diff options
Diffstat (limited to 'Examples/Tests/langmuir/analysis_2d.py')
-rwxr-xr-x | Examples/Tests/langmuir/analysis_2d.py | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/Examples/Tests/langmuir/analysis_2d.py b/Examples/Tests/langmuir/analysis_2d.py new file mode 100755 index 000000000..e137d5022 --- /dev/null +++ b/Examples/Tests/langmuir/analysis_2d.py @@ -0,0 +1,140 @@ +#!/usr/bin/env python3 + +# Copyright 2019 Jean-Luc Vay, Maxence Thevenet, Remi Lehe +# +# +# This file is part of WarpX. +# +# License: BSD-3-Clause-LBNL +# +# This is a script that analyses the simulation results from +# the script `inputs.multi.rt`. This simulates a 3D periodic plasma wave. +# The electric field in the simulation is given (in theory) by: +# $$ E_x = \epsilon \,\frac{m_e c^2 k_x}{q_e}\sin(k_x x)\cos(k_y y)\cos(k_z z)\sin( \omega_p t)$$ +# $$ E_y = \epsilon \,\frac{m_e c^2 k_y}{q_e}\cos(k_x x)\sin(k_y y)\cos(k_z z)\sin( \omega_p t)$$ +# $$ E_z = \epsilon \,\frac{m_e c^2 k_z}{q_e}\cos(k_x x)\cos(k_y y)\sin(k_z z)\sin( \omega_p t)$$ +import os +import re +import sys + +import matplotlib.pyplot as plt +from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable +import yt + +yt.funcs.mylog.setLevel(50) + +import numpy as np +from scipy.constants import c, e, epsilon_0, m_e + +sys.path.insert(1, '../../../../warpx/Regression/Checksum/') +import checksumAPI + +# this will be the name of the plot file +fn = sys.argv[1] + +# Parse test name and check if current correction (psatd.current_correction=1) is applied +current_correction = True if re.search( 'current_correction', fn ) else False + +# Parse test name and check if Vay current deposition (algo.current_deposition=vay) is used +vay_deposition = True if re.search( 'Vay_deposition', fn ) else False + +# Parameters (these parameters must match the parameters in `inputs.multi.rt`) +epsilon = 0.01 +n = 4.e24 +n_osc_x = 2 +n_osc_z = 2 +xmin = -20e-6; xmax = 20.e-6; Nx = 128 +zmin = -20e-6; zmax = 20.e-6; Nz = 128 + +# Wave vector of the wave +kx = 2.*np.pi*n_osc_x/(xmax-xmin) +kz = 2.*np.pi*n_osc_z/(zmax-zmin) +# Plasma frequency +wp = np.sqrt((n*e**2)/(m_e*epsilon_0)) + +k = {'Ex':kx, 'Ez':kz} +cos = {'Ex': (0,1,1), 'Ez':(1,1,0)} + +def get_contribution( is_cos, k ): + du = (xmax-xmin)/Nx + u = xmin + du*( 0.5 + np.arange(Nx) ) + if is_cos == 1: + return( np.cos(k*u) ) + else: + return( np.sin(k*u) ) + +def get_theoretical_field( field, t ): + amplitude = epsilon * (m_e*c**2*k[field])/e * np.sin(wp*t) + cos_flag = cos[field] + x_contribution = get_contribution( cos_flag[0], kx ) + z_contribution = get_contribution( cos_flag[2], kz ) + + E = amplitude * x_contribution[:, np.newaxis ] \ + * z_contribution[np.newaxis, :] + + return( E ) + +# Read the file +ds = yt.load(fn) +t0 = ds.current_time.to_value() +data = ds.covering_grid(level = 0, left_edge = ds.domain_left_edge, dims = ds.domain_dimensions) +edge = np.array([(ds.domain_left_edge[1]).item(), (ds.domain_right_edge[1]).item(), \ + (ds.domain_left_edge[0]).item(), (ds.domain_right_edge[0]).item()]) + +# Check the validity of the fields +error_rel = 0 +for field in ['Ex', 'Ez']: + E_sim = data[('mesh',field)].to_ndarray()[:,:,0] + E_th = get_theoretical_field(field, t0) + max_error = abs(E_sim-E_th).max()/abs(E_th).max() + print('%s: Max error: %.2e' %(field,max_error)) + error_rel = max( error_rel, max_error ) + +# Plot the last field from the loop (Ez at iteration 40) +fig, (ax1, ax2) = plt.subplots(1, 2, dpi = 100) +# First plot +vmin = E_sim.min() +vmax = E_sim.max() +cax1 = make_axes_locatable(ax1).append_axes('right', size = '5%', pad = '5%') +im1 = ax1.imshow(E_sim, origin = 'lower', extent = edge, vmin = vmin, vmax = vmax) +cb1 = fig.colorbar(im1, cax = cax1) +ax1.set_xlabel(r'$z$') +ax1.set_ylabel(r'$x$') +ax1.set_title(r'$E_z$ (sim)') +# Second plot +vmin = E_th.min() +vmax = E_th.max() +cax2 = make_axes_locatable(ax2).append_axes('right', size = '5%', pad = '5%') +im2 = ax2.imshow(E_th, origin = 'lower', extent = edge, vmin = vmin, vmax = vmax) +cb2 = fig.colorbar(im2, cax = cax2) +ax2.set_xlabel(r'$z$') +ax2.set_ylabel(r'$x$') +ax2.set_title(r'$E_z$ (theory)') +# Save figure +fig.tight_layout() +fig.savefig('Langmuir_multi_2d_analysis.png', dpi = 200) + +tolerance_rel = 0.05 + +print("error_rel : " + str(error_rel)) +print("tolerance_rel: " + str(tolerance_rel)) + +assert( error_rel < tolerance_rel ) + +# Check relative L-infinity spatial norm of rho/epsilon_0 - div(E) +# with current correction (and periodic single box option) or with Vay current deposition +if current_correction: + tolerance = 1e-9 +elif vay_deposition: + tolerance = 1e-3 +if current_correction or vay_deposition: + rho = data[('boxlib','rho')].to_ndarray() + divE = data[('boxlib','divE')].to_ndarray() + error_rel = np.amax( np.abs( divE - rho/epsilon_0 ) ) / np.amax( np.abs( rho/epsilon_0 ) ) + print("Check charge conservation:") + print("error_rel = {}".format(error_rel)) + print("tolerance = {}".format(tolerance)) + assert( error_rel < tolerance ) + +test_name = os.path.split(os.getcwd())[1] +checksumAPI.evaluate_checksum(test_name, fn) |