aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Python/pywarpx/PGroup.py8
-rwxr-xr-xPython/pywarpx/_libwarpx.py280
-rw-r--r--Python/pywarpx/picmi.py2
-rw-r--r--Source/Diagnostics/FieldIO.cpp16
-rw-r--r--Source/Diagnostics/WarpXIO.cpp3
-rw-r--r--Source/Evolve/WarpXEvolveEM.cpp19
-rw-r--r--Source/FieldSolver/WarpXPushFieldsEM.cpp2
-rw-r--r--Source/FortranInterface/WarpX_f.H5
-rw-r--r--Source/FortranInterface/WarpX_picsar.F90437
-rw-r--r--Source/Parallelization/WarpXComm.cpp102
-rw-r--r--Source/Parallelization/WarpXRegrid.cpp66
-rw-r--r--Source/Particles/MultiParticleContainer.cpp2
-rw-r--r--Source/Particles/PhysicalParticleContainer.cpp4
-rw-r--r--Source/Particles/RigidInjectedParticleContainer.cpp1
-rw-r--r--Source/Particles/WarpXParticleContainer.cpp44
-rw-r--r--Source/Python/WarpXWrappers.cpp46
-rw-r--r--Source/WarpX.H4
-rw-r--r--Source/WarpX.cpp112
18 files changed, 705 insertions, 448 deletions
diff --git a/Python/pywarpx/PGroup.py b/Python/pywarpx/PGroup.py
index 68b37740d..48e68ceb5 100644
--- a/Python/pywarpx/PGroup.py
+++ b/Python/pywarpx/PGroup.py
@@ -83,6 +83,10 @@ class PGroup(object):
return _libwarpx.get_particle_y(self.ispecie)[self.igroup]
yp = property(getyp)
+ def getrp(self):
+ return _libwarpx.get_particle_r(self.ispecie)[self.igroup]
+ rp = property(getrp)
+
def getzp(self):
return _libwarpx.get_particle_z(self.ispecie)[self.igroup]
zp = property(getzp)
@@ -136,6 +140,10 @@ class PGroup(object):
return _libwarpx.get_particle_Bz(self.ispecie)[self.igroup]
bz = property(getbz)
+ def gettheta(self):
+ return _libwarpx.get_particle_theta(self.ispecie)[self.igroup]
+ theta = property(gettheta)
+
class PGroups(object):
def __init__(self, ispecie=0):
self.ispecie = ispecie
diff --git a/Python/pywarpx/_libwarpx.py b/Python/pywarpx/_libwarpx.py
index 4c3283b97..5b7e14dbb 100755
--- a/Python/pywarpx/_libwarpx.py
+++ b/Python/pywarpx/_libwarpx.py
@@ -399,7 +399,10 @@ def get_particle_x(species_number):
'''
structs = get_particle_structs(species_number)
- return [struct['x'] for struct in structs]
+ if geometry_dim == '3d' or geometry_dim == '2d':
+ return [struct['x'] for struct in structs]
+ elif geometry_dim == 'rz':
+ return [struct['x']*np.cos(theta) for struct, theta in zip(structs, get_particle_theta(species_number))]
def get_particle_y(species_number):
@@ -410,7 +413,26 @@ def get_particle_y(species_number):
'''
structs = get_particle_structs(species_number)
- return [struct['y'] for struct in structs]
+ if geometry_dim == '3d' or geometry_dim == '2d':
+ return [struct['y'] for struct in structs]
+ elif geometry_dim == 'rz':
+ return [struct['x']*np.sin(theta) for struct, theta in zip(structs, get_particle_theta(species_number))]
+
+
+def get_particle_r(species_number):
+ '''
+
+ Return a list of numpy arrays containing the particle 'r'
+ positions on each tile.
+
+ '''
+ structs = get_particle_structs(species_number)
+ if geometry_dim == 'rz':
+ return [struct['x'] for struct in structs]
+ elif geometry_dim == '3d':
+ return [np.sqrt(struct['x']**2 + struct['y']**2) for struct in structs]
+ elif geometry_dim == '2d':
+ raise Exception('get_particle_r: There is no r coordinate with 2D Cartesian')
def get_particle_z(species_number):
@@ -556,6 +578,53 @@ def get_particle_Bz(species_number):
return get_particle_arrays(species_number, 9)
+def get_particle_theta(species_number):
+ '''
+
+ Return a list of numpy arrays containing the particle
+ theta on each tile.
+
+ '''
+
+ if geometry_dim == 'rz':
+ return get_particle_arrays(species_number, 10)
+ elif geometry_dim == '3d':
+ return [np.arctan2(struct['y'], struct['x']) for struct in structs]
+ elif geometry_dim == '2d':
+ raise Exception('get_particle_r: There is no theta coordinate with 2D Cartesian')
+
+
+def _get_mesh_field_list(warpx_func, level, direction, include_ghosts):
+ """
+ Generic routine to fetch the list of field data arrays.
+ """
+ shapes = _LP_c_int()
+ size = ctypes.c_int(0)
+ ncomps = ctypes.c_int(0)
+ ngrow = ctypes.c_int(0)
+ data = warpx_func(level, direction,
+ ctypes.byref(size), ctypes.byref(ncomps),
+ ctypes.byref(ngrow), ctypes.byref(shapes))
+ ng = ngrow.value
+ grid_data = []
+ shapesize = dim
+ if ncomps.value > 1:
+ shapesize += 1
+ for i in range(size.value):
+ shape = tuple([shapes[shapesize*i + d] for d in range(shapesize)])
+ # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
+ arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
+ arr.setflags(write=1)
+ if include_ghosts:
+ grid_data.append(arr)
+ else:
+ grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
+
+ _libc.free(shapes)
+ _libc.free(data)
+ return grid_data
+
+
def get_mesh_electric_field(level, direction, include_ghosts=True):
'''
@@ -582,28 +651,7 @@ def get_mesh_electric_field(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getEfield(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getEfield, level, direction, include_ghosts)
def get_mesh_electric_field_cp(level, direction, include_ghosts=True):
@@ -631,28 +679,7 @@ def get_mesh_electric_field_cp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getEfieldCP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getEfieldCP, level, direction, include_ghosts)
def get_mesh_electric_field_fp(level, direction, include_ghosts=True):
@@ -680,28 +707,7 @@ def get_mesh_electric_field_fp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getEfieldFP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getEfieldFP, level, direction, include_ghosts)
def get_mesh_magnetic_field(level, direction, include_ghosts=True):
@@ -730,28 +736,7 @@ def get_mesh_magnetic_field(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getBfield(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getBfield, level, direction, include_ghosts)
def get_mesh_magnetic_field_cp(level, direction, include_ghosts=True):
@@ -779,28 +764,7 @@ def get_mesh_magnetic_field_cp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getBfieldCP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getBfieldCP, level, direction, include_ghosts)
def get_mesh_magnetic_field_fp(level, direction, include_ghosts=True):
@@ -828,28 +792,7 @@ def get_mesh_magnetic_field_fp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getBfieldFP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getBfieldFP, level, direction, include_ghosts)
def get_mesh_current_density(level, direction, include_ghosts=True):
@@ -876,28 +819,7 @@ def get_mesh_current_density(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getCurrentDensity(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getCurrentDensity, level, direction, include_ghosts)
def get_mesh_current_density_cp(level, direction, include_ghosts=True):
@@ -925,28 +847,7 @@ def get_mesh_current_density_cp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getCurrentDensityCP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getCurrentDensityCP, level, direction, include_ghosts)
def get_mesh_current_density_fp(level, direction, include_ghosts=True):
@@ -974,28 +875,7 @@ def get_mesh_current_density_fp(level, direction, include_ghosts=True):
'''
assert(level == 0)
-
- shapes = _LP_c_int()
- size = ctypes.c_int(0)
- ngrow = ctypes.c_int(0)
- data = libwarpx.warpx_getCurrentDensityFP(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
- ctypes.byref(shapes))
- ng = ngrow.value
- grid_data = []
- for i in range(size.value):
- shape = tuple([shapes[dim*i + d] for d in range(dim)])
- # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
- arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
- arr.setflags(write=1)
- if include_ghosts:
- grid_data.append(arr)
- else:
- grid_data.append(arr[[slice(ng, -ng) for _ in range(dim)]])
-
- _libc.free(shapes)
- _libc.free(data)
- return grid_data
+ return _get_mesh_field_list(libwarpx.warpx_getCurrentDensityFP, level, direction, include_ghosts)
def _get_mesh_array_lovects(level, direction, include_ghosts=True, getarrayfunc=None):
diff --git a/Python/pywarpx/picmi.py b/Python/pywarpx/picmi.py
index f242f8589..151de388d 100644
--- a/Python/pywarpx/picmi.py
+++ b/Python/pywarpx/picmi.py
@@ -256,13 +256,13 @@ class CylindricalGrid(picmistandard.PICMI_CylindricalGrid):
assert self.lower_bound[0] >= 0., Exception('Lower radial boundary must be >= 0.')
assert self.bc_rmin != 'periodic' and self.bc_rmax != 'periodic', Exception('Radial boundaries can not be periodic')
- assert self.n_azimuthal_modes is None or self.n_azimuthal_modes == 1, Exception('Only one azimuthal mode supported')
# Geometry
pywarpx.geometry.coord_sys = 1 # RZ
pywarpx.geometry.is_periodic = '0 %d'%(self.bc_zmin=='periodic') # Is periodic?
pywarpx.geometry.prob_lo = self.lower_bound # physical domain
pywarpx.geometry.prob_hi = self.upper_bound
+ pywarpx.warpx.nmodes = self.n_azimuthal_modes
if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
pywarpx.warpx.do_moving_window = 1
diff --git a/Source/Diagnostics/FieldIO.cpp b/Source/Diagnostics/FieldIO.cpp
index e3d44d1fc..15eac3449 100644
--- a/Source/Diagnostics/FieldIO.cpp
+++ b/Source/Diagnostics/FieldIO.cpp
@@ -200,8 +200,14 @@ PackPlotDataPtrs (Vector<const MultiFab*>& pmf,
pmf[1] = data[1].get();
pmf[2] = data[2].get();
#elif (AMREX_SPACEDIM == 2)
- pmf[0] = data[0].get();
- pmf[1] = data[2].get();
+ if (data[0]->nComp() > 1) {
+ // Only grabs the first component
+ pmf[0] = new MultiFab(*data[0], amrex::make_alias, 0, 1);
+ pmf[1] = new MultiFab(*data[2], amrex::make_alias, 0, 1);
+ } else {
+ pmf[0] = data[0].get();
+ pmf[1] = data[2].get();
+ }
#endif
}
@@ -543,8 +549,8 @@ WriteRawField( const MultiFab& F, const DistributionMapping& dm,
VisMF::Write(F, prefix);
} else {
// Copy original MultiFab into one that does not have guard cells
- MultiFab tmpF( F.boxArray(), dm, 1, 0);
- MultiFab::Copy(tmpF, F, 0, 0, 1, 0);
+ MultiFab tmpF( F.boxArray(), dm, F.nComp(), 0);
+ MultiFab::Copy(tmpF, F, 0, 0, F.nComp(), 0);
VisMF::Write(tmpF, prefix);
}
@@ -566,7 +572,7 @@ WriteZeroRawField( const MultiFab& F, const DistributionMapping& dm,
std::string prefix = amrex::MultiFabFileFullPrefix(lev,
filename, level_prefix, field_name);
- MultiFab tmpF(F.boxArray(), dm, 1, ng);
+ MultiFab tmpF(F.boxArray(), dm, F.nComp(), ng);
tmpF.setVal(0.);
VisMF::Write(tmpF, prefix);
}
diff --git a/Source/Diagnostics/WarpXIO.cpp b/Source/Diagnostics/WarpXIO.cpp
index 6d646dd42..59ba04c5f 100644
--- a/Source/Diagnostics/WarpXIO.cpp
+++ b/Source/Diagnostics/WarpXIO.cpp
@@ -580,7 +580,8 @@ WarpX::WritePlotFile () const
if (F_fp[lev]) WriteRawField( *F_fp[lev], dm, raw_pltname, level_prefix, "F_fp", lev, plot_raw_fields_guards);
if (plot_rho) {
// Use the component 1 of `rho_fp`, i.e. rho_new for time synchronization
- MultiFab rho_new(*rho_fp[lev], amrex::make_alias, 1, 1);
+ // If nComp > 1, this is the upper half of the list of components.
+ MultiFab rho_new(*rho_fp[lev], amrex::make_alias, rho_fp[lev]->nComp()/2, rho_fp[lev]->nComp()/2);
WriteRawField( rho_new, dm, raw_pltname, level_prefix, "rho_fp", lev, plot_raw_fields_guards);
}
}
diff --git a/Source/Evolve/WarpXEvolveEM.cpp b/Source/Evolve/WarpXEvolveEM.cpp
index ad7c7d840..dc6cfddeb 100644
--- a/Source/Evolve/WarpXEvolveEM.cpp
+++ b/Source/Evolve/WarpXEvolveEM.cpp
@@ -477,8 +477,23 @@ WarpX::ComputeDt ()
if (maxwell_fdtd_solver_id == 0) {
// CFL time step Yee solver
#ifdef WARPX_RZ
- // Derived semi-analytically by R. Lehe
- deltat = cfl * 1./( std::sqrt((1+0.2105)/(dx[0]*dx[0]) + 1./(dx[1]*dx[1])) * PhysConst::c );
+ // In the rz case, the Courant limit has been evaluated
+ // semi-analytically by R. Lehe, and resulted in the following
+ // coefficients. For an explanation, see (not officially published)
+ // www.normalesup.org/~lehe/Disp_relation_Circ.pdf
+ // NB : Here the coefficient for m=1 as compared to this document,
+ // as it was observed in practice that this coefficient was not
+ // high enough (The simulation became unstable).
+ Real multimode_coeffs[6] = { 0.2105, 1.0, 3.5234, 8.5104, 15.5059, 24.5037 };
+ Real multimode_alpha;
+ if (nmodes < 7) {
+ // Use the table of the coefficients
+ multimode_alpha = multimode_coeffs[nmodes-1];
+ } else {
+ // Use a realistic extrapolation
+ multimode_alpha = (nmodes - 1)*(nmodes - 1) - 0.4;
+ }
+ deltat = cfl * 1./( std::sqrt((1+multimode_alpha)/(dx[0]*dx[0]) + 1./(dx[1]*dx[1])) * PhysConst::c );
#else
deltat = cfl * 1./( std::sqrt(AMREX_D_TERM( 1./(dx[0]*dx[0]),
+ 1./(dx[1]*dx[1]),
diff --git a/Source/FieldSolver/WarpXPushFieldsEM.cpp b/Source/FieldSolver/WarpXPushFieldsEM.cpp
index c53e13f8f..fc4fb902b 100644
--- a/Source/FieldSolver/WarpXPushFieldsEM.cpp
+++ b/Source/FieldSolver/WarpXPushFieldsEM.cpp
@@ -109,6 +109,7 @@ WarpX::EvolveB (int lev, PatchType patch_type, amrex::Real a_dt)
tbx.loVect(), tbx.hiVect(),
tby.loVect(), tby.hiVect(),
tbz.loVect(), tbz.hiVect(),
+ &nmodes,
BL_TO_FORTRAN_3D((*Ex)[mfi]),
BL_TO_FORTRAN_3D((*Ey)[mfi]),
BL_TO_FORTRAN_3D((*Ez)[mfi]),
@@ -271,6 +272,7 @@ WarpX::EvolveE (int lev, PatchType patch_type, amrex::Real a_dt)
tex.loVect(), tex.hiVect(),
tey.loVect(), tey.hiVect(),
tez.loVect(), tez.hiVect(),
+ &nmodes,
BL_TO_FORTRAN_3D((*Ex)[mfi]),
BL_TO_FORTRAN_3D((*Ey)[mfi]),
BL_TO_FORTRAN_3D((*Ez)[mfi]),
diff --git a/Source/FortranInterface/WarpX_f.H b/Source/FortranInterface/WarpX_f.H
index 52996a60a..ba36c44ab 100644
--- a/Source/FortranInterface/WarpX_f.H
+++ b/Source/FortranInterface/WarpX_f.H
@@ -109,6 +109,7 @@ extern "C"
amrex::Real* jx, const long* jx_ng, const int* jx_ntot,
amrex::Real* jy, const long* jy_ng, const int* jy_ntot,
amrex::Real* jz, const long* jz_ng, const int* jz_ntot,
+ const long* nmodes,
const long* np,
const amrex::Real* xp, const amrex::Real* yp, const amrex::Real* zp,
const amrex::Real* uxp, const amrex::Real* uyp,const amrex::Real* uzp,
@@ -124,6 +125,7 @@ extern "C"
amrex::Real* jx, const long* jx_ng, const int* jx_ntot,
amrex::Real* jy, const long* jy_ng, const int* jy_ntot,
amrex::Real* jz, const long* jz_ng, const int* jz_ntot,
+ const long* nmodes,
const amrex::Real* rmin,
const amrex::Real* dr);
@@ -143,6 +145,7 @@ extern "C"
const amrex::Real* bxg, const int* bxg_lo, const int* bxg_hi,
const amrex::Real* byg, const int* byg_lo, const int* byg_hi,
const amrex::Real* bzg, const int* bzg_lo, const int* bzg_hi,
+ const long* nmodes,
const int* ll4symtry, const int* l_lower_order_in_v,
const int* l_nodal, const long* lvect,
const long* field_gathe_algo);
@@ -201,6 +204,7 @@ extern "C"
const int* xlo, const int* xhi,
const int* ylo, const int* yhi,
const int* zlo, const int* zhi,
+ const long* nmodes,
BL_FORT_FAB_ARG_3D(ex),
BL_FORT_FAB_ARG_3D(ey),
BL_FORT_FAB_ARG_3D(ez),
@@ -221,6 +225,7 @@ extern "C"
const int* xlo, const int* xhi,
const int* ylo, const int* yhi,
const int* zlo, const int* zhi,
+ const long* nmodes,
const BL_FORT_FAB_ARG_3D(ex),
const BL_FORT_FAB_ARG_3D(ey),
const BL_FORT_FAB_ARG_3D(ez),
diff --git a/Source/FortranInterface/WarpX_picsar.F90 b/Source/FortranInterface/WarpX_picsar.F90
index c17e8861b..808135c61 100644
--- a/Source/FortranInterface/WarpX_picsar.F90
+++ b/Source/FortranInterface/WarpX_picsar.F90
@@ -89,6 +89,7 @@ contains
ex,ey,ez,bx,by,bz,ixyzmin,xmin,ymin,zmin,dx,dy,dz,nox,noy,noz, &
exg,exg_lo,exg_hi,eyg,eyg_lo,eyg_hi,ezg,ezg_lo,ezg_hi, &
bxg,bxg_lo,bxg_hi,byg,byg_lo,byg_hi,bzg,bzg_lo,bzg_hi, &
+ nmodes, &
ll4symtry,l_lower_order_in_v, l_nodal,&
lvect,field_gathe_algo) &
bind(C, name="warpx_geteb_energy_conserving")
@@ -100,12 +101,22 @@ contains
integer, intent(in) :: ixyzmin(AMREX_SPACEDIM)
real(amrex_real), intent(in) :: xmin,ymin,zmin,dx,dy,dz
integer(c_long), intent(in) :: field_gathe_algo
- integer(c_long), intent(in) :: np,nox,noy,noz
+ integer(c_long), intent(in) :: np,nmodes,nox,noy,noz
integer(c_int), intent(in) :: ll4symtry,l_lower_order_in_v, l_nodal
integer(c_long),intent(in) :: lvect
real(amrex_real), intent(in), dimension(np) :: xp,yp,zp
real(amrex_real), intent(out), dimension(np) :: ex,ey,ez,bx,by,bz
+#ifdef WARPX_RZ
+ real(amrex_real),intent(in):: exg(exg_lo(1):exg_hi(1),exg_lo(2):exg_hi(2),2*nmodes)
+ real(amrex_real),intent(in):: eyg(eyg_lo(1):eyg_hi(1),eyg_lo(2):eyg_hi(2),2*nmodes)
+ real(amrex_real),intent(in):: ezg(ezg_lo(1):ezg_hi(1),ezg_lo(2):ezg_hi(2),2*nmodes)
+ real(amrex_real),intent(in):: bxg(bxg_lo(1):bxg_hi(1),bxg_lo(2):bxg_hi(2),2*nmodes)
+ real(amrex_real),intent(in):: byg(byg_lo(1):byg_hi(1),byg_lo(2):byg_hi(2),2*nmodes)
+ real(amrex_real),intent(in):: bzg(bzg_lo(1):bzg_hi(1),bzg_lo(2):bzg_hi(2),2*nmodes)
+#else
real(amrex_real),intent(in):: exg(*), eyg(*), ezg(*), bxg(*), byg(*), bzg(*)
+#endif
+
logical(pxr_logical) :: pxr_ll4symtry, pxr_l_lower_order_in_v, pxr_l_nodal
! Compute the number of valid cells and guard cells
@@ -114,6 +125,11 @@ contains
exg_nguards(AMREX_SPACEDIM), eyg_nguards(AMREX_SPACEDIM), ezg_nguards(AMREX_SPACEDIM), &
bxg_nguards(AMREX_SPACEDIM), byg_nguards(AMREX_SPACEDIM), bzg_nguards(AMREX_SPACEDIM)
+#ifdef WARPX_RZ
+ complex(amrex_real), allocatable, dimension(:,:,:) :: erg_c, etg_c, ezg_c, brg_c, btg_c, bzg_c
+ integer :: alloc_status
+#endif
+
pxr_ll4symtry = ll4symtry .eq. 1
pxr_l_lower_order_in_v = l_lower_order_in_v .eq. 1
pxr_l_nodal = l_nodal .eq. 1
@@ -131,6 +147,41 @@ contains
byg_nvalid = byg_lo + byg_hi - 2_c_long*ixyzmin + 1_c_long
bzg_nvalid = bzg_lo + bzg_hi - 2_c_long*ixyzmin + 1_c_long
+#ifdef WARPX_RZ
+ if (nmodes > 1) then
+
+ allocate(erg_c(exg_lo(1):exg_hi(1),exg_lo(2):exg_hi(2),nmodes), &
+ etg_c(eyg_lo(1):eyg_hi(1),eyg_lo(2):eyg_hi(2),nmodes), &
+ ezg_c(ezg_lo(1):ezg_hi(1),ezg_lo(2):ezg_hi(2),nmodes), &
+ brg_c(bxg_lo(1):bxg_hi(1),bxg_lo(2):bxg_hi(2),nmodes), &
+ btg_c(byg_lo(1):byg_hi(1),byg_lo(2):byg_hi(2),nmodes), &
+ bzg_c(bzg_lo(1):bzg_hi(1),bzg_lo(2):bzg_hi(2),nmodes), stat=alloc_status)
+ if (alloc_status /= 0) then
+ print*,"Error: warpx_geteb_energy_conserving: complex arrays could not be allocated"
+ stop
+ endif
+
+ erg_c(:,:,:) = cmplx(exg(:,:,1::2), exg(:,:,2::2), amrex_real)
+ etg_c(:,:,:) = cmplx(eyg(:,:,1::2), eyg(:,:,2::2), amrex_real)
+ ezg_c(:,:,:) = cmplx(ezg(:,:,1::2), ezg(:,:,2::2), amrex_real)
+ brg_c(:,:,:) = cmplx(bxg(:,:,1::2), bxg(:,:,2::2), amrex_real)
+ btg_c(:,:,:) = cmplx(byg(:,:,1::2), byg(:,:,2::2), amrex_real)
+ bzg_c(:,:,:) = cmplx(bzg(:,:,1::2), bzg(:,:,2::2), amrex_real)
+
+ call geteb2dcirc_energy_conserving_generic(np, xp, yp, zp, ex, ey, ez, bx, by, bz, &
+ xmin, zmin, dx, dz, nmodes, nox, noz, &
+ pxr_l_lower_order_in_v, pxr_l_nodal, &
+ erg_c, exg_nguards, exg_nvalid, &
+ etg_c, eyg_nguards, eyg_nvalid, &
+ ezg_c, ezg_nguards, ezg_nvalid, &
+ brg_c, bxg_nguards, bxg_nvalid, &
+ btg_c, byg_nguards, byg_nvalid, &
+ bzg_c, bzg_nguards, bzg_nvalid)
+
+ deallocate(erg_c, etg_c, ezg_c, brg_c, btg_c, bzg_c)
+
+ else
+#endif
CALL WRPX_PXR_GETEB_ENERGY_CONSERVING(np,xp,yp,zp, &
ex,ey,ez,bx,by,bz,xmin,ymin,zmin,dx,dy,dz,nox,noy,noz, &
exg,exg_nguards,exg_nvalid,&
@@ -141,6 +192,9 @@ contains
bzg,bzg_nguards,bzg_nvalid,&
pxr_ll4symtry, pxr_l_lower_order_in_v, pxr_l_nodal, &
lvect, field_gathe_algo )
+#ifdef WARPX_RZ
+ endif
+#endif
end subroutine warpx_geteb_energy_conserving
@@ -308,17 +362,24 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
!> @param[in] charge_depo_algo algorithm choice for the charge deposition
!>
subroutine warpx_current_deposition( &
- jx,jx_ng,jx_ntot,jy,jy_ng,jy_ntot,jz,jz_ng,jz_ntot, &
+ jx,jx_ng,jx_ntot,jy,jy_ng,jy_ntot,jz,jz_ng,jz_ntot,nmodes, &
np,xp,yp,zp,uxp,uyp,uzp,gaminv,w,q,xmin,ymin,zmin,dt,dx,dy,dz,nox,noy,noz,&
lvect,current_depo_algo) &
bind(C, name="warpx_current_deposition")
integer, intent(in) :: jx_ntot(AMREX_SPACEDIM), jy_ntot(AMREX_SPACEDIM), jz_ntot(AMREX_SPACEDIM)
integer(c_long), intent(in) :: jx_ng, jy_ng, jz_ng
+ integer(c_long), intent(IN) :: nmodes
integer(c_long), intent(IN) :: np
integer(c_long), intent(IN) :: nox,noy,noz
+#ifdef WARPX_RZ
+ real(amrex_real), intent(IN OUT):: jx(jx_ntot(1),jx_ntot(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: jy(jy_ntot(1),jy_ntot(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: jz(jz_ntot(1),jz_ntot(2),2*nmodes)
+#else
real(amrex_real), intent(IN OUT):: jx(*), jy(*), jz(*)
+#endif
real(amrex_real), intent(IN) :: q
real(amrex_real), intent(IN) :: dx,dy,dz
real(amrex_real), intent(IN) :: dt
@@ -329,6 +390,13 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
integer(c_long), intent(IN) :: lvect
integer(c_long), intent(IN) :: current_depo_algo
+#ifdef WARPX_RZ
+ logical(pxr_logical) :: l_particles_weight = .true.
+ integer(c_long) :: type_rz_depose = 1
+ complex(amrex_real), allocatable, dimension(:,:,:) :: jr_c, jt_c, jz_c
+ integer :: alloc_status
+#endif
+
! Compute the number of valid cells and guard cells
integer(c_long) :: jx_nvalid(AMREX_SPACEDIM), jy_nvalid(AMREX_SPACEDIM), jz_nvalid(AMREX_SPACEDIM), &
jx_nguards(AMREX_SPACEDIM), jy_nguards(AMREX_SPACEDIM), jz_nguards(AMREX_SPACEDIM)
@@ -350,13 +418,53 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
nox,noy,noz,current_depo_algo)
! Dimension 2
#elif (AMREX_SPACEDIM==2)
- CALL WRPX_PXR_CURRENT_DEPOSITION( &
+#ifdef WARPX_RZ
+ if (nmodes > 1) then
+
+ allocate(jr_c(jx_ntot(1),jx_ntot(2),nmodes), &
+ jt_c(jy_ntot(1),jy_ntot(2),nmodes), &
+ jz_c(jz_ntot(1),jz_ntot(2),nmodes), stat=alloc_status)
+ if (alloc_status /= 0) then
+ print*,"Error: warpx_current_deposition: complex arrays could not be allocated"
+ stop
+ endif
+
+ jr_c = 0._amrex_real
+ jt_c = 0._amrex_real
+ jz_c = 0._amrex_real
+
+ CALL pxr_depose_jrjtjz_esirkepov_n_2d_circ( &
+ jr_c,jx_nguards,jx_nvalid, &
+ jt_c,jy_nguards,jy_nvalid, &
+ jz_c,jz_nguards,jz_nvalid, &
+ nmodes, &
+ np,xp,yp,zp,uxp,uyp,uzp,gaminv,w,q, &
+ xmin,zmin,dt,dx,dz, &
+ nox,noz,l_particles_weight,type_rz_depose)
+
+ jx(:,:,1::2) = jx(:,:,1::2) + real(jr_c)
+ jx(:,:,2::2) = jx(:,:,2::2) + aimag(jr_c)
+ jy(:,:,1::2) = jy(:,:,1::2) + real(jt_c)
+ jy(:,:,2::2) = jy(:,:,2::2) + aimag(jt_c)
+ jz(:,:,1::2) = jz(:,:,1::2) + real(jz_c)
+ jz(:,:,2::2) = jz(:,:,2::2) + aimag(jz_c)
+
+ deallocate(jr_c)
+ deallocate(jt_c)
+ deallocate(jz_c)
+
+ else
+#endif
+ CALL WRPX_PXR_CURRENT_DEPOSITION( &
jx,jx_nguards,jx_nvalid, &
jy,jy_nguards,jy_nvalid, &
jz,jz_nguards,jz_nvalid, &
np,xp,yp,zp,uxp,uyp,uzp,gaminv,w,q, &
xmin,zmin,dt,dx,dz,nox,noz,lvect, &
current_depo_algo)
+#ifdef WARPX_RZ
+ endif
+#endif
#endif
end subroutine warpx_current_deposition
@@ -367,45 +475,87 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
!> Applies the inverse volume scaling for RZ current deposition
!>
!> @details
- !> The scaling is done for single mode only
+ !> The scaling is done for all modes
!
- !> @param[inout] jx,jy,jz current arrays
- !> @param[in] jx_ntot,jy_ntot,jz_ntot vectors with total number of
+ !> @param[inout] jr,jt,jz current arrays
+ !> @param[in] jr_ntot,jt_ntot,jz_ntot vectors with total number of
!> cells (including guard cells) along each axis for each current
- !> @param[in] jx_ng,jy_ng,jz_ng vectors with number of guard cells along each
+ !> @param[in] jr_ng,jt_ng,jz_ng vectors with number of guard cells along each
!> axis for each current
!> @param[in] rmin tile grid minimum radius
!> @param[in] dr radial space discretization steps
!>
subroutine warpx_current_deposition_rz_volume_scaling( &
- jx,jx_ng,jx_ntot,jy,jy_ng,jy_ntot,jz,jz_ng,jz_ntot, &
- rmin,dr) &
+ jr,jr_ng,jr_ntot,jt,jt_ng,jt_ntot,jz,jz_ng,jz_ntot, &
+ nmodes,rmin,dr) &
bind(C, name="warpx_current_deposition_rz_volume_scaling")
- integer, intent(in) :: jx_ntot(AMREX_SPACEDIM), jy_ntot(AMREX_SPACEDIM), jz_ntot(AMREX_SPACEDIM)
- integer(c_long), intent(in) :: jx_ng, jy_ng, jz_ng
- real(amrex_real), intent(IN OUT):: jx(*), jy(*), jz(*)
+ integer, intent(in) :: jr_ntot(AMREX_SPACEDIM), jt_ntot(AMREX_SPACEDIM), jz_ntot(AMREX_SPACEDIM)
+ integer(c_long), intent(in) :: jr_ng, jt_ng, jz_ng
+ integer(c_long), intent(in) :: nmodes
+ real(amrex_real), intent(IN OUT):: jr(jr_ntot(1),jr_ntot(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: jt(jt_ntot(1),jt_ntot(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: jz(jz_ntot(1),jz_ntot(2),2*nmodes)
real(amrex_real), intent(IN) :: rmin, dr
#ifdef WARPX_RZ
+
+ complex(amrex_real), allocatable, dimension(:,:,:) :: jr_c, jt_c, jz_c
+ integer :: alloc_status
+
integer(c_long) :: type_rz_depose = 1
-#endif
+
! Compute the number of valid cells and guard cells
- integer(c_long) :: jx_nvalid(AMREX_SPACEDIM), jy_nvalid(AMREX_SPACEDIM), jz_nvalid(AMREX_SPACEDIM), &
- jx_nguards(AMREX_SPACEDIM), jy_nguards(AMREX_SPACEDIM), jz_nguards(AMREX_SPACEDIM)
- jx_nvalid = jx_ntot - 2*jx_ng
- jy_nvalid = jy_ntot - 2*jy_ng
+ integer(c_long) :: jr_nvalid(AMREX_SPACEDIM), jt_nvalid(AMREX_SPACEDIM), jz_nvalid(AMREX_SPACEDIM), &
+ jr_nguards(AMREX_SPACEDIM), jt_nguards(AMREX_SPACEDIM), jz_nguards(AMREX_SPACEDIM)
+ jr_nvalid = jr_ntot - 2*jr_ng
+ jt_nvalid = jt_ntot - 2*jt_ng
jz_nvalid = jz_ntot - 2*jz_ng
- jx_nguards = jx_ng
- jy_nguards = jy_ng
+ jr_nguards = jr_ng
+ jt_nguards = jt_ng
jz_nguards = jz_ng
-#ifdef WARPX_RZ
- CALL WRPX_PXR_RZ_VOLUME_SCALING_J( &
- jx,jx_nguards,jx_nvalid, &
- jy,jy_nguards,jy_nvalid, &
+ if (nmodes > 1) then
+
+ allocate(jr_c(jr_ntot(1),jr_ntot(2),nmodes), &
+ jt_c(jt_ntot(1),jt_ntot(2),nmodes), &
+ jz_c(jz_ntot(1),jz_ntot(2),nmodes), stat=alloc_status)
+ if (alloc_status /= 0) then
+ print*,"Error: warpx_current_deposition_rz_volume_scaling: complex arrays could not be allocated"
+ stop
+ endif
+
+ jr_c = cmplx(jr(:,:,1::2), jr(:,:,2::2), amrex_real)
+ jt_c = cmplx(jt(:,:,1::2), jt(:,:,2::2), amrex_real)
+ jz_c = cmplx(jz(:,:,1::2), jz(:,:,2::2), amrex_real)
+
+ CALL apply_2dcirc_volume_scaling_j( &
+ jr_c, jr_nguards, jr_nvalid, &
+ jt_c, jt_nguards, jt_nvalid, &
+ jz_c, jz_nguards, jz_nvalid, &
+ nmodes, &
+ rmin,dr, &
+ type_rz_depose)
+
+ jr(:,:,1::2) = real(jr_c)
+ jr(:,:,2::2) = aimag(jr_c)
+ jt(:,:,1::2) = real(jt_c)
+ jt(:,:,2::2) = aimag(jt_c)
+ jz(:,:,1::2) = real(jz_c)
+ jz(:,:,2::2) = aimag(jz_c)
+
+ deallocate(jr_c)
+ deallocate(jt_c)
+ deallocate(jz_c)
+
+ else
+ CALL apply_rz_volume_scaling_j( &
+ jr,jr_nguards,jr_nvalid, &
+ jt,jt_nguards,jt_nvalid, &
jz,jz_nguards,jz_nvalid, &
rmin,dr,type_rz_depose)
+ endif
+
#endif
end subroutine warpx_current_deposition_rz_volume_scaling
@@ -541,6 +691,7 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
!> @param[in] dtsdx, dtsdy, dtsdz factors c**2 * dt/(dx, dy, dz)
subroutine warpx_push_evec( &
xlo, xhi, ylo, yhi, zlo, zhi, &
+ nmodes, &
ex, exlo, exhi, &
ey, eylo, eyhi, &
ez, ezlo, ezhi, &
@@ -560,31 +711,115 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
jxlo(BL_SPACEDIM), jxhi(BL_SPACEDIM), jylo(BL_SPACEDIM), jyhi(BL_SPACEDIM), &
jzlo(BL_SPACEDIM), jzhi(BL_SPACEDIM)
- real(amrex_real), intent(IN OUT):: ex(*), ey(*), ez(*)
+ integer(c_long), intent(in) :: nmodes
- real(amrex_real), intent(IN):: bx(*), by(*), bz(*), jx(*), jy(*), jz(*)
+#ifdef WARPX_RZ
+ real(amrex_real), intent(IN OUT):: ex(exlo(1):exhi(1),exlo(2):exhi(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: ey(eylo(1):eyhi(1),eylo(2):eyhi(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: ez(ezlo(1):ezhi(1),ezlo(2):ezhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: bx(bxlo(1):bxhi(1),bxlo(2):bxhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: by(bylo(1):byhi(1),bylo(2):byhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: bz(bzlo(1):bzhi(1),bzlo(2):bzhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: jx(jxlo(1):jxhi(1),jxlo(2):jxhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: jy(jylo(1):jyhi(1),jylo(2):jyhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: jz(jzlo(1):jzhi(1),jzlo(2):jzhi(2),2*nmodes)
+#else
+ real(amrex_real), intent(IN OUT):: ex(*)
+ real(amrex_real), intent(IN OUT):: ey(*)
+ real(amrex_real), intent(IN OUT):: ez(*)
+ real(amrex_real), intent(IN):: bx(*)
+ real(amrex_real), intent(IN):: by(*)
+ real(amrex_real), intent(IN):: bz(*)
+ real(amrex_real), intent(IN):: jx(*)
+ real(amrex_real), intent(IN):: jy(*)
+ real(amrex_real), intent(IN):: jz(*)
+#endif
real(amrex_real), intent(IN) :: mudt, dtsdx, dtsdy, dtsdz
real(amrex_real), intent(IN) :: xmin, dx
- CALL WRPX_PXR_PUSH_EVEC(&
- xlo, xhi, ylo, yhi, zlo, zhi, &
- ex, exlo, exhi,&
- ey, eylo, eyhi,&
- ez, ezlo, ezhi,&
- bx, bxlo, bxhi,&
- by, bylo, byhi,&
- bz, bzlo, bzhi,&
- jx, jxlo, jxhi,&
- jy, jylo, jyhi,&
- jz, jzlo, jzhi,&
- mudt, dtsdx, dtsdy, dtsdz &
#ifdef WARPX_RZ
- ,xmin,dx &
+ complex(amrex_real), allocatable, dimension(:,:,:) :: er_c, et_c, ez_c
+ complex(amrex_real), allocatable, dimension(:,:,:) :: br_c, bt_c, bz_c
+ complex(amrex_real), allocatable, dimension(:,:,:) :: jr_c, jt_c, jz_c
+ integer :: alloc_status
+
+ if (nmodes == 1) then
+#endif
+ CALL WRPX_PXR_PUSH_EVEC(&
+ xlo, xhi, ylo, yhi, zlo, zhi, &
+ ex, exlo, exhi,&
+ ey, eylo, eyhi,&
+ ez, ezlo, ezhi,&
+ bx, bxlo, bxhi,&
+ by, bylo, byhi,&
+ bz, bzlo, bzhi,&
+ jx, jxlo, jxhi,&
+ jy, jylo, jyhi,&
+ jz, jzlo, jzhi,&
+ mudt, dtsdx, dtsdy, dtsdz &
+#ifdef WARPX_RZ
+ ,xmin, dx &
#endif
- )
+ )
+#ifdef WARPX_RZ
+ else
+
+ allocate(er_c(exlo(1):exhi(1),exlo(2):exhi(2),nmodes), &
+ et_c(eylo(1):eyhi(1),eylo(2):eyhi(2),nmodes), &
+ ez_c(ezlo(1):ezhi(1),ezlo(2):ezhi(2),nmodes), &
+ br_c(bxlo(1):bxhi(1),bxlo(2):bxhi(2),nmodes), &
+ bt_c(bylo(1):byhi(1),bylo(2):byhi(2),nmodes), &
+ bz_c(bzlo(1):bzhi(1),bzlo(2):bzhi(2),nmodes), &
+ jr_c(jxlo(1):jxhi(1),jxlo(2):jxhi(2),nmodes), &
+ jt_c(jylo(1):jyhi(1),jylo(2):jyhi(2),nmodes), &
+ jz_c(jzlo(1):jzhi(1),jzlo(2):jzhi(2),nmodes), stat=alloc_status)
+ if (alloc_status /= 0) then
+ print*,"Error: warpx_push_evec: complex arrays could not be allocated"
+ stop
+ endif
+
+ er_c = cmplx(ex(:,:,1::2), ex(:,:,2::2), amrex_real)
+ et_c = cmplx(ey(:,:,1::2), ey(:,:,2::2), amrex_real)
+ ez_c = cmplx(ez(:,:,1::2), ez(:,:,2::2), amrex_real)
+ br_c = cmplx(bx(:,:,1::2), bx(:,:,2::2), amrex_real)
+ bt_c = cmplx(by(:,:,1::2), by(:,:,2::2), amrex_real)
+ bz_c = cmplx(bz(:,:,1::2), bz(:,:,2::2), amrex_real)
+ jr_c = cmplx(jx(:,:,1::2), jx(:,:,2::2), amrex_real)
+ jt_c = cmplx(jy(:,:,1::2), jy(:,:,2::2), amrex_real)
+ jz_c = cmplx(jz(:,:,1::2), jz(:,:,2::2), amrex_real)
+
+ CALL pxrpush_emrz_evec_multimode(&
+ xlo, xhi, ylo, yhi, zlo, zhi, &
+ nmodes, &
+ er_c, exlo, exhi,&
+ et_c, eylo, eyhi,&
+ ez_c, ezlo, ezhi,&
+ br_c, bxlo, bxhi,&
+ bt_c, bylo, byhi,&
+ bz_c, bzlo, bzhi,&
+ jr_c, jxlo, jxhi,&
+ jt_c, jylo, jyhi,&
+ jz_c, jzlo, jzhi,&
+ mudt, dtsdx, dtsdy, dtsdz, xmin, dx &
+ )
+
+ ! Only E needs to be copied back
+ ex(:,:,1::2) = real(er_c)
+ ex(:,:,2::2) = aimag(er_c)
+ ey(:,:,1::2) = real(et_c)
+ ey(:,:,2::2) = aimag(et_c)
+ ez(:,:,1::2) = real(ez_c)
+ ez(:,:,2::2) = aimag(ez_c)
+
+ deallocate(er_c, et_c, ez_c)
+ deallocate(br_c, bt_c, bz_c)
+ deallocate(jr_c, jt_c, jz_c)
+
+ endif
+#endif
end subroutine warpx_push_evec
! _________________________________________________________________
@@ -603,6 +838,7 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
!> @param[in] dtsdx, dtsdy, dtsdz factors 0.5 * dt/(dx, dy, dz)
subroutine warpx_push_bvec( &
xlo, xhi, ylo, yhi, zlo, zhi, &
+ nmodes, &
ex, exlo, exhi, &
ey, eylo, eyhi, &
ez, ezlo, ezhi, &
@@ -619,41 +855,110 @@ subroutine warpx_charge_deposition(rho,np,xp,yp,zp,w,q,xmin,ymin,zmin,dx,dy,dz,n
bylo(BL_SPACEDIM), byhi(BL_SPACEDIM), bzlo(BL_SPACEDIM), bzhi(BL_SPACEDIM), &
maxwell_fdtd_solver_id
- real(amrex_real), intent(IN OUT):: ex(*), ey(*), ez(*)
+ integer(c_long), intent(in) :: nmodes
- real(amrex_real), intent(IN):: bx(*), by(*), bz(*)
+#ifdef WARPX_RZ
+ real(amrex_real), intent(IN):: ex(exlo(1):exhi(1),exlo(2):exhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: ey(eylo(1):eyhi(1),eylo(2):eyhi(2),2*nmodes)
+ real(amrex_real), intent(IN):: ez(ezlo(1):ezhi(1),ezlo(2):ezhi(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: bx(bxlo(1):bxhi(1),bxlo(2):bxhi(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: by(bylo(1):byhi(1),bylo(2):byhi(2),2*nmodes)
+ real(amrex_real), intent(IN OUT):: bz(bzlo(1):bzhi(1),bzlo(2):bzhi(2),2*nmodes)
+#else
+ real(amrex_real), intent(IN):: ex(*)
+ real(amrex_real), intent(IN):: ey(*)
+ real(amrex_real), intent(IN):: ez(*)
+ real(amrex_real), intent(IN OUT):: bx(*)
+ real(amrex_real), intent(IN OUT):: by(*)
+ real(amrex_real), intent(IN OUT):: bz(*)
+#endif
real(amrex_real), intent(IN) :: dtsdx, dtsdy, dtsdz
real(amrex_real), intent(IN) :: xmin, dx
- IF (maxwell_fdtd_solver_id .eq. 0) THEN
- ! Yee FDTD solver
- CALL WRPX_PXR_PUSH_BVEC( &
- xlo, xhi, ylo, yhi, zlo, zhi, &
- ex, exlo, exhi, &
- ey, eylo, eyhi, &
- ez, ezlo, ezhi, &
- bx, bxlo, bxhi, &
- by, bylo, byhi, &
- bz, bzlo, bzhi, &
- dtsdx,dtsdy,dtsdz &
#ifdef WARPX_RZ
- ,xmin,dx &
+ complex(amrex_real), allocatable, dimension(:,:,:) :: er_c, et_c, ez_c
+ complex(amrex_real), allocatable, dimension(:,:,:) :: br_c, bt_c, bz_c
+ integer :: alloc_status
#endif
- )
- ELSE IF (maxwell_fdtd_solver_id .eq. 1) THEN
- ! Cole-Karkkainen FDTD solver
- CALL WRPX_PXR_PUSH_BVEC_CKC( &
- xlo, xhi, ylo, yhi, zlo, zhi, &
- ex, exlo, exhi, &
- ey, eylo, eyhi, &
- ez, ezlo, ezhi, &
- bx, bxlo, bxhi, &
- by, bylo, byhi, &
- bz, bzlo, bzhi, &
- dtsdx,dtsdy,dtsdz)
- ENDIF
+
+ if (nmodes == 1) then
+
+ IF (maxwell_fdtd_solver_id .eq. 0) THEN
+ ! Yee FDTD solver
+ CALL WRPX_PXR_PUSH_BVEC( &
+ xlo, xhi, ylo, yhi, zlo, zhi, &
+ ex, exlo, exhi, &
+ ey, eylo, eyhi, &
+ ez, ezlo, ezhi, &
+ bx, bxlo, bxhi, &
+ by, bylo, byhi, &
+ bz, bzlo, bzhi, &
+ dtsdx,dtsdy,dtsdz &
+#ifdef WARPX_RZ
+ ,xmin,dx &
+#endif
+ )
+ ELSE IF (maxwell_fdtd_solver_id .eq. 1) THEN
+ ! Cole-Karkkainen FDTD solver
+ CALL WRPX_PXR_PUSH_BVEC_CKC( &
+ xlo, xhi, ylo, yhi, zlo, zhi, &
+ ex, exlo, exhi, &
+ ey, eylo, eyhi, &
+ ez, ezlo, ezhi, &
+ bx, bxlo, bxhi, &
+ by, bylo, byhi, &
+ bz, bzlo, bzhi, &
+ dtsdx,dtsdy,dtsdz)
+ ENDIF
+
+#ifdef WARPX_RZ
+ else
+
+ allocate(er_c(exlo(1):exhi(1),exlo(2):exhi(2),nmodes), &
+ et_c(eylo(1):eyhi(1),eylo(2):eyhi(2),nmodes), &
+ ez_c(ezlo(1):ezhi(1),ezlo(2):ezhi(2),nmodes), &
+ br_c(bxlo(1):bxhi(1),bxlo(2):bxhi(2),nmodes), &
+ bt_c(bylo(1):byhi(1),bylo(2):byhi(2),nmodes), &
+ bz_c(bzlo(1):bzhi(1),bzlo(2):bzhi(2),nmodes), stat=alloc_status)
+ if (alloc_status /= 0) then
+ print*,"Error: warpx_push_bvec: complex arrays could not be allocated"
+ stop
+ endif
+
+ er_c = cmplx(ex(:,:,1::2), ex(:,:,2::2), amrex_real)
+ et_c = cmplx(ey(:,:,1::2), ey(:,:,2::2), amrex_real)
+ ez_c = cmplx(ez(:,:,1::2), ez(:,:,2::2), amrex_real)
+ br_c = cmplx(bx(:,:,1::2), bx(:,:,2::2), amrex_real)
+ bt_c = cmplx(by(:,:,1::2), by(:,:,2::2), amrex_real)
+ bz_c = cmplx(bz(:,:,1::2), bz(:,:,2::2), amrex_real)
+
+ CALL pxrpush_emrz_bvec_multimode(&
+ xlo, xhi, ylo, yhi, zlo, zhi, &
+ nmodes, &
+ er_c, exlo, exhi,&
+ et_c, eylo, eyhi,&
+ ez_c, ezlo, ezhi,&
+ br_c, bxlo, bxhi,&
+ bt_c, bylo, byhi,&
+ bz_c, bzlo, bzhi,&
+ dtsdx, dtsdy, dtsdz, xmin, dx &
+ )
+
+ ! Only B needs to be copied back
+ bx(:,:,1::2) = real(br_c)
+ bx(:,:,2::2) = aimag(br_c)
+ by(:,:,1::2) = real(bt_c)
+ by(:,:,2::2) = aimag(bt_c)
+ bz(:,:,1::2) = real(bz_c)
+ bz(:,:,2::2) = aimag(bz_c)
+
+ deallocate(er_c, et_c, ez_c)
+ deallocate(br_c, bt_c, bz_c)
+
+#endif
+ endif
end subroutine warpx_push_bvec
! _________________________________________________________________
diff --git a/Source/Parallelization/WarpXComm.cpp b/Source/Parallelization/WarpXComm.cpp
index 5c9fa144f..67a6557b7 100644
--- a/Source/Parallelization/WarpXComm.cpp
+++ b/Source/Parallelization/WarpXComm.cpp
@@ -59,24 +59,24 @@ WarpX::UpdateAuxilaryData ()
// B field
{
- MultiFab dBx(Bfield_cp[lev][0]->boxArray(), dm, 1, ng);
- MultiFab dBy(Bfield_cp[lev][1]->boxArray(), dm, 1, ng);
- MultiFab dBz(Bfield_cp[lev][2]->boxArray(), dm, 1, ng);
+ MultiFab dBx(Bfield_cp[lev][0]->boxArray(), dm, Bfield_cp[lev][0]->nComp(), ng);
+ MultiFab dBy(Bfield_cp[lev][1]->boxArray(), dm, Bfield_cp[lev][1]->nComp(), ng);
+ MultiFab dBz(Bfield_cp[lev][2]->boxArray(), dm, Bfield_cp[lev][2]->nComp(), ng);
dBx.setVal(0.0);
dBy.setVal(0.0);
dBz.setVal(0.0);
- dBx.ParallelCopy(*Bfield_aux[lev-1][0], 0, 0, 1, ng, ng, crse_period);
- dBy.ParallelCopy(*Bfield_aux[lev-1][1], 0, 0, 1, ng, ng, crse_period);
- dBz.ParallelCopy(*Bfield_aux[lev-1][2], 0, 0, 1, ng, ng, crse_period);
+ dBx.ParallelCopy(*Bfield_aux[lev-1][0], 0, 0, Bfield_aux[lev-1][0]->nComp(), ng, ng, crse_period);
+ dBy.ParallelCopy(*Bfield_aux[lev-1][1], 0, 0, Bfield_aux[lev-1][1]->nComp(), ng, ng, crse_period);
+ dBz.ParallelCopy(*Bfield_aux[lev-1][2], 0, 0, Bfield_aux[lev-1][2]->nComp(), ng, ng, crse_period);
if (Bfield_cax[lev][0])
{
- MultiFab::Copy(*Bfield_cax[lev][0], dBx, 0, 0, 1, ng);
- MultiFab::Copy(*Bfield_cax[lev][1], dBy, 0, 0, 1, ng);
- MultiFab::Copy(*Bfield_cax[lev][2], dBz, 0, 0, 1, ng);
+ MultiFab::Copy(*Bfield_cax[lev][0], dBx, 0, 0, Bfield_cax[lev][0]->nComp(), ng);
+ MultiFab::Copy(*Bfield_cax[lev][1], dBy, 0, 0, Bfield_cax[lev][1]->nComp(), ng);
+ MultiFab::Copy(*Bfield_cax[lev][2], dBz, 0, 0, Bfield_cax[lev][2]->nComp(), ng);
}
- MultiFab::Subtract(dBx, *Bfield_cp[lev][0], 0, 0, 1, ng);
- MultiFab::Subtract(dBy, *Bfield_cp[lev][1], 0, 0, 1, ng);
- MultiFab::Subtract(dBz, *Bfield_cp[lev][2], 0, 0, 1, ng);
+ MultiFab::Subtract(dBx, *Bfield_cp[lev][0], 0, 0, Bfield_cp[lev][0]->nComp(), ng);
+ MultiFab::Subtract(dBy, *Bfield_cp[lev][1], 0, 0, Bfield_cp[lev][1]->nComp(), ng);
+ MultiFab::Subtract(dBz, *Bfield_cp[lev][2], 0, 0, Bfield_cp[lev][2]->nComp(), ng);
const Real* dx = Geom(lev-1).CellSize();
const int refinement_ratio = refRatio(lev-1)[0];
@@ -134,24 +134,24 @@ WarpX::UpdateAuxilaryData ()
// E field
{
- MultiFab dEx(Efield_cp[lev][0]->boxArray(), dm, 1, ng);
- MultiFab dEy(Efield_cp[lev][1]->boxArray(), dm, 1, ng);
- MultiFab dEz(Efield_cp[lev][2]->boxArray(), dm, 1, ng);
+ MultiFab dEx(Efield_cp[lev][0]->boxArray(), dm, Efield_cp[lev][0]->nComp(), ng);
+ MultiFab dEy(Efield_cp[lev][1]->boxArray(), dm, Efield_cp[lev][1]->nComp(), ng);
+ MultiFab dEz(Efield_cp[lev][2]->boxArray(), dm, Efield_cp[lev][2]->nComp(), ng);
dEx.setVal(0.0);
dEy.setVal(0.0);
dEz.setVal(0.0);
- dEx.ParallelCopy(*Efield_aux[lev-1][0], 0, 0, 1, ng, ng, crse_period);
- dEy.ParallelCopy(*Efield_aux[lev-1][1], 0, 0, 1, ng, ng, crse_period);
- dEz.ParallelCopy(*Efield_aux[lev-1][2], 0, 0, 1, ng, ng, crse_period);
+ dEx.ParallelCopy(*Efield_aux[lev-1][0], 0, 0, Efield_aux[lev-1][0]->nComp(), ng, ng, crse_period);
+ dEy.ParallelCopy(*Efield_aux[lev-1][1], 0, 0, Efield_aux[lev-1][1]->nComp(), ng, ng, crse_period);
+ dEz.ParallelCopy(*Efield_aux[lev-1][2], 0, 0, Efield_aux[lev-1][2]->nComp(), ng, ng, crse_period);
if (Efield_cax[lev][0])
{
- MultiFab::Copy(*Efield_cax[lev][0], dEx, 0, 0, 1, ng);
- MultiFab::Copy(*Efield_cax[lev][1], dEy, 0, 0, 1, ng);
- MultiFab::Copy(*Efield_cax[lev][2], dEz, 0, 0, 1, ng);
+ MultiFab::Copy(*Efield_cax[lev][0], dEx, 0, 0, Efield_cax[lev][0]->nComp(), ng);
+ MultiFab::Copy(*Efield_cax[lev][1], dEy, 0, 0, Efield_cax[lev][1]->nComp(), ng);
+ MultiFab::Copy(*Efield_cax[lev][2], dEz, 0, 0, Efield_cax[lev][2]->nComp(), ng);
}
- MultiFab::Subtract(dEx, *Efield_cp[lev][0], 0, 0, 1, ng);
- MultiFab::Subtract(dEy, *Efield_cp[lev][1], 0, 0, 1, ng);
- MultiFab::Subtract(dEz, *Efield_cp[lev][2], 0, 0, 1, ng);
+ MultiFab::Subtract(dEx, *Efield_cp[lev][0], 0, 0, Efield_cp[lev][0]->nComp(), ng);
+ MultiFab::Subtract(dEy, *Efield_cp[lev][1], 0, 0, Efield_cp[lev][1]->nComp(), ng);
+ MultiFab::Subtract(dEz, *Efield_cp[lev][2], 0, 0, Efield_cp[lev][2]->nComp(), ng);
const int refinement_ratio = refRatio(lev-1)[0];
#ifdef _OPEMP
@@ -199,8 +199,8 @@ WarpX::UpdateAuxilaryData ()
FArrayBox& aux = (*Efield_aux[lev][idim])[mfi];
FArrayBox& fp = (*Efield_fp[lev][idim])[mfi];
const Box& bx = aux.box();
- aux.copy(fp, bx, 0, bx, 0, 1);
- aux.plus(efab[idim], bx, bx, 0, 0, 1);
+ aux.copy(fp, bx, 0, bx, 0, Efield_fp[lev][idim]->nComp());
+ aux.plus(efab[idim], bx, bx, 0, 0, Efield_fp[lev][idim]->nComp());
}
}
}
@@ -388,7 +388,7 @@ WarpX::SyncCurrent ()
// (potentially large) stencil of the multi-pass bilinear filter.
j_fp[lev][idim].reset(new MultiFab(current_fp[lev][idim]->boxArray(),
current_fp[lev][idim]->DistributionMap(),
- 1, ng));
+ current_fp[lev][idim]->nComp(), ng));
// Apply the filter to current_fp, store the result in j_fp.
bilinear_filter.ApplyStencil(*j_fp[lev][idim], *current_fp[lev][idim]);
// Then swap j_fp and current_fp
@@ -405,7 +405,7 @@ WarpX::SyncCurrent ()
for (int idim = 0; idim < 3; ++idim) {
j_cp[lev][idim].reset(new MultiFab(current_cp[lev][idim]->boxArray(),
current_cp[lev][idim]->DistributionMap(),
- 1, ng));
+ current_cp[lev][idim]->nComp(), ng));
bilinear_filter.ApplyStencil(*j_cp[lev][idim], *current_cp[lev][idim]);
std::swap(j_cp[lev][idim], current_cp[lev][idim]);
}
@@ -417,7 +417,7 @@ WarpX::SyncCurrent ()
for (int idim = 0; idim < 3; ++idim) {
j_buf[lev][idim].reset(new MultiFab(current_buf[lev][idim]->boxArray(),
current_buf[lev][idim]->DistributionMap(),
- 1, ng));
+ current_buf[lev][idim]->nComp(), ng));
bilinear_filter.ApplyStencil(*j_buf[lev][idim], *current_buf[lev][idim]);
std::swap(*j_buf[lev][idim], *current_buf[lev][idim]);
}
@@ -448,16 +448,16 @@ WarpX::SyncCurrent ()
const MultiFab* ccz = current_cp[lev+1][2].get();
if (current_buf[lev+1][0])
{
- MultiFab::Add(*current_buf[lev+1][0], *current_cp[lev+1][0], 0, 0, 1, ngsrc);
- MultiFab::Add(*current_buf[lev+1][1], *current_cp[lev+1][1], 0, 0, 1, ngsrc);
- MultiFab::Add(*current_buf[lev+1][2], *current_cp[lev+1][2], 0, 0, 1, ngsrc);
+ MultiFab::Add(*current_buf[lev+1][0], *current_cp[lev+1][0], 0, 0, current_cp[lev+1][0]->nComp(), ngsrc);
+ MultiFab::Add(*current_buf[lev+1][1], *current_cp[lev+1][1], 0, 0, current_cp[lev+1][1]->nComp(), ngsrc);
+ MultiFab::Add(*current_buf[lev+1][2], *current_cp[lev+1][2], 0, 0, current_cp[lev+1][2]->nComp(), ngsrc);
ccx = current_buf[lev+1][0].get();
ccy = current_buf[lev+1][1].get();
ccz = current_buf[lev+1][2].get();
}
- current_fp[lev][0]->copy(*ccx,0,0,1,ngsrc,ngdst,period,FabArrayBase::ADD);
- current_fp[lev][1]->copy(*ccy,0,0,1,ngsrc,ngdst,period,FabArrayBase::ADD);
- current_fp[lev][2]->copy(*ccz,0,0,1,ngsrc,ngdst,period,FabArrayBase::ADD);
+ current_fp[lev][0]->copy(*ccx,0,0,current_fp[lev][0]->nComp(),ngsrc,ngdst,period,FabArrayBase::ADD);
+ current_fp[lev][1]->copy(*ccy,0,0,current_fp[lev][1]->nComp(),ngsrc,ngdst,period,FabArrayBase::ADD);
+ current_fp[lev][2]->copy(*ccz,0,0,current_fp[lev][2]->nComp(),ngsrc,ngdst,period,FabArrayBase::ADD);
}
// Sum up coarse patch
@@ -478,7 +478,7 @@ WarpX::SyncCurrent ()
// current_fp has right number of ghost cells.
std::swap(j_fp[lev][idim], current_fp[lev][idim]);
// Then copy the interior of j_fp to current_fp.
- MultiFab::Copy(*current_fp[lev][idim], *j_fp[lev][idim], 0, 0, 1, 0);
+ MultiFab::Copy(*current_fp[lev][idim], *j_fp[lev][idim], 0, 0, j_fp[lev][idim]->nComp(), 0);
// current_fp has right number of ghost cells and
// correct filtered values here.
}
@@ -487,7 +487,7 @@ WarpX::SyncCurrent ()
{
for (int idim = 0; idim < 3; ++idim) {
std::swap(j_cp[lev][idim], current_cp[lev][idim]);
- MultiFab::Copy(*current_cp[lev][idim], *j_cp[lev][idim], 0, 0, 1, 0);
+ MultiFab::Copy(*current_cp[lev][idim], *j_cp[lev][idim], 0, 0, j_cp[lev][idim]->nComp(), 0);
}
}
for (int lev = 1; lev <= finest_level; ++lev)
@@ -495,7 +495,7 @@ WarpX::SyncCurrent ()
for (int idim = 0; idim < 3; ++idim) {
if (j_buf[lev][idim]) {
std::swap(j_buf[lev][idim], current_buf[lev][idim]);
- MultiFab::Copy(*current_buf[lev][idim], *j_buf[lev][idim], 0, 0, 1, 0);
+ MultiFab::Copy(*current_buf[lev][idim], *j_buf[lev][idim], 0, 0, j_buf[lev][idim]->nComp(), 0);
}
}
}
@@ -543,7 +543,7 @@ WarpX::SyncCurrent (const std::array<const amrex::MultiFab*,3>& fine,
ffab.resize(fbx);
fbx &= (*fine[idim])[mfi].box();
ffab.setVal(0.0);
- ffab.copy((*fine[idim])[mfi], fbx, 0, fbx, 0, 1);
+ ffab.copy((*fine[idim])[mfi], fbx, 0, fbx, 0, fine[idim]->nComp());
WRPX_SYNC_CURRENT(bx.loVect(), bx.hiVect(),
BL_TO_FORTRAN_ANYD((*crse[idim])[mfi]),
BL_TO_FORTRAN_ANYD(ffab),
@@ -731,7 +731,7 @@ WarpX::ApplyFilterandSumBoundaryJ (int lev, PatchType patch_type)
if (use_filter) {
IntVect ng = j[idim]->nGrowVect();
ng += bilinear_filter.stencil_length_each_dir-1;
- MultiFab jf(j[idim]->boxArray(), j[idim]->DistributionMap(), 1, ng);
+ MultiFab jf(j[idim]->boxArray(), j[idim]->DistributionMap(), j[idim]->nComp(), ng);
bilinear_filter.ApplyStencil(jf, *j[idim]);
WarpXSumGuardCells(*(j[idim]), jf, period);
} else {
@@ -764,7 +764,7 @@ WarpX::AddCurrentFromFineLevelandSumBoundary (int lev)
const auto& period = Geom(lev).periodicity();
for (int idim = 0; idim < 3; ++idim) {
MultiFab mf(current_fp[lev][idim]->boxArray(),
- current_fp[lev][idim]->DistributionMap(), 1, 0);
+ current_fp[lev][idim]->DistributionMap(), current_fp[lev][idim]->nComp(), 0);
mf.setVal(0.0);
if (use_filter && current_buf[lev+1][idim])
{
@@ -772,16 +772,16 @@ WarpX::AddCurrentFromFineLevelandSumBoundary (int lev)
IntVect ng = current_cp[lev+1][idim]->nGrowVect();
ng += bilinear_filter.stencil_length_each_dir-1;
MultiFab jfc(current_cp[lev+1][idim]->boxArray(),
- current_cp[lev+1][idim]->DistributionMap(), 1, ng);
+ current_cp[lev+1][idim]->DistributionMap(), current_cp[lev+1][idim]->nComp(), ng);
bilinear_filter.ApplyStencil(jfc, *current_cp[lev+1][idim]);
// buffer patch of fine level
MultiFab jfb(current_buf[lev+1][idim]->boxArray(),
- current_buf[lev+1][idim]->DistributionMap(), 1, ng);
+ current_buf[lev+1][idim]->DistributionMap(), current_buf[lev+1][idim]->nComp(), ng);
bilinear_filter.ApplyStencil(jfb, *current_buf[lev+1][idim]);
- MultiFab::Add(jfb, jfc, 0, 0, 1, ng);
- mf.ParallelAdd(jfb, 0, 0, 1, ng, IntVect::TheZeroVector(), period);
+ MultiFab::Add(jfb, jfc, 0, 0, jfc.nComp(), ng);
+ mf.ParallelAdd(jfb, 0, 0, jfb.nComp(), ng, IntVect::TheZeroVector(), period);
WarpXSumGuardCells(*current_cp[lev+1][idim], jfc, period);
}
@@ -791,29 +791,29 @@ WarpX::AddCurrentFromFineLevelandSumBoundary (int lev)
IntVect ng = current_cp[lev+1][idim]->nGrowVect();
ng += bilinear_filter.stencil_length_each_dir-1;
MultiFab jf(current_cp[lev+1][idim]->boxArray(),
- current_cp[lev+1][idim]->DistributionMap(), 1, ng);
+ current_cp[lev+1][idim]->DistributionMap(), current_cp[lev+1][idim]->nComp(), ng);
bilinear_filter.ApplyStencil(jf, *current_cp[lev+1][idim]);
- mf.ParallelAdd(jf, 0, 0, 1, ng, IntVect::TheZeroVector(), period);
+ mf.ParallelAdd(jf, 0, 0, jf.nComp(), ng, IntVect::TheZeroVector(), period);
WarpXSumGuardCells(*current_cp[lev+1][idim], jf, period);
}
else if (current_buf[lev+1][idim]) // but no filter
{
MultiFab::Copy(*current_buf[lev+1][idim],
- *current_cp [lev+1][idim], 0, 0, 1,
+ *current_cp [lev+1][idim], 0, 0, current_cp [lev+1][idim]->nComp(),
current_cp[lev+1][idim]->nGrow());
- mf.ParallelAdd(*current_buf[lev+1][idim], 0, 0, 1,
+ mf.ParallelAdd(*current_buf[lev+1][idim], 0, 0, current_buf[lev+1][idim]->nComp(),
current_buf[lev+1][idim]->nGrowVect(), IntVect::TheZeroVector(),
period);
WarpXSumGuardCells(*(current_cp[lev+1][idim]), period);
}
else // no filter, no buffer
{
- mf.ParallelAdd(*current_cp[lev+1][idim], 0, 0, 1,
+ mf.ParallelAdd(*current_cp[lev+1][idim], 0, 0, current_cp[lev+1][idim]->nComp(),
current_cp[lev+1][idim]->nGrowVect(), IntVect::TheZeroVector(),
period);
WarpXSumGuardCells(*(current_cp[lev+1][idim]), period);
}
- MultiFab::Add(*current_fp[lev][idim], mf, 0, 0, 1, 0);
+ MultiFab::Add(*current_fp[lev][idim], mf, 0, 0, current_fp[lev][idim]->nComp(), 0);
}
NodalSyncJ(lev, PatchType::fine);
NodalSyncJ(lev+1, PatchType::coarse);
diff --git a/Source/Parallelization/WarpXRegrid.cpp b/Source/Parallelization/WarpXRegrid.cpp
index 8d7873041..eb119d4a2 100644
--- a/Source/Parallelization/WarpXRegrid.cpp
+++ b/Source/Parallelization/WarpXRegrid.cpp
@@ -46,21 +46,21 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = Bfield_fp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Bfield_fp[lev][idim]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*Bfield_fp[lev][idim], 0, 0, 1, ng);
+ dm, Bfield_fp[lev][idim]->nComp(), ng));
+ pmf->Redistribute(*Bfield_fp[lev][idim], 0, 0, Bfield_fp[lev][idim]->nComp(), ng);
Bfield_fp[lev][idim] = std::move(pmf);
}
{
const IntVect& ng = Efield_fp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Efield_fp[lev][idim]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*Efield_fp[lev][idim], 0, 0, 1, ng);
+ dm, Efield_fp[lev][idim]->nComp(), ng));
+ pmf->Redistribute(*Efield_fp[lev][idim], 0, 0, Efield_fp[lev][idim]->nComp(), ng);
Efield_fp[lev][idim] = std::move(pmf);
}
{
const IntVect& ng = current_fp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(current_fp[lev][idim]->boxArray(),
- dm, 1, ng));
+ dm, current_fp[lev][idim]->nComp(), ng));
current_fp[lev][idim] = std::move(pmf);
current_fp_owner_masks[lev][idim] = std::move(current_fp[lev][idim]->OwnerMask(period));
}
@@ -68,7 +68,7 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = current_store[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(current_store[lev][idim]->boxArray(),
- dm, 1, ng));
+ dm, current_store[lev][idim]->nComp(), ng));
// no need to redistribute
current_store[lev][idim] = std::move(pmf);
}
@@ -77,8 +77,8 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
if (F_fp[lev] != nullptr) {
const IntVect& ng = F_fp[lev]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(F_fp[lev]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*F_fp[lev], 0, 0, 1, ng);
+ dm, F_fp[lev]->nComp(), ng));
+ pmf->Redistribute(*F_fp[lev], 0, 0, F_fp[lev]->nComp(), ng);
F_fp[lev] = std::move(pmf);
}
@@ -96,8 +96,8 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
if (lev == 0)
{
for (int idim = 0; idim < 3; ++idim) {
- Bfield_aux[lev][idim].reset(new MultiFab(*Bfield_fp[lev][idim], amrex::make_alias, 0, 1));
- Efield_aux[lev][idim].reset(new MultiFab(*Efield_fp[lev][idim], amrex::make_alias, 0, 1));
+ Bfield_aux[lev][idim].reset(new MultiFab(*Bfield_fp[lev][idim], amrex::make_alias, 0, Bfield_aux[lev][idim]->nComp()));
+ Efield_aux[lev][idim].reset(new MultiFab(*Efield_fp[lev][idim], amrex::make_alias, 0, Efield_aux[lev][idim]->nComp()));
}
} else {
for (int idim=0; idim < 3; ++idim)
@@ -105,15 +105,15 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = Bfield_aux[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Bfield_aux[lev][idim]->boxArray(),
- dm, 1, ng));
- // pmf->Redistribute(*Bfield_aux[lev][idim], 0, 0, 1, ng);
+ dm, Bfield_aux[lev][idim]->nComp(), ng));
+ // pmf->Redistribute(*Bfield_aux[lev][idim], 0, 0, Bfield_aux[lev][idim]->nComp(), ng);
Bfield_aux[lev][idim] = std::move(pmf);
}
{
const IntVect& ng = Efield_aux[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Efield_aux[lev][idim]->boxArray(),
- dm, 1, ng));
- // pmf->Redistribute(*Efield_aux[lev][idim], 0, 0, 1, ng);
+ dm, Efield_aux[lev][idim]->nComp(), ng));
+ // pmf->Redistribute(*Efield_aux[lev][idim], 0, 0, Efield_aux[lev][idim]->nComp(), ng);
Efield_aux[lev][idim] = std::move(pmf);
}
}
@@ -127,21 +127,21 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = Bfield_cp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Bfield_cp[lev][idim]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*Bfield_cp[lev][idim], 0, 0, 1, ng);
+ dm, Bfield_cp[lev][idim]->nComp(), ng));
+ pmf->Redistribute(*Bfield_cp[lev][idim], 0, 0, Bfield_cp[lev][idim]->nComp(), ng);
Bfield_cp[lev][idim] = std::move(pmf);
}
{
const IntVect& ng = Efield_cp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Efield_cp[lev][idim]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*Efield_cp[lev][idim], 0, 0, 1, ng);
+ dm, Efield_cp[lev][idim]->nComp(), ng));
+ pmf->Redistribute(*Efield_cp[lev][idim], 0, 0, Efield_cp[lev][idim]->nComp(), ng);
Efield_cp[lev][idim] = std::move(pmf);
}
{
const IntVect& ng = current_cp[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>( new MultiFab(current_cp[lev][idim]->boxArray(),
- dm, 1, ng));
+ dm, current_cp[lev][idim]->nComp(), ng));
current_cp[lev][idim] = std::move(pmf);
current_cp_owner_masks[lev][idim] = std::move(
current_cp[lev][idim]->OwnerMask(cperiod));
@@ -151,8 +151,8 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
if (F_cp[lev] != nullptr) {
const IntVect& ng = F_cp[lev]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(F_cp[lev]->boxArray(),
- dm, 1, ng));
- pmf->Redistribute(*F_cp[lev], 0, 0, 1, ng);
+ dm, F_cp[lev]->nComp(), ng));
+ pmf->Redistribute(*F_cp[lev], 0, 0, F_cp[lev]->nComp(), ng);
F_cp[lev] = std::move(pmf);
}
@@ -173,24 +173,24 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = Bfield_cax[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Bfield_cax[lev][idim]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*Bfield_cax[lev][idim], 0, 0, 1, ng, ng);
+ dm, Bfield_cax[lev][idim]->nComp(), ng));
+ // pmf->ParallelCopy(*Bfield_cax[lev][idim], 0, 0, Bfield_cax[lev][idim]->nComp(), ng, ng);
Bfield_cax[lev][idim] = std::move(pmf);
}
if (Efield_cax[lev][idim])
{
const IntVect& ng = Efield_cax[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(Efield_cax[lev][idim]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*Efield_cax[lev][idim], 0, 0, 1, ng, ng);
+ dm, Efield_cax[lev][idim]->nComp(), ng));
+ // pmf->ParallelCopy(*Efield_cax[lev][idim], 0, 0, Efield_cax[lev][idim]->nComp(), ng, ng);
Efield_cax[lev][idim] = std::move(pmf);
}
if (current_buf[lev][idim])
{
const IntVect& ng = current_buf[lev][idim]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(current_buf[lev][idim]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*current_buf[lev][idim], 0, 0, 1, ng, ng);
+ dm, current_buf[lev][idim]->nComp(), ng));
+ // pmf->ParallelCopy(*current_buf[lev][idim], 0, 0, current_buf[lev][idim]->nComp(), ng, ng);
current_buf[lev][idim] = std::move(pmf);
}
}
@@ -198,24 +198,24 @@ WarpX::RemakeLevel (int lev, Real time, const BoxArray& ba, const DistributionMa
{
const IntVect& ng = charge_buf[lev]->nGrowVect();
auto pmf = std::unique_ptr<MultiFab>(new MultiFab(charge_buf[lev]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*charge_buf[lev][idim], 0, 0, 1, ng, ng);
+ dm, charge_buf[lev]->nComp(), ng));
+ // pmf->ParallelCopy(*charge_buf[lev][idim], 0, 0, charge_buf[lev]->nComp(), ng, ng);
charge_buf[lev] = std::move(pmf);
}
if (current_buffer_masks[lev])
{
const IntVect& ng = current_buffer_masks[lev]->nGrowVect();
auto pmf = std::unique_ptr<iMultiFab>(new iMultiFab(current_buffer_masks[lev]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*current_buffer_masks[lev], 0, 0, 1, ng, ng);
+ dm, current_buffer_masks[lev]->nComp(), ng));
+ // pmf->ParallelCopy(*current_buffer_masks[lev], 0, 0, current_buffer_masks[lev]->nComp(), ng, ng);
current_buffer_masks[lev] = std::move(pmf);
}
if (gather_buffer_masks[lev])
{
const IntVect& ng = gather_buffer_masks[lev]->nGrowVect();
auto pmf = std::unique_ptr<iMultiFab>(new iMultiFab(gather_buffer_masks[lev]->boxArray(),
- dm, 1, ng));
- // pmf->ParallelCopy(*gather_buffer_masks[lev], 0, 0, 1, ng, ng);
+ dm, gather_buffer_masks[lev]->nComp(), ng));
+ // pmf->ParallelCopy(*gather_buffer_masks[lev], 0, 0, gather_buffer_masks[lev]->nComp(), ng, ng);
gather_buffer_masks[lev] = std::move(pmf);
}
}
diff --git a/Source/Particles/MultiParticleContainer.cpp b/Source/Particles/MultiParticleContainer.cpp
index 6d618c096..f39a2a36d 100644
--- a/Source/Particles/MultiParticleContainer.cpp
+++ b/Source/Particles/MultiParticleContainer.cpp
@@ -299,7 +299,7 @@ MultiParticleContainer::GetChargeDensity (int lev, bool local)
std::unique_ptr<MultiFab> rho = allcontainers[0]->GetChargeDensity(lev, true);
for (unsigned i = 1, n = allcontainers.size(); i < n; ++i) {
std::unique_ptr<MultiFab> rhoi = allcontainers[i]->GetChargeDensity(lev, true);
- MultiFab::Add(*rho, *rhoi, 0, 0, 1, rho->nGrow());
+ MultiFab::Add(*rho, *rhoi, 0, 0, rho->nComp(), rho->nGrow());
}
if (!local) {
const Geometry& gm = allcontainers[0]->Geom(lev);
diff --git a/Source/Particles/PhysicalParticleContainer.cpp b/Source/Particles/PhysicalParticleContainer.cpp
index 212084e64..e1b012464 100644
--- a/Source/Particles/PhysicalParticleContainer.cpp
+++ b/Source/Particles/PhysicalParticleContainer.cpp
@@ -1096,6 +1096,7 @@ PhysicalParticleContainer::FieldGather (int lev,
BL_TO_FORTRAN_ANYD(bxfab),
BL_TO_FORTRAN_ANYD(byfab),
BL_TO_FORTRAN_ANYD(bzfab),
+ &WarpX::nmodes,
&ll4symtry, &WarpX::l_lower_order_in_v, &WarpX::do_nodal,
&lvect_fieldgathe, &WarpX::field_gathering_algo);
@@ -1396,6 +1397,7 @@ PhysicalParticleContainer::Evolve (int lev,
BL_TO_FORTRAN_ANYD(*bxfab),
BL_TO_FORTRAN_ANYD(*byfab),
BL_TO_FORTRAN_ANYD(*bzfab),
+ &WarpX::nmodes,
&ll4symtry, &WarpX::l_lower_order_in_v, &WarpX::do_nodal,
&lvect_fieldgathe, &WarpX::field_gathering_algo);
@@ -1493,6 +1495,7 @@ PhysicalParticleContainer::Evolve (int lev,
BL_TO_FORTRAN_ANYD(*cbxfab),
BL_TO_FORTRAN_ANYD(*cbyfab),
BL_TO_FORTRAN_ANYD(*cbzfab),
+ &WarpX::nmodes,
&ll4symtry, &WarpX::l_lower_order_in_v, &WarpX::do_nodal,
&lvect_fieldgathe, &WarpX::field_gathering_algo);
}
@@ -1825,6 +1828,7 @@ PhysicalParticleContainer::PushP (int lev, Real dt,
BL_TO_FORTRAN_ANYD(bxfab),
BL_TO_FORTRAN_ANYD(byfab),
BL_TO_FORTRAN_ANYD(bzfab),
+ &WarpX::nmodes,
&ll4symtry, &WarpX::l_lower_order_in_v, &WarpX::do_nodal,
&lvect_fieldgathe, &WarpX::field_gathering_algo);
diff --git a/Source/Particles/RigidInjectedParticleContainer.cpp b/Source/Particles/RigidInjectedParticleContainer.cpp
index fd1b2dfb5..919cd9f0f 100644
--- a/Source/Particles/RigidInjectedParticleContainer.cpp
+++ b/Source/Particles/RigidInjectedParticleContainer.cpp
@@ -427,6 +427,7 @@ RigidInjectedParticleContainer::PushP (int lev, Real dt,
BL_TO_FORTRAN_ANYD(bxfab),
BL_TO_FORTRAN_ANYD(byfab),
BL_TO_FORTRAN_ANYD(bzfab),
+ &WarpX::nmodes,
&ll4symtry, &l_lower_order_in_v, &WarpX::do_nodal,
&lvect_fieldgathe, &WarpX::field_gathering_algo);
diff --git a/Source/Particles/WarpXParticleContainer.cpp b/Source/Particles/WarpXParticleContainer.cpp
index 9791eee80..681758c45 100644
--- a/Source/Particles/WarpXParticleContainer.cpp
+++ b/Source/Particles/WarpXParticleContainer.cpp
@@ -324,9 +324,9 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
tby.grow(ngJ);
tbz.grow(ngJ);
- local_jx[thread_num].resize(tbx);
- local_jy[thread_num].resize(tby);
- local_jz[thread_num].resize(tbz);
+ local_jx[thread_num].resize(tbx, jx.nComp());
+ local_jy[thread_num].resize(tby, jy.nComp());
+ local_jz[thread_num].resize(tbz, jz.nComp());
jx_ptr = local_jx[thread_num].dataPtr();
jy_ptr = local_jy[thread_num].dataPtr();
@@ -407,6 +407,7 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
jx_ptr, &ngJ, jxntot.getVect(),
jy_ptr, &ngJ, jyntot.getVect(),
jz_ptr, &ngJ, jzntot.getVect(),
+ &WarpX::nmodes,
&np_current,
m_xp[thread_num].dataPtr(),
m_yp[thread_num].dataPtr(),
@@ -424,6 +425,7 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
jx_ptr, &ngJ, jxntot.getVect(),
jy_ptr, &ngJ, jyntot.getVect(),
jz_ptr, &ngJ, jzntot.getVect(),
+ &WarpX::nmodes,
&xyzmin[0], &dx[0]);
#endif
}
@@ -433,9 +435,9 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
#ifndef AMREX_USE_GPU
BL_PROFILE_VAR_START(blp_accumulate);
- jx[pti].atomicAdd(local_jx[thread_num], tbx, tbx, 0, 0, 1);
- jy[pti].atomicAdd(local_jy[thread_num], tby, tby, 0, 0, 1);
- jz[pti].atomicAdd(local_jz[thread_num], tbz, tbz, 0, 0, 1);
+ jx[pti].atomicAdd(local_jx[thread_num], tbx, tbx, 0, 0, local_jx[thread_num].nComp());
+ jy[pti].atomicAdd(local_jy[thread_num], tby, tby, 0, 0, local_jy[thread_num].nComp());
+ jz[pti].atomicAdd(local_jz[thread_num], tbz, tbz, 0, 0, local_jz[thread_num].nComp());
BL_PROFILE_VAR_STOP(blp_accumulate);
#endif
@@ -465,9 +467,9 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
tby.grow(ngJ);
tbz.grow(ngJ);
- local_jx[thread_num].resize(tbx);
- local_jy[thread_num].resize(tby);
- local_jz[thread_num].resize(tbz);
+ local_jx[thread_num].resize(tbx, jx.nComp());
+ local_jy[thread_num].resize(tby, jy.nComp());
+ local_jz[thread_num].resize(tbz, jz.nComp());
jx_ptr = local_jx[thread_num].dataPtr();
jy_ptr = local_jy[thread_num].dataPtr();
@@ -549,6 +551,7 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
jx_ptr, &ngJ, jxntot.getVect(),
jy_ptr, &ngJ, jyntot.getVect(),
jz_ptr, &ngJ, jzntot.getVect(),
+ &WarpX::nmodes,
&ncrse,
m_xp[thread_num].dataPtr() +np_current,
m_yp[thread_num].dataPtr() +np_current,
@@ -567,6 +570,7 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
jx_ptr, &ngJ, jxntot.getVect(),
jy_ptr, &ngJ, jyntot.getVect(),
jz_ptr, &ngJ, jzntot.getVect(),
+ &WarpX::nmodes,
&xyzmin[0], &dx[0]);
#endif
}
@@ -576,9 +580,9 @@ WarpXParticleContainer::DepositCurrent(WarpXParIter& pti,
#ifndef AMREX_USE_GPU
BL_PROFILE_VAR_START(blp_accumulate);
- (*cjx)[pti].atomicAdd(local_jx[thread_num], tbx, tbx, 0, 0, 1);
- (*cjy)[pti].atomicAdd(local_jy[thread_num], tby, tby, 0, 0, 1);
- (*cjz)[pti].atomicAdd(local_jz[thread_num], tbz, tbz, 0, 0, 1);
+ (*cjx)[pti].atomicAdd(local_jx[thread_num], tbx, tbx, 0, 0, local_jx[thread_num].nComp());
+ (*cjy)[pti].atomicAdd(local_jy[thread_num], tby, tby, 0, 0, local_jy[thread_num].nComp());
+ (*cjz)[pti].atomicAdd(local_jz[thread_num], tbz, tbz, 0, 0, local_jz[thread_num].nComp());
BL_PROFILE_VAR_STOP(blp_accumulate);
#endif
@@ -612,11 +616,11 @@ WarpXParticleContainer::DepositCharge ( WarpXParIter& pti, RealVector& wp,
const std::array<Real, 3>& xyzmin = xyzmin_tile;
#ifdef AMREX_USE_GPU
- data_ptr = (*rhomf)[pti].dataPtr(icomp);
+ data_ptr = (*rhomf)[pti].dataPtr(icomp*(rhomf->nComp()/2));
auto rholen = (*rhomf)[pti].length();
#else
tile_box.grow(ngRho);
- local_rho[thread_num].resize(tile_box);
+ local_rho[thread_num].resize(tile_box, rhomf->nComp());
data_ptr = local_rho[thread_num].dataPtr();
auto rholen = local_rho[thread_num].length();
@@ -655,7 +659,7 @@ WarpXParticleContainer::DepositCharge ( WarpXParIter& pti, RealVector& wp,
#ifndef AMREX_USE_GPU
BL_PROFILE_VAR_START(blp_accumulate);
- (*rhomf)[pti].atomicAdd(local_rho[thread_num], tile_box, tile_box, 0, icomp, 1);
+ (*rhomf)[pti].atomicAdd(local_rho[thread_num], tile_box, tile_box, 0, icomp*(rhomf->nComp()/2), (rhomf->nComp()/2));
BL_PROFILE_VAR_STOP(blp_accumulate);
#endif
@@ -674,7 +678,7 @@ WarpXParticleContainer::DepositCharge ( WarpXParIter& pti, RealVector& wp,
#else
tile_box = amrex::convert(ctilebox, IntVect::TheUnitVector());
tile_box.grow(ngRho);
- local_rho[thread_num].resize(tile_box);
+ local_rho[thread_num].resize(tile_box, crhomf->nComp());
data_ptr = local_rho[thread_num].dataPtr();
auto rholen = local_rho[thread_num].length();
@@ -715,7 +719,7 @@ WarpXParticleContainer::DepositCharge ( WarpXParIter& pti, RealVector& wp,
#ifndef AMREX_USE_GPU
BL_PROFILE_VAR_START(blp_accumulate);
- (*crhomf)[pti].atomicAdd(local_rho[thread_num], tile_box, tile_box, 0, icomp, 1);
+ (*crhomf)[pti].atomicAdd(local_rho[thread_num], tile_box, tile_box, 0, icomp*(crhomf->nComp()/2), (crhomf->nComp()/2));
BL_PROFILE_VAR_STOP(blp_accumulate);
#endif
@@ -770,7 +774,7 @@ WarpXParticleContainer::DepositCharge (Vector<std::unique_ptr<MultiFab> >& rho,
BoxArray coarsened_fine_BA = fine_BA;
coarsened_fine_BA.coarsen(m_gdb->refRatio(lev));
- MultiFab coarsened_fine_data(coarsened_fine_BA, fine_dm, 1, 0);
+ MultiFab coarsened_fine_data(coarsened_fine_BA, fine_dm, rho[lev+1]->nComp(), 0);
coarsened_fine_data.setVal(0.0);
IntVect ratio(AMREX_D_DECL(2, 2, 2)); // FIXME
@@ -801,7 +805,7 @@ WarpXParticleContainer::GetChargeDensity (int lev, bool local)
const int ng = WarpX::nox;
- auto rho = std::unique_ptr<MultiFab>(new MultiFab(nba,dm,1,ng));
+ auto rho = std::unique_ptr<MultiFab>(new MultiFab(nba,dm,WarpX::ncomps,ng));
rho->setVal(0.0);
#ifdef _OPENMP
@@ -829,7 +833,7 @@ WarpXParticleContainer::GetChargeDensity (int lev, bool local)
Box tile_box = convert(pti.tilebox(), IntVect::TheUnitVector());
const std::array<Real, 3>& xyzmin = xyzmin_tile;
tile_box.grow(ng);
- rho_loc.resize(tile_box);
+ rho_loc.resize(tile_box, rho->nComp());
rho_loc = 0.0;
data_ptr = rho_loc.dataPtr();
auto rholen = rho_loc.length();
diff --git a/Source/Python/WarpXWrappers.cpp b/Source/Python/WarpXWrappers.cpp
index 3c1a930b3..10e5ed8dd 100644
--- a/Source/Python/WarpXWrappers.cpp
+++ b/Source/Python/WarpXWrappers.cpp
@@ -10,11 +10,14 @@
namespace
{
- double** getMultiFabPointers(const amrex::MultiFab& mf, int *num_boxes, int *ngrow, int **shapes)
+ double** getMultiFabPointers(const amrex::MultiFab& mf, int *num_boxes, int *ncomps, int *ngrow, int **shapes)
{
+ *ncomps = mf.nComp();
*ngrow = mf.nGrow();
*num_boxes = mf.local_size();
- *shapes = (int*) malloc(AMREX_SPACEDIM * (*num_boxes) * sizeof(int));
+ int shapesize = AMREX_SPACEDIM;
+ if (mf.nComp() > 1) shapesize += 1;
+ *shapes = (int*) malloc(shapesize * (*num_boxes) * sizeof(int));
double** data = (double**) malloc((*num_boxes) * sizeof(double*));
int i = 0;
@@ -24,8 +27,9 @@ namespace
for ( amrex::MFIter mfi(mf, false); mfi.isValid(); ++mfi, ++i ) {
data[i] = (double*) mf[mfi].dataPtr();
for (int j = 0; j < AMREX_SPACEDIM; ++j) {
- (*shapes)[AMREX_SPACEDIM*i+j] = mf[mfi].box().length(j);
+ (*shapes)[shapesize*i+j] = mf[mfi].box().length(j);
}
+ if (mf.nComp() > 1) (*shapes)[shapesize*i+2] = mf.nComp();
}
return data;
}
@@ -197,9 +201,9 @@ extern "C"
}
double** warpx_getEfield(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getEfield(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getEfieldLoVects(int lev, int direction,
@@ -209,9 +213,9 @@ extern "C"
}
double** warpx_getEfieldCP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getEfield_cp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getEfieldCPLoVects(int lev, int direction,
@@ -221,9 +225,9 @@ extern "C"
}
double** warpx_getEfieldFP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getEfield_fp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getEfieldFPLoVects(int lev, int direction,
@@ -233,9 +237,9 @@ extern "C"
}
double** warpx_getBfield(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getBfield(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getBfieldLoVects(int lev, int direction,
@@ -245,9 +249,9 @@ extern "C"
}
double** warpx_getBfieldCP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getBfield_cp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getBfieldCPLoVects(int lev, int direction,
@@ -257,9 +261,9 @@ extern "C"
}
double** warpx_getBfieldFP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getBfield_fp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getBfieldFPLoVects(int lev, int direction,
@@ -269,9 +273,9 @@ extern "C"
}
double** warpx_getCurrentDensity(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getcurrent(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getCurrentDensityLoVects(int lev, int direction,
@@ -281,9 +285,9 @@ extern "C"
}
double** warpx_getCurrentDensityCP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getcurrent_cp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getCurrentDensityCPLoVects(int lev, int direction,
@@ -293,9 +297,9 @@ extern "C"
}
double** warpx_getCurrentDensityFP(int lev, int direction,
- int *return_size, int *ngrow, int **shapes) {
+ int *return_size, int *ncomps, int *ngrow, int **shapes) {
auto & mf = WarpX::GetInstance().getcurrent_fp(lev, direction);
- return getMultiFabPointers(mf, return_size, ngrow, shapes);
+ return getMultiFabPointers(mf, return_size, ncomps, ngrow, shapes);
}
int* warpx_getCurrentDensityFPLoVects(int lev, int direction,
diff --git a/Source/WarpX.H b/Source/WarpX.H
index 35b072142..903e01770 100644
--- a/Source/WarpX.H
+++ b/Source/WarpX.H
@@ -91,6 +91,10 @@ public:
static long noy;
static long noz;
+ // Number of modes for the RZ multimode version
+ static long nmodes;
+ static long ncomps;
+
static bool use_fdtd_nci_corr;
static int l_lower_order_in_v;
diff --git a/Source/WarpX.cpp b/Source/WarpX.cpp
index 3d7f7dcc5..93653040d 100644
--- a/Source/WarpX.cpp
+++ b/Source/WarpX.cpp
@@ -41,6 +41,9 @@ long WarpX::field_gathering_algo = 1;
long WarpX::particle_pusher_algo = 0;
int WarpX::maxwell_fdtd_solver_id = 0;
+long WarpX::nmodes = 1;
+long WarpX::ncomps = 1;
+
long WarpX::nox = 1;
long WarpX::noy = 1;
long WarpX::noz = 1;
@@ -463,6 +466,10 @@ WarpX::ReadParameters ()
// Use same shape factors in all directions, for gathering
l_lower_order_in_v = false;
}
+
+ // Only needs to be set with WARPX_RZ, otherwise defaults to 1.
+ pp.query("nmodes", nmodes);
+
}
{
@@ -682,20 +689,31 @@ void
WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm,
const IntVect& ngE, const IntVect& ngJ, const IntVect& ngRho, int ngF)
{
+
+#if defined WARPX_RZ
+ if (nmodes > 1) {
+ // There is a real and imaginary component for each mode
+ ncomps = nmodes*2;
+ } else {
+ // With only mode 0, only reals are used
+ ncomps = 1;
+ }
+#endif
+
//
// The fine patch
//
- Bfield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,1,ngE));
- Bfield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,1,ngE));
- Bfield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,1,ngE));
+ Bfield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,ncomps,ngE));
+ Bfield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,ncomps,ngE));
+ Bfield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,ncomps,ngE));
- Efield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,1,ngE));
- Efield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,1,ngE));
- Efield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,1,ngE));
+ Efield_fp[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,ncomps,ngE));
+ Efield_fp[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,ncomps,ngE));
+ Efield_fp[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,ncomps,ngE));
- current_fp[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,1,ngJ));
- current_fp[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,1,ngJ));
- current_fp[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,1,ngJ));
+ current_fp[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,ncomps,ngJ));
+ current_fp[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,ncomps,ngJ));
+ current_fp[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,ncomps,ngJ));
const auto& period = Geom(lev).periodicity();
current_fp_owner_masks[lev][0] = std::move(current_fp[lev][0]->OwnerMask(period));
@@ -704,25 +722,25 @@ WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm
if (do_dive_cleaning || plot_rho)
{
- rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2,ngRho));
+ rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
rho_fp_owner_masks[lev] = std::move(rho_fp[lev]->OwnerMask(period));
}
if (do_subcycling == 1 && lev == 0)
{
- current_store[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,1,ngJ));
- current_store[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,1,ngJ));
- current_store[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,1,ngJ));
+ current_store[lev][0].reset( new MultiFab(amrex::convert(ba,jx_nodal_flag),dm,ncomps,ngJ));
+ current_store[lev][1].reset( new MultiFab(amrex::convert(ba,jy_nodal_flag),dm,ncomps,ngJ));
+ current_store[lev][2].reset( new MultiFab(amrex::convert(ba,jz_nodal_flag),dm,ncomps,ngJ));
}
if (do_dive_cleaning)
{
- F_fp[lev].reset (new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,1, ngF));
+ F_fp[lev].reset (new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,ncomps, ngF));
}
#ifdef WARPX_USE_PSATD
else
{
- rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2,ngRho));
+ rho_fp[lev].reset(new MultiFab(amrex::convert(ba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
rho_fp_owner_masks[lev] = std::move(rho_fp[lev]->OwnerMask(period));
}
#endif
@@ -733,19 +751,19 @@ WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm
if (lev == 0)
{
for (int idir = 0; idir < 3; ++idir) {
- Efield_aux[lev][idir].reset(new MultiFab(*Efield_fp[lev][idir], amrex::make_alias, 0, 1));
- Bfield_aux[lev][idir].reset(new MultiFab(*Bfield_fp[lev][idir], amrex::make_alias, 0, 1));
+ Efield_aux[lev][idir].reset(new MultiFab(*Efield_fp[lev][idir], amrex::make_alias, 0, ncomps));
+ Bfield_aux[lev][idir].reset(new MultiFab(*Bfield_fp[lev][idir], amrex::make_alias, 0, ncomps));
}
}
else
{
- Bfield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,1,ngE));
- Bfield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,1,ngE));
- Bfield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,1,ngE));
+ Bfield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Bx_nodal_flag),dm,ncomps,ngE));
+ Bfield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,By_nodal_flag),dm,ncomps,ngE));
+ Bfield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Bz_nodal_flag),dm,ncomps,ngE));
- Efield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,1,ngE));
- Efield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,1,ngE));
- Efield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,1,ngE));
+ Efield_aux[lev][0].reset( new MultiFab(amrex::convert(ba,Ex_nodal_flag),dm,ncomps,ngE));
+ Efield_aux[lev][1].reset( new MultiFab(amrex::convert(ba,Ey_nodal_flag),dm,ncomps,ngE));
+ Efield_aux[lev][2].reset( new MultiFab(amrex::convert(ba,Ez_nodal_flag),dm,ncomps,ngE));
}
//
@@ -757,19 +775,19 @@ WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm
cba.coarsen(refRatio(lev-1));
// Create the MultiFabs for B
- Bfield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,1,ngE));
- Bfield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,1,ngE));
- Bfield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,1,ngE));
+ Bfield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,ncomps,ngE));
+ Bfield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,ncomps,ngE));
+ Bfield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,ncomps,ngE));
// Create the MultiFabs for E
- Efield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,1,ngE));
- Efield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,1,ngE));
- Efield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,1,ngE));
+ Efield_cp[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,ncomps,ngE));
+ Efield_cp[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,ncomps,ngE));
+ Efield_cp[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,ncomps,ngE));
// Create the MultiFabs for the current
- current_cp[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,1,ngJ));
- current_cp[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,1,ngJ));
- current_cp[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,1,ngJ));
+ current_cp[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,ncomps,ngJ));
+ current_cp[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,ncomps,ngJ));
+ current_cp[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,ncomps,ngJ));
const auto& cperiod = Geom(lev-1).periodicity();
current_cp_owner_masks[lev][0] = std::move(current_cp[lev][0]->OwnerMask(cperiod));
@@ -777,17 +795,17 @@ WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm
current_cp_owner_masks[lev][2] = std::move(current_cp[lev][2]->OwnerMask(cperiod));
if (do_dive_cleaning || plot_rho){
- rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2,ngRho));
+ rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
rho_cp_owner_masks[lev] = std::move(rho_cp[lev]->OwnerMask(cperiod));
}
if (do_dive_cleaning)
{
- F_cp[lev].reset (new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,1, ngF));
+ F_cp[lev].reset (new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,ncomps, ngF));
}
#ifdef WARPX_USE_PSATD
else
{
- rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2,ngRho));
+ rho_cp[lev].reset(new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
rho_cp_owner_masks[lev] = std::move(rho_cp[lev]->OwnerMask(cperiod));
}
#endif
@@ -803,28 +821,28 @@ WarpX::AllocLevelMFs (int lev, const BoxArray& ba, const DistributionMapping& dm
if (n_field_gather_buffer > 0) {
// Create the MultiFabs for B
- Bfield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,1,ngE));
- Bfield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,1,ngE));
- Bfield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,1,ngE));
+ Bfield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Bx_nodal_flag),dm,ncomps,ngE));
+ Bfield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,By_nodal_flag),dm,ncomps,ngE));
+ Bfield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Bz_nodal_flag),dm,ncomps,ngE));
// Create the MultiFabs for E
- Efield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,1,ngE));
- Efield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,1,ngE));
- Efield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,1,ngE));
+ Efield_cax[lev][0].reset( new MultiFab(amrex::convert(cba,Ex_nodal_flag),dm,ncomps,ngE));
+ Efield_cax[lev][1].reset( new MultiFab(amrex::convert(cba,Ey_nodal_flag),dm,ncomps,ngE));
+ Efield_cax[lev][2].reset( new MultiFab(amrex::convert(cba,Ez_nodal_flag),dm,ncomps,ngE));
- gather_buffer_masks[lev].reset( new iMultiFab(ba, dm, 1, 1) );
+ gather_buffer_masks[lev].reset( new iMultiFab(ba, dm, ncomps, 1) );
// Gather buffer masks have 1 ghost cell, because of the fact
// that particles may move by more than one cell when using subcycling.
}
if (n_current_deposition_buffer > 0) {
- current_buf[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,1,ngJ));
- current_buf[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,1,ngJ));
- current_buf[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,1,ngJ));
+ current_buf[lev][0].reset( new MultiFab(amrex::convert(cba,jx_nodal_flag),dm,ncomps,ngJ));
+ current_buf[lev][1].reset( new MultiFab(amrex::convert(cba,jy_nodal_flag),dm,ncomps,ngJ));
+ current_buf[lev][2].reset( new MultiFab(amrex::convert(cba,jz_nodal_flag),dm,ncomps,ngJ));
if (do_dive_cleaning || plot_rho) {
- charge_buf[lev].reset( new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2,ngRho));
+ charge_buf[lev].reset( new MultiFab(amrex::convert(cba,IntVect::TheUnitVector()),dm,2*ncomps,ngRho));
}
- current_buffer_masks[lev].reset( new iMultiFab(ba, dm, 1, 1) );
+ current_buffer_masks[lev].reset( new iMultiFab(ba, dm, ncomps, 1) );
// Current buffer masks have 1 ghost cell, because of the fact
// that particles may move by more than one cell when using subcycling.
}