diff options
Diffstat (limited to 'Examples/Tests/Langmuir/analysis_langmuir2d.py')
-rwxr-xr-x | Examples/Tests/Langmuir/analysis_langmuir2d.py | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/Examples/Tests/Langmuir/analysis_langmuir2d.py b/Examples/Tests/Langmuir/analysis_langmuir2d.py new file mode 100755 index 000000000..d43134115 --- /dev/null +++ b/Examples/Tests/Langmuir/analysis_langmuir2d.py @@ -0,0 +1,59 @@ +#! /usr/bin/env python + +import sys +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +from scipy.constants import c, e, m_e, epsilon_0 +import numpy as np +import yt +yt.funcs.mylog.setLevel(50) + +# this will be the name of the plot file +fn = sys.argv[1] + +# Parameters of the plasma +ux = 0.01 +n0 = 1.e25 +wp = (n0*e**2/(m_e*epsilon_0))**.5 + +# Load the dataset +ds = yt.load(fn) +t = ds.current_time.to_ndarray().mean() # in order to extract a single scalar +data = ds.covering_grid( 0, ds.domain_left_edge, ds.domain_dimensions ) + +it = int(fn[-5:]) + +# Check the Jx field, which oscillates at wp +j_predicted = -n0*e*c*ux*np.cos( wp*t*(it-0.5)/it ) # j at half-timestep +jx = data['jx'].to_ndarray() +# Print errors, and assert small error +print( "relative error: np.max( np.abs( ( jx[:32,:,0] - j_predicted ) / j_predicted ) ) = %s" \ + %np.max( np.abs( ( jx[:32,:,0] - j_predicted ) / j_predicted ) ) ) +assert np.allclose( jx[:32,:,0], j_predicted, rtol=0.1 ) +print( "absolute error: np.max( np.abs( jx[32:,:,0] ) ) = %s" %np.max( np.abs( jx[32:,:,0] ) ) ) +assert np.allclose( jx[32:,:,0], 0, atol=1.e-2 ) + +# Check the Ex field, which oscillates at wp +E_predicted = m_e * wp * ux * c / e * np.sin(wp*t) +Ex = data['Ex'].to_ndarray() +# Print errors, and assert small error +print( "relative error: np.max( np.abs( ( Ex[:32,:,0] - E_predicted ) / E_predicted ) ) = %s" \ + %np.max( np.abs( ( Ex[:32,:,0] - E_predicted ) / E_predicted ) ) ) +assert np.allclose( Ex[:32,:,0], E_predicted, rtol=0.1 ) +print( "absolute error: np.max( np.abs( Ex[32:,:,0] ) ) = %s" %np.max( np.abs( Ex[32:,:,0] ) ) ) +assert np.allclose( Ex[32:,:,0], 0, atol=1.e-4 ) + +# Save an image to be displayed on the website +t_plot = np.linspace(0.0, t, 200) +plt.subplot(211) +plt.plot( t_plot, -n0 * e * c * ux * np.cos( wp*t_plot ) ) +plt.plot( (it-0.5)/it*t, j_predicted, 'o' ) +plt.ylabel( 'jx' ) +plt.xlabel( 'Time' ) +plt.subplot(212) +plt.plot( t_plot, m_e * wp * ux * c / e * np.sin( wp*t_plot ) ) +plt.plot( t, E_predicted, 'o' ) +plt.ylabel( 'Ex' ) +plt.xlabel( 'Time' ) +plt.savefig("langmuir2d_analysis.png") |