aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/Langmuir/analysis_langmuir_multi_1d.py
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Tests/Langmuir/analysis_langmuir_multi_1d.py')
-rwxr-xr-xExamples/Tests/Langmuir/analysis_langmuir_multi_1d.py114
1 files changed, 114 insertions, 0 deletions
diff --git a/Examples/Tests/Langmuir/analysis_langmuir_multi_1d.py b/Examples/Tests/Langmuir/analysis_langmuir_multi_1d.py
new file mode 100755
index 000000000..5cb52de23
--- /dev/null
+++ b/Examples/Tests/Langmuir/analysis_langmuir_multi_1d.py
@@ -0,0 +1,114 @@
+#! /usr/bin/env python
+
+# Copyright 2019-2021 Jean-Luc Vay, Maxence Thevenet, Remi Lehe, Prabhat Kumar
+#
+#
+# This file is part of WarpX.
+#
+# License: BSD-3-Clause-LBNL
+
+
+# This is a script that analyses the simulation results from
+# the script `inputs.multi.rt`. This simulates a 1D periodic plasma wave.
+# The electric field in the simulation is given (in theory) by:
+# $$ E_z = \epsilon \,\frac{m_e c^2 k_z}{q_e}\sin(k_z z)\sin( \omega_p t)$$
+import sys
+import re
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+import yt
+yt.funcs.mylog.setLevel(50)
+import numpy as np
+from scipy.constants import e, m_e, epsilon_0, c
+sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
+import checksumAPI
+
+# this will be the name of the plot file
+fn = sys.argv[1]
+
+# Parse test name and check if current correction (psatd.current_correction=1) is applied
+current_correction = True if re.search( 'current_correction', fn ) else False
+
+# Parse test name and check if Vay current deposition (algo.current_deposition=vay) is used
+vay_deposition = True if re.search( 'Vay_deposition', fn ) else False
+
+# Parameters (these parameters must match the parameters in `inputs.multi.rt`)
+epsilon = 0.01
+n = 4.e24
+n_osc_z = 2
+zmin = -20e-6; zmax = 20.e-6; Nz = 128
+
+# Wave vector of the wave
+kz = 2.*np.pi*n_osc_z/(zmax-zmin)
+# Plasma frequency
+wp = np.sqrt((n*e**2)/(m_e*epsilon_0))
+
+k = {'Ez':kz}
+cos = {'Ez':(1,1,0)}
+
+def get_contribution( is_cos, k ):
+ du = (zmax-zmin)/Nz
+ u = zmin + du*( 0.5 + np.arange(Nz) )
+ if is_cos == 1:
+ return( np.cos(k*u) )
+ else:
+ return( np.sin(k*u) )
+
+def get_theoretical_field( field, t ):
+ amplitude = epsilon * (m_e*c**2*k[field])/e * np.sin(wp*t)
+ cos_flag = cos[field]
+ z_contribution = get_contribution( cos_flag[2], kz )
+
+ E = amplitude * z_contribution
+
+ return( E )
+
+# Read the file
+ds = yt.load(fn)
+t0 = ds.current_time.to_value()
+data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge,
+ dims=ds.domain_dimensions)
+# Check the validity of the fields
+error_rel = 0
+for field in ['Ez']:
+ E_sim = data[field].to_ndarray()[:,0,0]
+ E_th = get_theoretical_field(field, t0)
+ max_error = abs(E_sim-E_th).max()/abs(E_th).max()
+ print('%s: Max error: %.2e' %(field,max_error))
+ error_rel = max( error_rel, max_error )
+
+# Plot the last field from the loop (Ez at iteration 80)
+plt.subplot2grid( (1,2), (0,0) )
+plt.plot( E_sim )
+#plt.colorbar()
+plt.title('Ez, last iteration\n(simulation)')
+plt.subplot2grid( (1,2), (0,1) )
+plt.plot( E_th )
+#plt.colorbar()
+plt.title('Ez, last iteration\n(theory)')
+plt.tight_layout()
+plt.savefig('langmuir_multi_1d_analysis.png')
+
+tolerance_rel = 0.05
+
+print("error_rel : " + str(error_rel))
+print("tolerance_rel: " + str(tolerance_rel))
+
+assert( error_rel < tolerance_rel )
+
+# Check relative L-infinity spatial norm of rho/epsilon_0 - div(E) when
+# current correction (psatd.do_current_correction=1) is applied or when
+# Vay current deposition (algo.current_deposition=vay) is used
+if current_correction or vay_deposition:
+ rho = data['rho' ].to_ndarray()
+ divE = data['divE'].to_ndarray()
+ error_rel = np.amax( np.abs( divE - rho/epsilon_0 ) ) / np.amax( np.abs( rho/epsilon_0 ) )
+ tolerance = 1.e-9
+ print("Check charge conservation:")
+ print("error_rel = {}".format(error_rel))
+ print("tolerance = {}".format(tolerance))
+ assert( error_rel < tolerance )
+
+test_name = fn[:-9] # Could also be os.path.split(os.getcwd())[1]
+checksumAPI.evaluate_checksum(test_name, fn)