACMSRQAA4PIIFM1IFAEAAGBEowgAAAAjhp4BAIDLc3Nj7NmERBEAAABGJIoAAMDlMZnFjEQRAAAARiSKAADA5XHBbTMSRQAAABjRKAIAAMCIoWcAAODyGHk2I1EEAACAEYkiAABweUxmMSNRBAAAgBGNIgAAAIwYegYAAC6PoWczEkUAAAAYkSgCAACXR6BoRqIIAAAAIxJFAADg8jhH0YxEEQAAAEY0igAAADBi6BkAALg8Rp7NSBQBAABgRKIIAABcHpNZzEgUAQAAYESjCAAAACOGngEAgMtj5NmMRBEAAABGJIoAAMDlMZnFjEQRAAAARiSKAADA5REompEoAgAAwIhGEQAAAEYMPQMAAJfHZBYzEkUAAAAYkSgCAACXR6BoRqIIAAAAIxpFAAAAGDH0DAAAXB6TWcxIFAEAAGBEoggAAFwegaIZiSIAAACMSBQBAIDL4xxFMxJFAAAAGNEoAgAAwIihZwAA4PIYeTYjUQQAAIARiSIAAHB5TGYxI1EEAACAEY0iAAAAjBh6BgAALo+hZzMSRQAAABiRKAIAAJdHoGhGoggAAAAjGkUAAAAYMfQMAABcHpNZzEgUAQAAYESiCAAAXB6BohmJIgAAAIxIFAEAgMvjHEUzEkUAAAAY0SgCAADAiKFnAADg8hh5NiNRBAAAgBGJIgAAcHluRIpGJIoAAAAwolEEAACAEUPPAADA5THybEaiCAAAACMSRQAA4PK4M4tZqhvF2NhYrVq1SpcuXdJLL72kwMDA9KwLAAAATpaqoeetW7cqJCRE27Zt05EjRxQaGqpJkyald20AAAAPhZvFeY+MLFWN4qRJk9StWzctXLhQn376qSIjI/XFF1+ob9++OnPmjCQpKSlJp06dStdiAQAAXNn169c1cOBABQYGKigoSJGRkXddd8WKFXrppZdUpkwZtW7dWvv373d4f6lqFOPi4tSkSRPb84oVK2rOnDmKjo5WzZo19cYbb+jcuXOqXbu2wwUAAAAgdSZMmKADBw5ozpw5Gjp0qMLDw7Vu3boU6+3cuVODBg1Sjx49tHr1avn7+6tr1666fPmyQ/tL1TmKTz/9tL755ht16NDBtszPz08rV67U8ePHlZCQoBw5cmjOnDkO7RwAACAjeBQms1y5ckVLlizRJ598Ij8/P/n5+enQoUNasGCB6tWrZ7dufHy8evTooaZNm0qSevbsqcjISMXGxqpMmTKp3meqGsU333xTffr00Xfffad+/fqpRIkSkm4d1Geeeca2XsWKFVO9YwAAAKRedHS0EhMT5e/vb1sWEBCgGTNmKCkpSW5u/zdQXL9+fdufr127ptmzZytPnjzy8fFxaJ+pahT/85//aOHChVq6dKmSkpIc2gEAAEBG58xAMSEhQQkJCXbLPDw85OHhYbcsPj5euXLlslueN29eXb9+XRcuXFDu3LlTbHvbtm3q1KmTrFar3n//fT355JMO1Zbqy+OULl1apUuX1qVLl+66zqZNm1SnTh2HCgAAAHBlM2fOVHh4uN2yXr16qXfv3nbLrl69mqJ5TH5+Z6OZ7Pnnn1dUVJS++eYb9e/fX08//bTKlSuX6tocvuB2u3btNGvWLLuu9fjx4xoxYoS2bdumAwcOOLpJAAAAl9WtWzd17NjRbtmdDaEkeXp6pmgIk597eXkZt503b17lzZtXJUuW1L59+7Rw4UKHGkWHb+FXpEgRtWnTRqdOnVJCQoI+/PBDNWzYUNeuXdPSpUsd3RwAAIDTWZz4n4eHh7JmzWr3MDWKBQoU0Pnz55WYmGhbFh8fLy8vL2XPnt1u3f379+vXX3+1W+bj46Pz5887dFwcThQ//PBDjR49Wq1bt5aHh4eSkpI0fvx4u5MmAQAAkLZKliwpd3d37d2713aHvF27dql06dJ2E1kk6csvv9TJkyc1a9Ys27Jff/1VL7zwgkP7dDhRtFgsGjx4sNq3b6/Tp09rzJgxNIkAAOCR9ijcmSVLliwKCQnRsGHDtH//fm3atEmRkZFq3769pFvp4rVr1yRJrVq10k8//aQ5c+bo6NGjmjp1qvbv36/Q0FCHjkuqEsXg4OC7Xl+oW7duyps3r+355s2bHSoAAAAAqTNgwAANGzZMHTp0UNasWdW7d2/VrVtXkhQUFKSxY8eqefPm8vPzU3h4uCZPnqxJkybp+eef16xZs1SgQAGH9peqRvHOWTcAAACPk0fhgtvSrVRx/PjxGj9+fIrXYmJi7J7XqlVLtWrV+lf7S1Wj2KxZM9ufe/Toof/+978OX7ARAAAAjxaHz1HcvXu33N0dngMDAACAR4zDHV/btm319ttvq3Xr1ipUqJA8PT3tXq9QoUKaFQcAAPAwPCIjzw+dw43iRx99JEl67733UrxmsVh08ODBf18VAAAAnM7hRjE6Ojo96gAAAHAaNyJFowc62fDatWtasWKFYmNjdfPmTRUrVkwNGjRQzpw507g8AAAAOIvDk1l+//131a1bVxERETp16pROnTqlmTNnqn79+jp8+HB61AgAAAAncDhRHD16tKpVq6aRI0faZj8nJiZq8ODBGjNmjCIjI9O8SAAAgPTEyLOZw4ni3r171bVrV7tL5Li7u6tr167as2dPmhYHAAAA53G4UcyXL5+OHTuWYvmxY8f05JNPpklRAAAAD5PFYnHaIyNzeOi5devWGjx4sN566y2VKVNGkrRv3z5NnTpVLVu2TPMCAQAA4BwON4qdO3fW1atX9f777+vixYuSpLx58yo0NFSdOnVK8wIBAADSWwYP9pzG4UbxxIkT6t27t3r37q2zZ8/K09NTWbNmTY/aAAAA4EQON4r169dX4cKF9eKLL+rFF19UpUqV0qMuAAAAOJnDjeKOHTu0Y8cObdu2Te+//76OHTumgIAAW+P43HPPpUedAAAA6YY7s5g53Cg+8cQTqlmzpmrWrClJiouL0/Tp0zVhwgRNmDCBez0DAAA8JhxuFE+ePKndu3dr9+7d2rVrl+Li4uTt7a1WrVopMDAwPWoEAABIV+SJZg43irVr15abm5uqV6+ut956S4GBgcqRI0d61AYAAAAncrhRnDBhgnbu3Kmff/5ZAwYMULly5RQYGKjy5curTJky8vDwSI86AQAA8JA53Cg2adJETZo0kSSdPXtWO3fu1JYtWxQeHi6LxaJ9+/aleZEAAADpKaPfIcVZHG4UJenSpUvatWuXtm/fru3btysmJkYlS5ZUUFBQWtcHAAAAJ3G4UXz55ZcVExOjvHnzqlq1aurcubOqVq2qnDlzpkN5AAAA6c+NQNHI4UaxcePGmjBhgnx8fNKjHgAAAGQQDjeKoaGh6VAGAACA83COopmbswsAAABAxkSjCAAAACOHG8Xjx4+nRx0AAABOY7E475GROdwo1qtXTy1bttTs2bN15syZ9KgJAAAAGYDDjeL333+v5s2b6+uvv1bt2rX12muv6fPPP9e5c+fSoz4AAIB0Z7FYnPbIyBxuFHPnzq02bdpo7ty52rJlixo2bKjvvvtOderUUefOnbVs2TJdvXo1PWoFAADAQ/SvJrPEx8crPj5ep0+fVlJSkp588kktXrxYNWvW1IYNG9KqRgAAADiBw9dRPHjwoNatW6d169bp5MmTqlq1qjp27Kg6deroySeflCR99NFHGjJkiOrWrZvmBQMAAKQ17sxi5nCj2Lx5cwUEBCg0NFT16tVTrly5UqwTEBDA7GgAAIBHnMON4jfffKOnnnrqnutUqlRJlSpVeuCiAAAAHqaMPqnEWVLVKIaHh6d6g7169XrgYgAAAJBxpKpR3L59e6o2RjcOAAAeRXQwZqlqFOfNm2f786lTp/TUU0/Jzc1+wvTNmzcVHR2dttUBAADAaRy+PE7t2rV14cKFFMtPnDihtm3bpkVNAAAAyABSlSguWbJEM2bMkCRZrVa9/PLLKRLFv//+Wz4+PmlfIQAAQDpz4/Q5o1Q1iiEhIcqcObOSkpI0cOBAdezYUdmyZbO9brFYlCVLFlWuXDndCgUAAMDDlapGMXPmzAoJCZEkPf300ypfvrzc3R2+sg4AAECGRKBo5nC3V7FiRW3btk2//PKLbty4IavVavc6l8cBAAB4PDjcKI4bN05z585ViRIlbLfsS8blcQAAAB4fDjeKS5cu1bhx49SkSZP0qAcAAOChI+wyc/jyOJkyZVKZMmXSoxYAAABkIA43iq+++qqmTZumK1eupEc9AAAAD53F4rxHRubw0POOHTu0Z88erVu3Tnny5FHmzJntXt+8eXOaFQcAAADncbhRbN68uZo3b54etQAAACADcbhRbNasme3PFy9eVLZs2WSxWDgJFAAAPLK4M4uZw+coWq1WRUREqFKlSqpSpYpOnjypfv366b333lNCQkJ61AgAAAAncLhRnD59ulasWKFx48bJw8ND0q2U8ccff9SECRPSvEAAAID0xmQWM4cbxWXLlmnEiBGqVauWbbi5WrVqGj9+vNauXZvmBQIAAMA5HD5H8ezZs8qfP3+K5dmzZ+eSOQAA4JHEXAszhxPFypUra9asWXbLLl26pMmTJ6tSpUppVhgAAACcy+FGcdiwYfrtt99UrVo1Xb9+XT169FCNGjV08uRJDR48OD1qBAAAgBM4PPScPXt2ffnll9q2bZvi4uKUmJgob29vBQUFyc3N4b4zfWTKfP918NgonCuLs0vAQ/THwaPOLgEPEZcswcOSQTqYDMfhRrFRo0YKDw9XlSpVVKVKlfSoCQAAABmAw42im5ubbty4kR61AAAAOAWTWcwcbhRr1qypjh07qlatWipcuLDtWorJevXqlWbFAQAAwHkcbhRjYmLk5+env/76S3/99Zfda3TjAAAAjw+HG8VWrVqpWrVqypUrV3rUAwAA8NC5kXUZOTzJZ/jw4bpw4UI6lAIAAICMxOFGsVKlSlq5cqUSEhLSox4AAICHzs3ivEdG9kC38Pvoo480Y8YM5c6dW56ennavb968Oc2KAwAAgPM43Ci+8soreuWVV9KjFgAAAKdgQq6Zw41is2bN0qMOAAAAZDAON4rt2rW7Z9c9d+7cf1UQAAAAMgaHG8VKlSrZPU9MTNTx48e1ZcsWde/ePc0KAwAAeFgy+qQSZ3G4UbzbnVeioqK0YcMGde7c+V8XBQAAAOdz+PI4d1OhQgVt27YtrTYHAADw0FgszntkZA4niqdOnUqx7PLly5o1a5YKFy6cJkUBAADA+RxuFIODg2WxWGS1Wm2TWqxWqwoWLKgxY8akeYEAAABwDocbxTsvqG2xWJQ5c2blzZuXaxABAIBHkhs9jJHD5ygWLlxY3377rfbs2aPChQurUKFCGj58uBYuXJge9QEAAMBJHG4Up0yZooiICD3xxBO2ZRUrVtRHH32k6dOnp2lxAAAAD4ObEx8ZmcP1LV26VB988IGCg4Nty9q3b6/3339fixYtStPiAAAA4DwOn6N49epVZc2aNcXyXLly6Z9//kmTogAAAB4mTlE0czhRfPHFFzV69Gi7y+ScOXNG48ePV1BQUJoWBwAAAOdxuFF87733dOPGDdWuXVuVK1dW5cqVVbNmTSUlJWno0KHpUSMAAACcwOGh59y5c2vhwoWKiYnRkSNH5O7urmeffVbPPfdcetQHAACQ7rg8jpnDjWIyX19f+fr6pmUtAAAAyEAeuFEEAAB4XBAommX0y/cAAADASWgUAQAAYOTw0PPPP/98z9crVKjwwMUAAAA4gxtDz0YON4rt2rUzLvfw8FC+fPm0efPmf10UAAAAnM/hRjE6Otru+c2bN3Xs2DGNHDlSjRs3TrPCAAAAHhYuj2P2r89RzJQpk7y9vdW/f399+OGHaVETAAAAMoA0uzzO2bNn9ffff6fV5gAAAB4aAkUzhxvFAQMGpFh2+fJlbd26VfXq1UuTogAAAOB8aZIo5syZU2FhYWratGlabA4AAAAZgMON4tixY9OjDgAAAKfh8jhmD5Qobtq0SZ9++qni4uJ08+ZNeXt767XXXlNISEgalwcAAABncbhRXLhwocaPH6/XXntNr7/+upKSkrR7924NHz5cN27cUMuWLdOjTgAAgHRjEZGiicON4qeffqqhQ4fapYd16tTR888/rxkzZtAoAgAAPCYcvo7i2bNnVa5cuRTL/f399eeff6ZFTQAAAMgAHG4US5YsqeXLl6dYvmzZMj333HNpURMAAMBD5WZx3iMjc3jouV+/fgoNDdX27dtVtmxZSdLevXsVHR2tGTNmpHmBAAAAcA6HG0V/f39FRUVp8eLFio2NlaenpypUqKApU6aoYMGC6VEjAABAusroyZ6zONwoLl26VC+99JLxDi0AAAB4fDh8juLs2bNVtWpVde/eXatXr9bVq1fToy4AAICHxmKxOO2RkTncKK5cuVLLli2Tn5+fIiIiVLVqVfXp00cbN25UQkJCetQIAAAAJ3C4UZQkHx8f9erVS6tWrdKXX36pZ555Rv369VPVqlU1YMAA7d69O63rBAAAwEP2QLfwk6QzZ85o/fr12rBhg/bu3asyZcqoQYMGio+PV/fu3fXKK6/ov//9b1rWCgAAkC6YzGLmcKM4e/ZsrV+/Xvv27VPx4sXVsGFDTZw40W7G87PPPqsRI0bQKAIAADzCHG4Uv/jiCzVs2FCjRo2Sj4+PcZ0XXnhBgwcP/tfFAQAAPAwZfE6J0zjcKK5fv/6+6/j6+srX1/eBCgIAAEDG8ECTWQAAAPD4e+DJLAAAAI8LN8aejUgUAQAAYPTAieLRo0cVGxurpKQkeXt767nnnkvLugAAAB4aLo9j5nCj+Pfff2vAgAHavHmzcuTIoZs3b+ry5cuqUKGCpk+frmzZsqVHnQAAAHjIHB56HjVqlE6fPq01a9Zo+/bt2rlzp1auXKkrV65o7Nix6VEjAABAurJYnPdwxPXr1zVw4EAFBgYqKChIkZGRd13322+/VdOmTeXv76/GjRtr8+bNDh8XhxvFr7/+WsOGDVOxYsVsy5577jm99957D1QAAAAAUmfChAk6cOCA5syZo6FDhyo8PFzr1q1LsV50dLR69eqll19+WcuXL1fr1q311ltvKTo62qH9OTz07OnpKTe3lP2lxWLRzZs3Hd0cAAAAUuHKlStasmSJPvnkE/n5+cnPz0+HDh3SggULVK9ePbt1V61apcqVK6t9+/aSpKJFi+rrr7/W2rVrVaJEiVTv0+FGMTg4WMOHD9f777+vZ555RtKtiS2jRo1SjRo1HN0cAACA07nJebNZEhISlJCQYLfMw8NDHh4edsuio6OVmJgof39/27KAgADNmDFDSUlJdkFes2bNdOPGjRT7+ueffxyqzeGh5379+snT01N169ZVpUqVVKlSJdWvX185cuTQkCFDHN0cAACAS5s5c6YCAgLsHjNnzkyxXnx8vHLlymXXQObNm1fXr1/XhQsX7Nb18fGxSw4PHTqkbdu2qUqVKg7V5nCimD17ds2bN08xMTGKjY2Vp6envL297c5ZBAAAeJQ483rb3bp1U8eOHe2W3ZkmStLVq1dTLE9+fmciebtz586pd+/eKl++vGrXru1QbQ43isePH9fhw4d1+fJlZc2aVc8//7wKFy7s6GYAAAAg8zCziaenZ4qGMPm5l5eX8T3/+9//1LFjR1mtVk2dOtU4z+ReUt0obtu2TWPHjtWhQ4dktVptyy0Wi/z8/NS/f38FBgY6tHMAAACkToECBXT+/HklJibK3f1WCxcfHy8vLy9lz549xfpnzpyxTWaZO3eucufO7fA+U9VW/vDDD+rSpYtKlCihefPm6aefftKvv/6q7du3a/bs2SpWrJg6duyoPXv2OFwAAACAs7lZnPdIrZIlS8rd3V179+61Ldu1a5dKly6dIim8cuWKunTpIjc3N82fP18FChR4oOOSqkRx+vTpCg0NVb9+/eyW58iRwzahJUeOHIqIiNDHH3/8QIUAAADg7rJkyaKQkBANGzZMY8aM0V9//aXIyEjbDU/i4+OVLVs2eXl5aebMmTp27JjmzZtne026NUTtyF30UpUoRkdHq1mzZvdcp2XLlvrtt99SvWMAAICMws1icdrDEQMGDJCfn586dOig4cOHq3fv3qpbt64kKSgoSGvWrJEkrV+/XteuXVPLli0VFBRke4wePdqh/aUqUbx27Zpy5Mhxz3Vy5cqlc+fOObRzAAAApF6WLFk0fvx4jR8/PsVrMTExtj+b7tbyIFKVKFqt1vvOkrFYLHaTXAAAAPBoS/Ws57Vr1ypr1qx3fd3RK30DAABkFM68jmJGlqpGsVChQoqMjLzvegULFvzXBQEAACBjSFWj+PXXX6d3HQAAAE7j6KQSV+HwvZ4BAADgGhy+hR8AAMDjhkDRjEQRAAAARjSKAAAAMGLoGQAAuDySMzOOCwAAAIxIFAEAgMuzMJvFiEQRAAAARjSKAAAAMGLoGQAAuDwGns1IFAEAAGBEoggAAFwe93o2I1EEAACAEYkiAABweeSJZiSKAAAAMKJRBAAAgBFDzwAAwOUxl8WMRBEAAABGJIoAAMDlca9nMxJFAAAAGNEoAgAAwIihZwAA4PJIzsw4LgAAADAiUQQAAC6PySxmJIoAAAAwIlEEAAAujzzRjEQRAAAARjSKAAAAMGLoGQAAuDwms5iRKAIAAMCIRBEAALg8kjMzjgsAAACMaBQBAABgxNAzAABweUxmMSNRBAAAgBGJIgAAcHnkiWYkigAAADAiUQQAAC6PUxTNSBQBAABgRKMIAAAAI4aeAQCAy3NjOosRiSIAAACMSBQBAIDLYzKLGYkiAAAAjGgUAQAAYMTQMwAAcHkWJrMYkSgCAADAiEQRAAC4PCazmJEoAgAAwIhEEQAAuDwuuG1GoggAAAAjGkUAAAAYMfQMAABcHpNZzEgUAQAAYESiCAAAXB6JohmJIgAAAIxoFAEAAGDE0DMAAHB53OvZjEQRAAAARiSKAADA5bkRKBqRKAIAAMCIRBEAALg8zlE0I1EEAACAEY0iAAAAjBh6BgAALo87s5iRKAIAAMCIRBEAALg8JrOYkSgCAADAiEYRAAAARgw9AwAAl8edWcxIFAEAAGBEoggAAFwek1nMMmSieO7cOVmtVmeXAQAA4NKc3iieOXNGb7/9tg4ePKjr16/rtddeU7Vq1RQcHKzo6GhnlwcAAOCynN4oDhs2TOfOnVPOnDkVFRWl33//XQsXLlRwcLBGjhzp7PIAAIALsFic98jInH6O4k8//aSoqCgVLFhQmzZtUu3atVW2bFnlzp1bjRo1cnZ5AAAALsvpiaKnp6euX7+uixcvavv27apZs6Yk6cSJE8qRI4dziwMAAC7B4sRHRub0RLFOnTrq06ePvLy8lCNHDtWsWVNr1qzRmDFj1KxZM2eXBwAA4LKc3igOGzZM8+fP18mTJ9WqVSt5enoqISFBb7zxhl599VVnlwcAAFyAW0Y/WdBJnN4ouru7KzQ0VJJ08eJFJSUlqWnTprLwFwYAAOBUTj9H0Wq1KiIiQpUqVVKVKlV08uRJ9evXT++9954SEhKcXR4AAIDLcnqjOH36dK1YsULjxo2Th4eHJKlZs2b68ccfNWHCBCdXBwAAXAGTWcyc3iguW7ZMI0aMUK1atWzDzdWqVdP48eO1du1aJ1cHAADgupx+juLZs2eVP3/+FMuzZ8+uK1euOKEiAADgcjJ6tOckTk8UK1eurFmzZtktu3TpkiZPnqxKlSo5qSoAAAA4pVFs27atYmNjJd26PM5vv/2matWq6fr16+rRo4dq1KihkydPavDgwc4oDwAAAHLS0LOnp6dCQkLUqVMn9ezZU19++aW2bdumuLg4JSYmytvbW0FBQXJzc3rgCQAAXICFsWcjpzSKn332mTZs2KBx48Zp7dq1GjZsmKpWraoqVao4oxwAAAAYOG0yS926dVWjRg198skn6tWrl4KDg9WzZ095enrarVeoUCEnVQgAAFwF9/kwc+qsZ09PT/Xq1UslSpRQnz59tHr1attrVqtVFotFBw8edGKFAAAArsupjeLJkyc1YcIEbdy4UY0aNVK3bt3k5eXlzJIAAIALIlA0c0qjeP36dc2YMUOfffaZihQporlz5yowMNAZpQAAAOAunNIovvTSS7p06ZL69Omjdu3aKVOmTM4oAwAAAPfglEYxICBAYWFhxjuyAAAAPHSMPRs5pVGcNGmSM3YLAAAABzj9Xs8AAADOxgW3zbj1CQAAAIxoFAEAAGDE0DMAAHB53JnFjEQRAAAARiSKAADA5REompEoAgAAwIhEEQAAgEjRiEQRAAAARjSKAAAAMGLoGQAAuDzuzGJGoggAAAAjGkUAAODyLBbnPRxx/fp1DRw4UIGBgQoKClJkZOR937Nz507Vrl37gY4LQ88AAACPiAkTJujAgQOaM2eOTp06pbCwMBUqVEj16tUzrh8TE6O33npLnp6eD7Q/EkUAAIBHwJUrV7RkyRINGjRIfn5++s9//qMuXbpowYIFxvUXLlyo1q1bK0+ePA+8TxpFAADg8ixOfKRWdHS0EhMT5e/vb1sWEBCgffv2KSkpKcX63333ncaPH6/Q0FAH9mKPoWcAAAAnSkhIUEJCgt0yDw8PeXh42C2Lj49Xrly57JbnzZtX169f14ULF5Q7d2679T/66CNJUlRU1APXRqIIAADgxEhx5syZCggIsHvMnDkzRYlXr15N0TwmP7+z0UwrJIoAAABO1K1bN3Xs2NFu2Z0NoSR5enqmaAiTn3t5eaVLbTSKAADA5TnzgtumYWaTAgUK6Pz580pMTJS7+60WLj4+Xl5eXsqePXu61MbQMwAAwCOgZMmScnd31969e23Ldu3apdKlS8vNLX1aOhpFAACAR0CWLFkUEhKiYcOGaf/+/dq0aZMiIyPVvn17SbfSxWvXrqXpPmkUAQCAy3tU7swyYMAA+fn5qUOHDho+fLh69+6tunXrSpKCgoK0Zs2atD0uVqvVmqZbzACyBL7t7BLwEP26dqyzS8BD5NdljrNLwEN0fmk3Z5eAh8jLiTMnfjlxyWn7Lv10Vqft+36YzAIAAFye86ayZGwMPQMAAMCIRhEAAABGDD0DAAAw9mxEoggAAAAjEkUAAODynHlnloyMRBEAAABGJIoAAMDlOXrha1dBoggAAAAjGkUAAAAYMfQMAABcHiPPZiSKAAAAMCJRBAAAIFI0IlEEAACAEY0iAAAAjBh6BgAALo87s5iRKAIAAMCIRBEAALg87sxiRqIIAAAAIxJFAADg8ggUzUgUAQAAYESjCAAAACOGngEAABh7NiJRBAAAgBGJIgAAcHlccNuMRBEAAABGNIoAAAAwYugZAAC4PO7MYkaiCAAAACMSRQAA4PIIFM1IFAEAAGBEowgAAAAjhp4BAAAYezYiUQQAAIARiSIAAHB53JnFjEQRAAAARiSKAADA5XHBbTMSRQAAABjRKAIAAMCIoWcAAODyGHk2I1EEAACAEYkiAAAAkaIRiSIAAACMaBQBAABgxNAzAABwedyZxYxEEQAAAEYkigAAwOVxZxYzEkUAAAAYkSgCAACXR6BoRqIIAAAAIxpFAAAAGDH0DAAAXB6TWcxIFAEAAGBEoggAAMB0FiMSRQAAABjRKAIAAMCIoWcAAODymMxiRqIIAAAAIxJFAADg8ggUzUgUAQAAYESiCAAAXB7nKJqRKAIAAMCIRhEAAABGDD0DAACXZ2E6ixGJIgAAAIxIFAEAAAgUjUgUAQAAYESjCAAAACOGngEAgMtj5NmMRBEAAABGJIoAAMDlcWcWMxJFAAAAGJEoAgAAl8cFt81IFAEAAGBEowgAAAAjhp4BAAAYeTYiUQQAAIARiSIAAHB5BIpmJIoAAAAwolEEAACAEUPPAADA5XFnFjMSRQAAABiRKAIAAJfHnVnMSBQBAABgRKIIAABcHucompEoAgAAwIhGEQAAAEY0igAAADCiUQQAAIARk1kAAIDLYzKLGYkiAAAAjGgUAQAAYMTQMwAAcHncmcWMRBEAAABGJIoAAMDlMZnFjEQRAAAARiSKAADA5REompEoAgAAwIhGEQAAAEYMPQMAADD2bESiCAAAACMSRQAA4PK44LYZiSIAAACMaBQBAABgxNAzAABwedyZxYxEEQAAAEYkigAAwOURKJqRKAIAAMCIRhEAAABGDD0DAAAw9mxEoggAAAAjGkUAAODyLE78zxHXr1/XwIEDFRgYqKCgIEVGRt513d9++00tW7ZU2bJl9fLLL+vAgQMOHxcaRQAAgEfEhAkTdODAAc2ZM0dDhw5VeHi41q1bl2K9K1eu6PXXX1dgYKCioqLk7++vbt266cqVKw7tj0YRAAC4PIvFeY/UunLlipYsWaJBgwbJz89P//nPf9SlSxctWLAgxbpr1qyRp6en3n33Xfn4+GjQoEF68sknjU3lvdAoAgAAPAKio6OVmJgof39/27KAgADt27dPSUlJduvu27dPAQEBsvz/TtRisah8+fLau3evQ/ukUQQAAHCihIQEXbp0ye6RkJCQYr34+HjlypVLHh4etmV58+bV9evXdeHChRTr5s+f325Znjx5dPr0aYdqeywvj3N15xRnlwAgnVz9qpuzSwDwGPJyYkc0bdpMhYeH2y3r1auXevfubbfs6tWrdk2iJNvzOxvLu61rakDv5bFsFAEAAB4V3bp1U8eOHe2W3dnkSZKnp2eKRi/5uZeXV6rWvXO9+6FRBAAAcCIPDw9jY3inAgUK6Pz580pMTJS7+60WLj4+Xl5eXsqePXuKdf/3v//ZLfvf//6XYjj6fjhHEQAA4BFQsmRJubu7201I2bVrl0qXLi03N/uWrmzZstqzZ4+sVqskyWq1avfu3SpbtqxD+6RRBAAAeARkyZJFISEhGjZsmPbv369NmzYpMjJS7du3l3QrXbx27ZokqV69evr77781evRoHT58WKNHj9bVq1dVv359h/ZpsSa3mgAAAMjQrl69qmHDhmnDhg3KmjWrOnfurNDQUEmSr6+vxo4dq+bNm0uS9u/fr6FDhyo2Nla+vr4aPny4XnjhBYf2R6MIAAAAI4aeAQAAYESjCAAAACMaRQAAABjRKKajqKgo+fr6asmSJem6n7Nnz2rt2rXpuo+7OX78uLZs2eKUfT/qgoOD5evrK19fX5UoUUL+/v5q3bq1vv/+e2eXhjQSHBysqKioFMujoqIUHBzshIrwMNz+3U7+flesWFHdu3fXn3/+6ezyAIfQKKaj1atX65lnntFXX32Vrvt5//33ndasDRw4UPv373fKvh8HAwcO1A8//KAtW7Zo0aJFKl++vLp166atW7c6uzQA/0Lydzv5+z1lyhQdOnRIYWFhzi4NcAiNYjo5e/astm3bpp49e2rnzp06fvx4uu2LieuPrmzZsilfvnwqUKCAihcvrnfffVcNGzbU2LFjnV0agH8h+bud/P2uVq2a3nzzTW3fvl3//POPs8sDUo1GMZ2sW7dO2bJlU5MmTZQ/f367VDE4OFizZ89W48aNVa5cOb3++uuKj4+3vb5582aFhISodOnSCgwM1DvvvKPLly9LkqZNm6YePXro1VdfVcWKFdWuXTstW7ZMy5Ytsw1l+fr6au3atapfv77Kli2rd955R8ePH1f79u1VtmxZtW3bVmfOnLHtb+PGjWrQoIHKli2rFi1aaMeOHbbX2rVrp4iICHXu3FllypTRSy+9ZBsa7d+/v3bs2KHw8HC1a9cuXY+nK2nVqpV+//13/fHHH7p48aKGDBmiqlWrKiAgQP369dPFixclSdu3b1dwcLCGDh2qgIAAffzxx+rfv78mTpyoPn36qGzZsmrQoIF+++03TZkyRYGBgapevbrTTlOA2enTp/XWW2+pYsWKqlSpkkaNGmW7P6tpiLpdu3aaNm2aJOnUqVPq1KmT/P39VaVKFY0cOVI3btyQdOsfkNOnT1dQUJACAwP1xhtv6NSpUw/3w8FO8i3a3Nzc7vndlqTY2Fh17txZ5cuX14svvqjw8HAlJSVJuvV74N1339XIkSPl7++v4OBg/fDDD5o/f76qVq2qypUra+7cuU75jHj80Cimk9WrV6tmzZpyc3NTcHCwli9fbpf8TZs2TV26dNGiRYt09epV9e7dW5J07NgxvfXWW2rbtq3Wrl2rDz74QFu3btXixYtt7928ebMaNWqkOXPmKCIiQvXr11f9+vX15Zdf2taZOnWqxo0bp5kzZ2rDhg1q06aN2rRpo4ULFyo+Pl6ffPKJJCk6OlphYWHq3r27VqxYoSZNmqhr1676448/bNuaMWOGGjZsqFWrVqlEiRIaMmSIkpKSNGjQIPn7+6tTp062X1z493x8fCRJhw8fVq9evXTw4EHNmDFDn332mWJjY9W/f3/buidPnlRCQoKioqLUqFEjSdKcOXNUsWJFrVixQjlz5lSHDh109uxZLVq0yNZYJv/CgXMlJCSoQ4cOunr1qubNm6cPPvhA3377rSZMmJCq948cOVJPPPGEli9frunTp2v9+vW2/1fMnz9fK1eu1KRJk7Ro0SLlyZNHnTp1sjWSeLiOHTumjz/+WC+++KKefPLJe363z507p7Zt2yp//vxasmSJhg4dqvnz59s1f2vWrFG2bNn01VdfqUyZMurTp49++OEHzZs3T+3atdP48eN17tw5Z31cPE6sSHOnTp2y+vr6Wjds2GC1Wq3WH3/80Vq8eHHrzz//bLVardZatWpZR48ebVv/2LFj1uLFi1tjYmKsR44csX7xxRd223v77betAwYMsFqtVuvUqVOtVatWtXs9LCzMGhYWZntevHhx68KFC23PW7RoYe3Xr5/t+YQJE6ydOnWyWq1Wa9++fa1jx461216vXr1sy1577TVr7969ba8dPHjQWrx4cevp06dtr0+dOtWRw4P/r1atWtalS5emWH7jxg1r8eLFrdOmTbMWL17cGhcXZ3vt8OHD1uLFi1tjY2OtP/30k7V48eLWw4cP214PCwuztmrVyvZ8wYIFVj8/P+vVq1ft3n/mzJl0/GRIVqtWLWupUqWs5cqVs3uUKlXKWqtWLeumTZusZcuWtV64cMH2ni1btlhfeOEF66VLl6xLly611qpVy26bt3/nGjdubO3fv781ISHBarVarb/++qv1+PHjVqvVaq1evbp18+bNtvclJiZaK1eubLcM6ePOv/dSpUpZ/f39rX379rWeO3fO9v/Ru32358yZY61Ro4b1xo0bttc///xza7Vq1axW663fA0FBQdakpCSr1Wq1fvvtt9bixYtbjx07ZrVardarV69aixcvbt29e/dD/NR4XLk7u1F9HK1evVqenp4KCgqSJFWsWFE5cuTQsmXLFBgYKEkqX768bf0iRYooZ86cio2NVf369eXh4aGIiAgdOnRIhw4d0uHDh9W0aVPb+oULF75vDUWKFLH92cvLy+49Xl5etqGt2NhYrV27VosWLbK9fuPGDVvtkvTss8/a/pw1a1ZJUmJiYqqOBRx36dIlSbf+nrNnzy5vb2/baz4+PsqRI4fi4uKULVs2SdLTTz9t9/7bn3t5eSlv3rzy8vKSJHl6ekqS7e8f6e/NN99U3bp17ZZt2LBBX3zxhWJjY/Xss88qR44cttfKly+vxMREHTt27L7b7tKliwYOHKiNGzeqevXqatCggV544QVdvnxZp0+f1ttvvy03t/8bOLp27ZqOHj2aZp8Nd5f893758mVNmzZNJ0+e1H//+1/lypVL27Ztu+d3OzY2Vn5+fnJ3/79f0f7+/oqPj9fff/8t6db33GKxSJLt+538//nk53zPkRZoFNPB6tWrde3aNQUEBNiW3bx5U+vWrdOQIUMkye5/AMmvu7m5KTo6Wm3atFFwcLACAwMVGhqqOXPm2K2b/Mv+XjJlymT3/PZfFnfut2vXrgoJCbFbnvw/GknKnDlzivdZmUCTbmJiYiTJ9gvhTjdv3tTNmzdtz+/8ebjzZ+tuf/d4OPLkyaOiRYumWCaZv8vJf7c3b960NQK3u/0faU2aNFGVKlW0adMmffvtt3rzzTfVtWtXde7cWZL04Ycf2jUjkuyaUqSf2//eP/zwQ7Vo0UI9evTQokWLbOcq3in5u236uUg+XST55+PO77nEdx3pg5+qNHbkyBH99ttvGjx4sJYvX257TJkyRZcuXdLGjRsl3To3MNkff/yhf/75R76+vvrqq69UoUIFTZo0SW3btlWZMmX0xx9/3LMxM/0ySS1vb2+dOHFCRYsWtT0WLVqk77777oG3iX9n6dKl8vPzU1BQkP7++2/FxcXZXjt8+LAuXbqU4pc/Hk3e3t46evSoLly4YFu2d+9eubu765lnnlHmzJltE9mkW/9AO3HihO35lClTdPbsWbVp00YzZ85Unz59tGHDBmXPnl158uRRfHy87XtdsGBBTZw4UUeOHHmYHxG6NYll1KhROnjwoGbPni1vb+97fre9vb3166+/2p1PumfPHuXOnVs5c+Z0wieAK6NRTGOrV69Wzpw51apVKxUvXtz2aNCggZ577jktX75ckjR37lxt3rxZ0dHRGjhwoKpVq6Znn31WOXPmVExMjPbv368jR45o3Lhx+uWXX+45hJAlSxadPHnSbiZzaoWGhmrNmjWaO3eujh07ptmzZ2v27Nl2w8338sQTT+jo0aM6e/asw/uG9M8//yg+Pl5//fWXYmJiNHr0aK1Zs0b9+/eXj4+PqlevrrCwMO3fv1/79+9XWFiYKlSooOLFizu7dKSBatWqqUiRInr33XcVExOjn376SSNHjlSjRo2UPXt2lSpVShcuXNC8efN0/PhxjR071m5mbFxcnEaMGKHo6GgdOnRIW7Zs0QsvvCDp1nf7gw8+0Ndff62jR49q8ODB2r17t4oVK+asj+vSypQpoxYtWuijjz5S1qxZ7/ndbty4sRISEvTee+8pNjZWmzZt0rRp09SmTZt/FQwAD4JGMY2tXr1ajRs3Ng4ttGnTRlu3btWZM2fUrFkzTZ48WW3atFG+fPk0ZcoUSbcufVGuXDmFhoaqbdu2OnXqlHr27Knffvvtrvts2rSpjhw5oiZNmjg8JFyuXDlNmDBBn3/+uRo0aKDFixdr0qRJqlChQqre37JlS33//ffq0qWLQ/vFLWPGjFFQUJCqV6+ujh076siRI5o9e7YqVqwoSRo/fryKFCmi0NBQde7cWc8//7ymT5/u5KqRVjJlyqSPPvpIkvTKK6/onXfeUe3atTVixAhJt84PDgsLU0REhEJCQmS1WvXSSy/Z3j9s2DDlzZtX7dq10yuvvKL8+fNr0KBBkqTOnTurRYsWeu+99xQSEqJTp05p1qxZDD070dtvv63MmTNr4sSJ9/xuZ82aVZ9++qmOHTumkJAQjRw5Uh06dFCvXr2c/AngiixWTjZ76IKDg9WrVy81b97c2aUAAADcFYkiAAAAjGgUAQAAYMTQMwAAAIxIFAEAAGBEowgAAAAjGkUAAAAY0SgCAADAiEYRAAAARjSKSJXg4GD5+vrK19dXJUqUkL+/v1q3bq3vv//e2aU98hISErR48WLb83bt2mnatGkOb+f29/Xv31/9+/dPsxqTBQcHKyoqKs23e6dp06apXbt26b6fR93Bgwe1e/dup+x727Ztio2Ndcq+pQf/njyIpKQkTZ8+XbVq1VJgYKC6du2qP/7446HsG3A2GkWk2sCBA/XDDz9oy5YtWrRokcqXL69u3bpp69atzi7tkbZ69WrNmDEjTbc5aNAg263c0tKXX36pBg0apPl28WB69uypo0ePOmXfoaGh+t///ueUfT9sc+fO1ezZszVkyBAtXLhQmTJlUpcuXXTt2jVnlwakOxpFpFq2bNmUL18+FShQQMWLF9e7776rhg0bauzYsc4u7ZGWHpcyzZYtm7Jly5bm282dO7e8vLzSfLtARrZo0SJ16tRJwcHBeu655/T+++/r9OnTTktzgYeJRhH/SqtWrfT777/bhmEuXryoIUOGqGrVqgoICFC/fv108eJF43vr1q2rzz77zG5Z48aNtWTJEknSnj171KZNG5UrV07BwcH64osvbOuZhlZ9fX21fft2477Onj2rPn36qHz58qpWrZomT54sq9WqEydOyNfXVydOnLCte/uwZ1RUlFq3bq2ePXsqICBAK1asULt27TRy5EjVrl1bNWvW1KVLl/Tnn3/qjTfeUNmyZRUcHKzw8HDdvHnTto127dpp6tSpqlSpkgIDAzV27FhZrVZt375dAwYM0MmTJ1PU8eeff6pEiRL69ddf7T7HCy+8cN9hr+Tj888//6h06dL66aefbK9dunRJpUuX1s6dOyVJGzduVIMGDVS2bFm1aNFCO3bsuOt2bx96bteunSIiItS5c2eVKVNGL7300j1PRdi1a5fatGmjsmXLqly5curatav++uuvu65/48YNDR8+XOXLl1fVqlXtflaSkpL06aefqnbt2ipTpozatWunmJgY2+t3/ixERUUpODjY9nzy5MkKCgqyvffQoUO213bu3KnmzZurTJkyaty4sdavX3/XGu905swZvfnmm6pQoYJKlSqlZs2aadeuXZJk+1lbuXKlXnzxRQUGBmrUqFFKTEyUdOsfDDNmzFBwcLBKlSqloKAghYeH27Z9589d8+bNdfLkSQ0YMED9+/fX9u3bFRwcrC+//FLVqlVThQoV9Mknn+jnn39WvXr15O/vr3fffVdJSUm2/U2fPl1BQUEKDAzUG2+8oVOnTtkdw6+++kqNGjVSqVKl1LZtWx0/flySbMeyffv2qR7+jYqKUv369VWmTBk1b95cP//8s+214OBgTZw4UUFBQQoJCTH+42njxo166aWXVK5cOY0YMcL2/XqQ7f/0008OHav+/furefPmtu1lyZJF7u7uunTpUqo+O/Aoo1HEv+Lj4yNJOnz4sCSpV69eOnjwoGbMmKHPPvtMsbGxdz1XrmHDhna/hGNjY3XkyBHVrVtXsbGx6tChgypUqKCoqCj17t1b48eP18aNGx+ozp49eyo+Pl7z58/XBx98oKioKC1YsCBV792zZ4+ee+45LV68WEFBQZJu/VKaOHGiwsPD9eSTT6pXr17KkyePli1bprFjx2rlypV2w8l79uzRkSNH9MUXX2jIkCGaO3eutm7dKn9/fw0cOFBPPfWUfvjhBxUsWND2noIFCyogIMDuGK1fv14lS5ZU0aJFU1V7tmzZ9OKLL9odt2+//Va5c+dWQECAoqOjFRYWpu7du2vFihVq0qSJQ+dfzZgxQw0bNtSqVatUokQJDRkyxPbL9Xb//POPunXrpmrVqmnVqlWaNWuWjh07po8//viu296zZ48yZ86s5cuX6/XXX9e4ceNs58RNnz5dkZGRGjhwoJYtW6bChQurS5cuunLlyn1r3rhxoxYtWqQPPvhAq1atUt68eTVgwABJUnx8vLp166bmzZtr5cqV6tKli/r3729rqu+nb9++unnzphYuXKjly5erQIECGjZsmN064eHhmjJlisLDw7VhwwZbo7V8+XLNmTNHo0eP1rp169SzZ09NmzbN7h8Kt//cRUZG6qmnntLAgQNtpxn89ddf2rRpk+bNm6c33nhDkydP1pgxYzRu3DhNnjxZa9as0ebNmyVJ8+fP18qVKzVp0iQtWrRIefLkUadOnXTjxg3b/qZNm6ZBgwYpKipK58+f1wcffCDp1ikIya936tTpvsclKipKI0eOVLdu3bR8+XJVrVpVr7/+us6cOWNbZ+XKlZo1a5bGjRsni8Vi9/7Dhw+rT58+atOmjZYuXarExERbA/6g23fkWNWoUUMFChSwbevjjz+Wu7u7KlWqdN/PDjzqaBTxryQPb16+fFnR0dHasWOHJk6cqDJlyqhMmTKaOHGivv76a8XFxaV4b6NGjbR3716dPn1akrR27VoFBQUpR44cWrx4sV544QW98847KlasmJo1a6bXXntNn376qcM1RkdHa8+ePRo3bpxeeOEFVahQQcOGDVP27NlT9X6LxaLu3bvLx8dHuXPnliTVrFlT5cuXV6lSpfTTTz/p1KlTGjlypIoVK6ZKlSopLCxMc+fOtW3j5s2bttebNm2qEiVK6JdffpGHh4eyZcumTJkyKV++fMqUKZPdvhs2bKh169bZnq9du1YNGzZ06PM3bNhQGzdutKU069evV/369WWxWDRr1iy98soraty4sYoWLar27durevXqduntvdSoUUPNmzfXM888o+7du+vPP/9UfHx8ivWuXbumHj16qGfPnipSpIgCAgJUt25duyTvTgUKFNCAAQP0zDPPKDQ0VNmzZ1dMTIysVqvmz5+vt956S7Vr15aPj49GjhypTJkyacWKFfet+eTJk8qcObMKFSqkZ555RkOGDLH9Y2bBggWqWrWqXnvtNRUtWlRNmzZVq1atNGfOnPtu12q1qk6dOhoyZIh8fHz03HPP6dVXX7X9IypZv379FBgYqMqVK+utt97S4sWLZbVaVbBgQY0dO1ZVqlTR008/rTZt2ihfvnx2x+j2n7ucOXMqU6ZMdqcZ3LhxQ2FhYSpWrJheffVVJSUl6dVXX1W5cuVUq1YtlSxZ0vZd/PTTT/Xuu++qUqVK8vHx0YgRI3Tx4kW7VLhjx46qUqWKihcvrjZt2ujAgQOSZPse5MiRQ08++eR9j828efPUrl07hYSEqFixYurbt6+KFy+u+fPn29Zp0qSJbbLcnZYuXarAwECFhobKx8dHQ4YMUf78+f/V9h05VrdbvHixwsPDNW7cOOXIkeO+nx141Lk7uwA82pKHXrJmzaq4uDhlz55d3t7ettd9fHyUI0cOxcXFqVixYnbv9fHxka+vr9atW6fQ0FCtXbtW3bp1k3QrXSxTpozd+v7+/lq4cKHDNR45ckQ5c+ZUkSJFbMvq1KkjSXZDvXeTJ0+eFOflFS5c2Pbn2NhYXbhwQQEBAbZlSUlJunbtms6fP2/bRtasWW2vZ82a1TbkeC/16tXT6NGjdfDgQeXLl0+7d+/WxIkT7/u+29WqVUuDBg3Svn375Ovrq++//97WxMbGxmrt2rVatGiRbf0bN27YktP7efbZZ+0+kyTj58qXL59CQkI0e/ZsHTx4UIcPH1ZMTIzKly9/120//fTTdslStmzZdP36dZ09e1YXLlxQ2bJlba9lzpxZpUqVStUs3IYNG2r+/PmqXbu2ypUrpzp16qhFixaSpLi4OH3zzTfy9/e3rX/jxg27n+m7sVgsatOmjdasWaPdu3fryJEjOnDgQIqE9fbPXKpUKZ07d07nz59X5cqVtW/fPk2aNEmxsbE6ePCg4uPj7d5/+8/d3ST/nCf/zN7+Hi8vLyUkJOjy5cs6ffq03n77bbm5/V9ecO3aNbvJMbcn11mzZrVLGx0RGxurnj172i0rV66c3d/XvT5bbGysSpYsaXueOXNmu+cPuv3UHKvbnTx5UiNHjtTgwYNVu3btu9YLPE5oFPGvJJ8X9vzzz9udI3a7mzdvpjifKFnDhg21YcMGvfjiizpx4oTtf76enp4p1k1KSrJtx2Kx2J3HdK+mK3PmzHd97c4hLtO2TLXcviwxMVHFihXTRx99lGK95KTHw8MjxWupmcSSO3duValSRevXr1f+/PlVtmxZPfXUU/d93+2eeOIJ1apVS+vXr9eZM2eUN29eWxN+8+ZNde3aVSEhIXbvSe2EFdOxNX2uM2fO6OWXX5afn5+qVq2qV155Rd9++6327dt3123fma4mb9v09yHd+iymYe/k15Lly5dPa9eu1Y8//qhvvvlGs2bN0uLFi7V8+XIlJiaqcePGeuONN+ze7+5+//9VJiUlqVOnTvr777/VoEEDBQcH68aNG+rVq5fdercfs+R6LRaLlixZojFjxqhly5aqW7euwsLC1L59e7v33u2z36vW2xvBZMnH48MPP0zRBN+ekt3ru+MIU913/n3d77Pd+XN1e20Puv3UHKvbbd26Vfnz51ebNm3uuR7wOGHoGf/K0qVL5efnpyJFisjb21t///233XDN4cOHdenSpbsmMo0aNdK+ffu0fPly1ahRwzaM5e3tnaKJ2LNnj207mTNn1uXLl22vJZ9kb1K0aFFduHBBf/75p23Z3Llz1aNHD9svm9u3lZqU8Xbe3t46deqUcufOraJFi6po0aI6ceKEpk6damxE73S/dRo1aqRvvvlGW7ZscXjYOVnDhg21ZcsWbdq0ye7yNt7e3jpx4oSt7qJFi2rRokX67rvvHmg/d7Nx40blyJFDM2fOVIcOHRQYGKjjx48/0IzvbNmyKW/evNq7d69t2Y0bN/Trr7+m6ufj22+/1ZIlS1SzZk0NHz5cX331lY4eParff/9d3t7e+uOPP+yOx+bNm7Vy5cr71nX48GH9/PPPmj17tt544w3VrFnTNlnn9s958OBB258PHDig/PnzK1euXPriiy/Us2dPDRw4UCEhIcqVK5fOnj2bLrPis2fPrjx58ig+Pt72OQsWLKiJEyfqyJEjab4/0/d53759qUpqpVv/EP3ll19sz5OSkhQdHZ1m20+tJ554QvXr10/TbQIZHY0iUu2ff/5RfHy8/vrrL8XExGj06NFas2aN7fwuHx8fVa9eXWFhYdq/f7/279+vsLAwVahQQcWLFzdus1ChQipTpozmzJlj1wS1bdtWBw8e1OTJk3XkyBEtW7ZMn3/+uV599VVJUunSpfXjjz9q27Zt+v333zVixIi7ph/PP/+8KleurEGDBikmJkbbt2/Xxx9/rGrVqilv3rwqWLCgZs2apePHjysqKkrffvutQ8clKChIhQsXVr9+/RQTE6OdO3dqyJAhypIlizEVu1OWLFl08eJFHT161JiM1qlTR0ePHtWOHTtUr149h2pLVr16ddvJ+7c3iqGhoVqzZo3mzp2rY8eOafbs2Zo9e7bdkHJayJkzp06dOqVt27bp+PHj+vjjj7Vhw4YUQ3upFRoaqqlTp+rrr79WbGyshgwZouvXr9s+W+nSpTV//nwdPXpUmzdvtrtIeFJSkiZMmKCNGzfqxIkTioqKUpYsWfTss8+qbdu2OnDggKZMmaKjR49q5cqVmjx5sgoVKiTp1sXR4+PjjQl59uzZ5ebmptWrV+vkyZNat26dbaLK7Z9z9OjR+uWXX7R161Z9+OGHtp/pXLlyadu2bbYh67fffls3bty45zF64oknFBcXpwsXLjzQMfzggw/09ddf6+jRoxo8eLB2796d4hSRe+370KFD+ueffyTdmgh0t+sKhoaGav78+Vq+fLmOHDmi999/X9HR0bYh//t55ZVXdODAAUVERCguLk7jx4+3m6H9b7efWjVr1kzV5B3gcUKjiFQbM2aMgoKCVL16dXXs2FFHjhzR7NmzVbFiRds648ePV5EiRRQaGqrOnTvr+eef1/Tp0++53QYNGsjd3V01a9a0LStUqJBmzpyp77//Xo0bN1ZERIT69++vl19+WZLUtGlTvfTSS+rRo4e6dOmiRo0a2Z3cfqeJEycqS5YsatWqlf773/+qVatWatu2rdzc3DR69Gjt379fDRo00Lp161IMO95PpkyZFBERoaSkJL3yyivq3bu3atSoocGDB6fq/ZUrV1bRokXVuHFju7QpWdasWVW9enWVK1dOefLkcai2ZB4eHqpTp46eeuopu8kC5cqV04QJE/T555+rQYMGWrx4sSZNmqQKFSo80H7upn79+mrSpInefPNNvfzyy9q+fbvCwsIUGxv7QM1ip06d1LJlSw0ZMkTNmzfX6dOnNW/ePNskiyFDhujChQtq1KiRPv30U7355pu29wYHB+vNN9/U2LFjVb9+fa1Zs0YfffSRcuTIocKFC2vGjBn6/vvv1ahRI33wwQfq37+/mjRpIulWqh0UFGSXTid76qmnNGzYMH3yySdq1KiRPv74Yw0ePFju7u767bffbOs1aNBA3bp10zvvvKOWLVvq9ddfl3TrgvaXLl1S06ZN1bt3b/n6+uo///mP8WciWZs2bbRgwYJU/6zdrnPnzmrRooXee+89hYSE6NSpU5o1a1aqJ2i0a9dOEyZMsDXDQUFBWrNmjXHdBg0a6O2339bUqVPVpEkT7dixQ5GRkbarJtxP0aJFFRERodWrVyskJETx8fGqUaNGmm0/tSIjI9O8+QQyOos1PcY1AAdMmTJFp0+f1vjx451dSobVunVrtWzZ0tYow3nCwsLUt29f5cuXz6H3JZ+Du3nzZj399NPpVJ3zLF26VF5eXg98egSAjInJLHCa6OhoHTx4UJ9//rkiIiKcXU6G9NNPP2n37t2KjY194GFnpJ1jx47p3LlzDjeJj7ukpCQtW7bMdp1FAI8PGkU4zYEDBzRq1Ci1bdtWgYGBzi4nQ/rqq6+0efNmjRgxIlXXq0P6KlKkCP+oMXBzc9Nnn32WZrOkAWQcDD0DAADAiMksAAAAMKJRBAAAgBGNIgAAAIxoFAEAAGBEowgAAAAjGkUAAAAY0SgCAADAiEYRAAAARv8P3q1irbcPvj4AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ - "df_2dhist = pd.DataFrame({\n", - " x_label: grp['Do you currently work?'].value_counts()\n", - " for x_label, grp in df.groupby('Do you currently live in a house, apartment, or dorm?')\n", - "})\n", + "df_2dhist = pd.crosstab(df.loc[:, 'Do you currently work?'],\n", + " df.loc[:, 'Do you currently live in a house, apartment, or dorm?'],\n", + " normalize='index')\n", "\n", "# Plot heatmap\n", "plt.subplots(figsize=(8, 8))\n", "sns.heatmap(df_2dhist, cmap=\"Blues\")\n", "plt.xlabel('Do you currently live in a house, apartment, or dorm?')\n", - "_ = plt.ylabel('Do you currently work?')" + "_ = plt.ylabel('Do you currently work?')\n", + "df_2dhist" ], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.179017Z", - "start_time": "2024-02-24T04:30:19.034991Z" + "end_time": "2024-02-24T05:05:30.657400Z", + "start_time": "2024-02-24T05:05:30.402484Z" } }, - "id": "c6372820e5ee501f", + "id": "c533e52f7d64a4df", "execution_count": 6 }, { "cell_type": "markdown", - "source": [], + "source": [ + "For both working & non-working participants, the proportion who live in an apartment are equivalent (50%).\n", + "\n", + "However, 13% of non-working participants live in a dorm while only 6% of working participants live in a dorm.\n", + "This 7% drop is matched in participants who live a house, with 44% of working participants living in a house compared to 36% of non-working participants.\n", + "\n", + "This indicates that working participants tend to live off-campus and in living situations that have a higher cost of living." + ], "metadata": { "collapsed": false }, - "id": "3ef5084b2abd603e" + "id": "6294dcc03fa9f516" }, { "cell_type": "code", @@ -287,23 +313,40 @@ ], "source": [ "df.groupby('Do you currently live in a house, apartment, or dorm?').size().plot(kind='barh',\n", - " color=sns.palettes.mpl_palette(\n", - " 'Dark2'))\n", + " color=sns.palettes.mpl_palette(\n", + " 'Dark2'))\n", "plt.gca().spines[['top', 'right', ]].set_visible(False)" ], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.283024Z", - "start_time": "2024-02-24T04:30:19.181016Z" + "end_time": "2024-02-24T05:05:30.780026Z", + "start_time": "2024-02-24T05:05:30.659455Z" } }, - "id": "67df9b48e43a5307", + "id": "450665f2272bb3a2", "execution_count": 7 }, + { + "cell_type": "markdown", + "source": [ + "Most participants live in either an Apartment or a House. This would indicate that most students either live off-campus or on-campus apartments." + ], + "metadata": { + "collapsed": false + }, + "id": "4d64d891924f201e" + }, { "cell_type": "code", "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total Average GPA: 3.6520247933884296\n" + ] + }, { "data": { "text/plain": "
", @@ -316,18 +359,35 @@ "source": [ "dataTable1 = pd.pivot_table(data=df, values='What was your GPA your very first quarter at UCR?',\n", " index='How many hours do you work per week on average?', aggfunc='mean')\n", - "_ = dataTable1.plot(kind='bar')" + "_ = dataTable1.plot(kind='bar')\n", + "print(\"Total Average GPA: \", df['What was your GPA your very first quarter at UCR?'].mean())" ], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.368513Z", - "start_time": "2024-02-24T04:30:19.284400Z" + "end_time": "2024-02-24T05:05:30.918126Z", + "start_time": "2024-02-24T05:05:30.781852Z" } }, - "id": "1163d27db8106025", + "id": "1a704a4702ea3f9c", "execution_count": 8 }, + { + "cell_type": "markdown", + "source": [ + "The average GPA seems to be independent in respect to working hours per week.\n", + "Most students who work less than 20 hours have an equivalent average GPA to the total average GPA of all participants (3.65).\n", + "\n", + "There is a small drop in GPA associated with students who work more than 20 hours (3.5 GPA), which may mean some of those students may struggle maintaining balance between work and school. \n", + "\n", + "This would indicate that most students seem to be able to balance work with school. However, it would also indicate that\n", + "students who work full-time jobs may struggle slightly in school." + ], + "metadata": { + "collapsed": false + }, + "id": "cb1fd8e56d403466" + }, { "cell_type": "markdown", "source": [ @@ -336,7 +396,7 @@ "metadata": { "collapsed": false }, - "id": "8f2599d399d14333" + "id": "f573ee142b931496" }, { "cell_type": "markdown", @@ -346,7 +406,7 @@ "metadata": { "collapsed": false }, - "id": "85d89eaa6a2c8057" + "id": "dcc6d91b3e660c2e" }, { "cell_type": "code", @@ -368,11 +428,11 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.387872Z", - "start_time": "2024-02-24T04:30:19.371005Z" + "end_time": "2024-02-24T05:05:30.953549Z", + "start_time": "2024-02-24T05:05:30.925037Z" } }, - "id": "5cbb7ab4d38de9ef", + "id": "24d1f01fdd4ca1d6", "execution_count": 9 }, { @@ -397,18 +457,18 @@ " col_totals = roommates_major_table.iloc[-1, j]\n", " expected_frequency = (row_totals * col_totals) / roommates_major_table.iloc[-1, -1]\n", " expected_frequencies.append(expected_frequency)\n", - " chi_squared += ((roommates_major_table.iloc[i, j] - expected_frequency)**2) / expected_frequency\n", + " chi_squared += ((roommates_major_table.iloc[i, j] - expected_frequency) ** 2) / expected_frequency\n", "\n", "print(\"Chi-squared value:\", chi_squared)" ], "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T04:30:19.394678Z", - "start_time": "2024-02-24T04:30:19.389670Z" + "end_time": "2024-02-24T05:05:30.962589Z", + "start_time": "2024-02-24T05:05:30.955712Z" } }, - "id": "2fbaac2d0722a7e3", + "id": "fd3e73d9f461afd1", "execution_count": 10 } ], -- cgit v1.2.3