diff options
Diffstat (limited to 'Docs/source/theory/PML.rst')
-rw-r--r-- | Docs/source/theory/PML.rst | 210 |
1 files changed, 210 insertions, 0 deletions
diff --git a/Docs/source/theory/PML.rst b/Docs/source/theory/PML.rst new file mode 100644 index 000000000..e0f84d4d2 --- /dev/null +++ b/Docs/source/theory/PML.rst @@ -0,0 +1,210 @@ +Boundary conditions +=================== + +Open boundary condition for electromagnetic waves +------------------------------------------------- + +For the TE case, the original Berenger’s Perfectly Matched Layer (PML) writes + +.. math:: + + \begin{aligned} + \varepsilon _{0}\frac{\partial E_{x}}{\partial t}+\sigma _{y}E_{x} = & \frac{\partial H_{z}}{\partial y}\label{PML_def_1} \\ + \varepsilon _{0}\frac{\partial E_{y}}{\partial t}+\sigma _{x}E_{y} = & -\frac{\partial H_{z}}{\partial x}\label{PML_def_2} \\ + \mu _{0}\frac{\partial H_{zx}}{\partial t}+\sigma ^{*}_{x}H_{zx} = & -\frac{\partial E_{y}}{\partial x}\label{PML_def_3} \\ + \mu _{0}\frac{\partial H_{zy}}{\partial t}+\sigma ^{*}_{y}H_{zy} = & \frac{\partial E_{x}}{\partial y}\label{PML_def_4} \\ + H_{z} = & H_{zx}+H_{zy}\label{PML_def_5}\end{aligned} + +This can be generalized to + +.. math:: + + \begin{aligned} + \varepsilon _{0}\frac{\partial E_{x}}{\partial t}+\sigma _{y}E_{x} = & \frac{c_{y}}{c}\frac{\partial H_{z}}{\partial y}+\overline{\sigma }_{y}H_{z}\label{APML_def_1} \\ + \varepsilon _{0}\frac{\partial E_{y}}{\partial t}+\sigma _{x}E_{y} = & -\frac{c_{x}}{c}\frac{\partial H_{z}}{\partial x}+\overline{\sigma }_{x}H_{z}\label{APML_def_2} \\ + \mu _{0}\frac{\partial H_{zx}}{\partial t}+\sigma ^{*}_{x}H_{zx} = & -\frac{c^{*}_{x}}{c}\frac{\partial E_{y}}{\partial x}+\overline{\sigma }_{x}^{*}E_{y}\label{APML_def_3} \\ + \mu _{0}\frac{\partial H_{zy}}{\partial t}+\sigma ^{*}_{y}H_{zy} = & \frac{c^{*}_{y}}{c}\frac{\partial E_{x}}{\partial y}+\overline{\sigma }_{y}^{*}E_{x}\label{APML_def_4} \\ + H_{z} = & H_{zx}+H_{zy}\label{APML_def_5}\end{aligned} + +For :math:`c_{x}=c_{y}=c^{*}_{x}=c^{*}_{y}=c` and :math:`\overline{\sigma }_{x}=\overline{\sigma }_{y}=\overline{\sigma }_{x}^{*}=\overline{\sigma }_{y}^{*}=0`, +this system reduces to the Berenger PML medium, while adding the additional +constraint :math:`\sigma _{x}=\sigma _{y}=\sigma _{x}^{*}=\sigma _{y}^{*}=0` +leads to the system of Maxwell equations in vacuum. + +[Sec:analytic theory, propa plane wave]Propagation of a Plane Wave in an APML Medium +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +We consider a plane wave of magnitude (:math:`E_{0},H_{zx0},H_{zy0}`) +and pulsation :math:`\omega` propagating in the APML medium with an +angle :math:`\varphi` relative to the x axis + +.. math:: + + \begin{aligned} + E_{x} = & -E_{0}\sin \varphi e^{i\omega \left( t-\alpha x-\beta y\right) }\label{Plane_wave_APML_def_1} \\ + E_{y} = & E_{0}\cos \varphi e^{i\omega \left( t-\alpha x-\beta y\right) }\label{Plane_wave_APML_def_2} \\ + H_{zx} = & H_{zx0}e^{i\omega \left( t-\alpha x-\beta y\right) }\label{Plane_wave_AMPL_def_3} \\ + H_{zy} = & H_{zy0}e^{i\omega \left( t-\alpha x-\beta y\right) }\label{Plane_wave_APML_def_4}\end{aligned} + +where :math:`\alpha` and\ :math:`\beta` are two complex constants to +be determined. + +Introducing (`[Plane_wave_APML_def_1] <#Plane_wave_APML_def_1>`__), (`[Plane_wave_APML_def_2] <#Plane_wave_APML_def_2>`__), +(`[Plane_wave_AMPL_def_3] <#Plane_wave_AMPL_def_3>`__) and (`[Plane_wave_APML_def_4] <#Plane_wave_APML_def_4>`__) +into (`[APML_def_1] <#APML_def_1>`__), (`[APML_def_2] <#APML_def_2>`__), (`[APML_def_3] <#APML_def_3>`__) +and (`[APML_def_4] <#APML_def_4>`__) gives + +.. math:: + + \begin{aligned} + \varepsilon _{0}E_{0}\sin \varphi -i\frac{\sigma _{y}}{\omega }E_{0}\sin \varphi = & \beta \frac{c_{y}}{c}\left( H_{zx0}+H_{zy0}\right) +i\frac{\overline{\sigma }_{y}}{\omega }\left( H_{zx0}+H_{zy0}\right) \label{Plane_wave_APML_1_1} \\ + \varepsilon _{0}E_{0}\cos \varphi -i\frac{\sigma _{x}}{\omega }E_{0}\cos \varphi = & \alpha \frac{c_{x}}{c}\left( H_{zx0}+H_{zy0}\right) -i\frac{\overline{\sigma }_{x}}{\omega }\left( H_{zx0}+H_{zy0}\right) \label{Plane_wave_APML_1_2} \\ + \mu _{0}H_{zx0}-i\frac{\sigma ^{*}_{x}}{\omega }H_{zx0} = & \alpha \frac{c^{*}_{x}}{c}E_{0}\cos \varphi -i\frac{\overline{\sigma }^{*}_{x}}{\omega }E_{0}\cos \varphi \label{Plane_wave_APML_1_3} \\ + \mu _{0}H_{zy0}-i\frac{\sigma ^{*}_{y}}{\omega }H_{zy0} = & \beta \frac{c^{*}_{y}}{c}E_{0}\sin \varphi +i\frac{\overline{\sigma }^{*}_{y}}{\omega }E_{0}\sin \varphi \label{Plane_wave_APML_1_4}\end{aligned} + +Defining :math:`Z=E_{0}/\left( H_{zx0}+H_{zy0}\right)` and using (`[Plane_wave_APML_1_1] <#Plane_wave_APML_1_1>`__) +and (`[Plane_wave_APML_1_2] <#Plane_wave_APML_1_2>`__), we get + +.. math:: + + \begin{aligned} + \beta = & \left[ Z\left( \varepsilon _{0}-i\frac{\sigma _{y}}{\omega }\right) \sin \varphi -i\frac{\overline{\sigma }_{y}}{\omega }\right] \frac{c}{c_{y}}\label{Plane_wave_APML_beta_of_g} \\ + \alpha = & \left[ Z\left( \varepsilon _{0}-i\frac{\sigma _{x}}{\omega }\right) \cos \varphi +i\frac{\overline{\sigma }_{x}}{\omega }\right] \frac{c}{c_{x}}\label{Plane_wave_APML_alpha_of_g}\end{aligned} + +Adding :math:`H_{zx0}` and :math:`H_{zy0}` from (`[Plane_wave_APML_1_3] <#Plane_wave_APML_1_3>`__) +and (`[Plane_wave_APML_1_4] <#Plane_wave_APML_1_4>`__) and substituting the expressions +for :math:`\alpha` and :math:`\beta` from (`[Plane_wave_APML_beta_of_g] <#Plane_wave_APML_beta_of_g>`__) +and (`[Plane_wave_APML_alpha_of_g] <#Plane_wave_APML_alpha_of_g>`__) yields + +.. math:: + + \begin{aligned} + \frac{1}{Z} = & \frac{Z\left( \varepsilon _{0}-i\frac{\sigma _{x}}{\omega }\right) \cos \varphi \frac{c^{*}_{x}}{c_{x}}+i\frac{\overline{\sigma }_{x}}{\omega }\frac{c^{*}_{x}}{c_{x}}-i\frac{\overline{\sigma }^{*}_{x}}{\omega }}{\mu _{0}-i\frac{\sigma ^{*}_{x}}{\omega }}\cos \varphi \nonumber \\ + + & \frac{Z\left( \varepsilon _{0}-i\frac{\sigma _{y}}{\omega }\right) \sin \varphi \frac{c^{*}_{y}}{c_{y}}-i\frac{\overline{\sigma }_{y}}{\omega }\frac{c^{*}_{y}}{c_{y}}+i\frac{\overline{\sigma }^{*}_{y}}{\omega }}{\mu _{0}-i\frac{\sigma ^{*}_{y}}{\omega }}\sin \varphi\end{aligned} + +If :math:`c_{x}=c^{*}_{x}`, :math:`c_{y}=c^{*}_{y}`, :math:`\overline{\sigma }_{x}=\overline{\sigma }^{*}_{x}`, :math:`\overline{\sigma }_{y}=\overline{\sigma }^{*}_{y}`, :math:`\frac{\sigma _{x}}{\varepsilon _{0}}=\frac{\sigma ^{*}_{x}}{\mu _{0}}` and :math:`\frac{\sigma _{y}}{\varepsilon _{0}}=\frac{\sigma ^{*}_{y}}{\mu _{0}}` then + +.. math:: + + \begin{aligned} + Z = & \pm \sqrt{\frac{\mu _{0}}{\varepsilon _{0}}}\label{APML_impedance}\end{aligned} + +which is the impedance of vacuum. Hence, like the PML, given some +restrictions on the parameters, the APML does not generate any reflection +at any angle and any frequency. As for the PML, this property is not +retained after discretization, as shown subsequently in this paper. + +Calling :math:`\psi` any component of the field and :math:`\psi _{0}` +its magnitude, we get from (`[Plane_wave_APML_def_1] <#Plane_wave_APML_def_1>`__), (`[Plane_wave_APML_beta_of_g] <#Plane_wave_APML_beta_of_g>`__), +(`[Plane_wave_APML_alpha_of_g] <#Plane_wave_APML_alpha_of_g>`__) and (`[APML_impedance] <#APML_impedance>`__) that + +.. math:: + + \label{Plane_wave_absorption} + \psi =\psi _{0}e^{i\omega \left( t\mp x\cos \varphi /c_{x}\mp y\sin \varphi /c_{y}\right) }e^{-\left( \pm \frac{\sigma _{x}\cos \varphi }{\varepsilon _{0}c_{x}}+\overline{\sigma }_{x}\frac{c}{c_{x}}\right) x}e^{-\left( \pm \frac{\sigma _{y}\sin \varphi }{\varepsilon _{0}c_{y}}+\overline{\sigma }_{y}\frac{c}{c_{y}}\right) y} + +We assume that we have an APML layer of thickness :math:`\delta` (measured +along :math:`x`) and that :math:`\sigma _{y}=\overline{\sigma }_{y}=0` +and :math:`c_{y}=c.` Using (`[Plane_wave_absorption] <#Plane_wave_absorption>`__), we determine +that the coefficient of reflection given by this layer is + +.. math:: + + \begin{aligned} + R_{APML}\left( \theta \right) = & e^{-\left( \sigma _{x}\cos \varphi /\varepsilon _{0}c_{x}+\overline{\sigma }_{x}c/c_{x}\right) \delta }e^{-\left( \sigma _{x}\cos \varphi /\varepsilon _{0}c_{x}-\overline{\sigma }_{x}c/c_{x}\right) \delta }\nonumber \\ + = & e^{-2\left( \sigma _{x}\cos \varphi /\varepsilon _{0}c_{x}\right) \delta }\end{aligned} + +which happens to be the same as the PML theoretical coefficient of +reflection if we assume :math:`c_{x}=c`. Hence, it follows that for +the purpose of wave absorption, the term :math:`\overline{\sigma }_{x}` +seems to be of no interest. However, although this conclusion is true +at the infinitesimal limit, it does not hold for the discretized counterpart. + +Discretization +~~~~~~~~~~~~~~ + +.. math:: + + \begin{aligned} + \frac{E_x|^{n+1}_{j+1/2,k,l}-E_x|^{n}_{j+1/2,k,l}}{\Delta t} + \sigma_y \frac{E_x|^{n+1}_{j+1/2,k,l}+E_x|^{n}_{j+1/2,k,l}}{2} = & \frac{H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}}{\Delta y} \\ + % + \frac{E_y|^{n+1}_{j,k+1/2,l}-E_y|^{n}_{j,k+1/2,l}}{\Delta t} + \sigma_x \frac{E_y|^{n+1}_{j,k+1/2,l}+E_y|^{n}_{j,k+1/2,l}}{2} = & - \frac{H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}}{\Delta x} \\ + % + \frac{H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l}-H_{zx}|^{n}_{j+1/2,k+1/2,l}}{\Delta t} + \sigma^*_x \frac{H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l}+H_{zx}|^{n}_{j+1/2,k+1/2,l}}{2} = & - \frac{E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}}{\Delta x} \\ + % + \frac{H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l}-H_{zy}|^{n}_{j+1/2,k+1/2,l}}{\Delta t} + \sigma^*_y \frac{H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l}+H_{zy}|^{n}_{j+1/2,k+1/2,l}}{2} = & \frac{E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}}{\Delta y} \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} + +.. math:: + + \begin{aligned} + E_x|^{n+1}_{j+1/2,k,l} = & \left(\frac{1-\sigma_y \Delta t/2}{1+\sigma_y \Delta t/2}\right) E_x|^{n}_{j+1/2,k,l} + \frac{\Delta t/\Delta y}{1+\sigma_y \Delta t/2} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}\right) \\ + % + E_y|^{n+1}_{j,k+1/2,l} = & \left(\frac{1-\sigma_x \Delta t/2}{1+\sigma_x \Delta t/2}\right) E_y|^{n}_{j,k+1/2,l} - \frac{\Delta t/\Delta x}{1+\sigma_x \Delta t/2} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}\right) \\ + % + H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l} = & \left(\frac{1-\sigma^*_x \Delta t/2}{1+\sigma^*_x \Delta t/2}\right) H_{zx}|^{n}_{j+1/2,k+1/2,l} - \frac{\Delta t/\Delta x}{1+\sigma^*_x \Delta t/2} \left(E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}\right) \\ + % + H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l} = & \left(\frac{1-\sigma^*_y \Delta t/2}{1+\sigma^*_y \Delta t/2}\right) H_{zy}|^{n}_{j+1/2,k+1/2,l} + \frac{\Delta t/\Delta y}{1+\sigma^*_y \Delta t/2} \left(E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}\right) \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} + +.. math:: + + \begin{aligned} + E_x|^{n+1}_{j+1/2,k,l} = & e^{-\sigma_y\Delta t} E_x|^{n}_{j+1/2,k,l} + \frac{1-e^{-\sigma_y\Delta t}}{\sigma_y \Delta y} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}\right) \\ + % + E_y|^{n+1}_{j,k+1/2,l} = & e^{-\sigma_x\Delta t} E_y|^{n}_{j,k+1/2,l} - \frac{1-e^{-\sigma_x\Delta t}}{\sigma_x \Delta x} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}\right) \\ + % + H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_x\Delta t} H_{zx}|^{n}_{j+1/2,k+1/2,l} - \frac{1-e^{-\sigma^*_x\Delta t}}{\sigma^*_x \Delta x} \left(E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}\right) \\ + % + H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_y\Delta t} H_{zy}|^{n}_{j+1/2,k+1/2,l} + \frac{1-e^{-\sigma^*_y\Delta t}}{\sigma^*_y \Delta y} \left(E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}\right) \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} + +.. math:: + + \begin{aligned} + E_x|^{n+1}_{j+1/2,k,l} = & e^{-\sigma_y\Delta t} E_x|^{n}_{j+1/2,k,l} + \frac{1-e^{-\sigma_y\Delta t}}{\sigma_y \Delta y}\frac{c_y}{c} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}\right) \\ + % + E_y|^{n+1}_{j,k+1/2,l} = & e^{-\sigma_x\Delta t} E_y|^{n}_{j,k+1/2,l} - \frac{1-e^{-\sigma_x\Delta t}}{\sigma_x \Delta x}\frac{c_x}{c} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}\right) \\ + % + H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_x\Delta t} H_{zx}|^{n}_{j+1/2,k+1/2,l} - \frac{1-e^{-\sigma^*_x\Delta t}}{\sigma^*_x \Delta x}\frac{c^*_x}{c} \left(E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}\right) \\ + % + H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_y\Delta t} H_{zy}|^{n}_{j+1/2,k+1/2,l} + \frac{1-e^{-\sigma^*_y\Delta t}}{\sigma^*_y \Delta y}\frac{c^*_y}{c} \left(E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}\right) \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} + +.. math:: + + \begin{aligned} + c_x = & c e^{-\sigma_x\Delta t} \frac{\sigma_x \Delta x}{1-e^{-\sigma_x\Delta t}} \\ + c_y = & c e^{-\sigma_y\Delta t} \frac{\sigma_y \Delta y}{1-e^{-\sigma_y\Delta t}} \\ + c^*_x = & c e^{-\sigma^*_x\Delta t} \frac{\sigma^*_x \Delta x}{1-e^{-\sigma^*_x\Delta t}} \\ + c^*_y = & c e^{-\sigma^*_y\Delta t} \frac{\sigma^*_y \Delta y}{1-e^{-\sigma^*_y\Delta t}}\end{aligned} + +.. math:: + + \begin{aligned} + E_x|^{n+1}_{j+1/2,k,l} = & e^{-\sigma_y\Delta t} \left[ E_x|^{n}_{j+1/2,k,l} + \frac{\Delta t}{\Delta y} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}\right) \right] \\ + % + E_y|^{n+1}_{j,k+1/2,l} = & e^{-\sigma_x\Delta t} \left[ E_y|^{n}_{j,k+1/2,l} - \frac{\Delta t}{\Delta x} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}\right) \right] \\ + % + H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_x\Delta t} \left[ H_{zx}|^{n}_{j+1/2,k+1/2,l} - \frac{\Delta t}{\Delta x} \left(E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}\right) \right] \\ + % + H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l} = & e^{-\sigma^*_y\Delta t} \left[ H_{zy}|^{n}_{j+1/2,k+1/2,l} + \frac{\Delta t}{\Delta y} \left(E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}\right) \right] \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} + +.. math:: + + \begin{aligned} + E_x|^{n+1}_{j+1/2,k,l} = & E_x|^{n}_{j+1/2,k,l} + \frac{\Delta t}{\Delta y} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j+1/2,k-1/2,l}\right) \\ + % + E_y|^{n+1}_{j,k+1/2,l} = & E_y|^{n}_{j,k+1/2,l} - \frac{\Delta t}{\Delta x} \left(H_z|^{n+1/2}_{j+1/2,k+1/2,l}-H_z|^{n+1/2}_{j-1/2,k+1/2,l}\right) \\ + % + H_{zx}|^{n+3/2}_{j+1/2,k+1/2,l} = & H_{zx}|^{n}_{j+1/2,k+1/2,l} - \frac{\Delta t}{\Delta x} \left(E_y|^{n+1}_{j+1,k+1/2,l}-E_y|^{n+1}_{j,k+1/2,l}\right) \\ + % + H_{zy}|^{n+3/2}_{j+1/2,k+1/2,l} = & H_{zy}|^{n}_{j+1/2,k+1/2,l} + \frac{\Delta t}{\Delta y} \left(E_x|^{n+1}_{j+1/2,k+1,l}-E_x|^{n+1}_{j+1/2,k,l}\right) \\ + % + H_z = & H_{zx}+H_{zy}\end{aligned} |