aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/Langmuir/analysis_langmuir2d.py
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Tests/Langmuir/analysis_langmuir2d.py')
-rwxr-xr-xExamples/Tests/Langmuir/analysis_langmuir2d.py59
1 files changed, 59 insertions, 0 deletions
diff --git a/Examples/Tests/Langmuir/analysis_langmuir2d.py b/Examples/Tests/Langmuir/analysis_langmuir2d.py
new file mode 100755
index 000000000..d43134115
--- /dev/null
+++ b/Examples/Tests/Langmuir/analysis_langmuir2d.py
@@ -0,0 +1,59 @@
+#! /usr/bin/env python
+
+import sys
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+from scipy.constants import c, e, m_e, epsilon_0
+import numpy as np
+import yt
+yt.funcs.mylog.setLevel(50)
+
+# this will be the name of the plot file
+fn = sys.argv[1]
+
+# Parameters of the plasma
+ux = 0.01
+n0 = 1.e25
+wp = (n0*e**2/(m_e*epsilon_0))**.5
+
+# Load the dataset
+ds = yt.load(fn)
+t = ds.current_time.to_ndarray().mean() # in order to extract a single scalar
+data = ds.covering_grid( 0, ds.domain_left_edge, ds.domain_dimensions )
+
+it = int(fn[-5:])
+
+# Check the Jx field, which oscillates at wp
+j_predicted = -n0*e*c*ux*np.cos( wp*t*(it-0.5)/it ) # j at half-timestep
+jx = data['jx'].to_ndarray()
+# Print errors, and assert small error
+print( "relative error: np.max( np.abs( ( jx[:32,:,0] - j_predicted ) / j_predicted ) ) = %s" \
+ %np.max( np.abs( ( jx[:32,:,0] - j_predicted ) / j_predicted ) ) )
+assert np.allclose( jx[:32,:,0], j_predicted, rtol=0.1 )
+print( "absolute error: np.max( np.abs( jx[32:,:,0] ) ) = %s" %np.max( np.abs( jx[32:,:,0] ) ) )
+assert np.allclose( jx[32:,:,0], 0, atol=1.e-2 )
+
+# Check the Ex field, which oscillates at wp
+E_predicted = m_e * wp * ux * c / e * np.sin(wp*t)
+Ex = data['Ex'].to_ndarray()
+# Print errors, and assert small error
+print( "relative error: np.max( np.abs( ( Ex[:32,:,0] - E_predicted ) / E_predicted ) ) = %s" \
+ %np.max( np.abs( ( Ex[:32,:,0] - E_predicted ) / E_predicted ) ) )
+assert np.allclose( Ex[:32,:,0], E_predicted, rtol=0.1 )
+print( "absolute error: np.max( np.abs( Ex[32:,:,0] ) ) = %s" %np.max( np.abs( Ex[32:,:,0] ) ) )
+assert np.allclose( Ex[32:,:,0], 0, atol=1.e-4 )
+
+# Save an image to be displayed on the website
+t_plot = np.linspace(0.0, t, 200)
+plt.subplot(211)
+plt.plot( t_plot, -n0 * e * c * ux * np.cos( wp*t_plot ) )
+plt.plot( (it-0.5)/it*t, j_predicted, 'o' )
+plt.ylabel( 'jx' )
+plt.xlabel( 'Time' )
+plt.subplot(212)
+plt.plot( t_plot, m_e * wp * ux * c / e * np.sin( wp*t_plot ) )
+plt.plot( t, E_predicted, 'o' )
+plt.ylabel( 'Ex' )
+plt.xlabel( 'Time' )
+plt.savefig("langmuir2d_analysis.png")