aboutsummaryrefslogtreecommitdiff
path: root/Python/pywarpx/_libwarpx.py
diff options
context:
space:
mode:
Diffstat (limited to 'Python/pywarpx/_libwarpx.py')
-rwxr-xr-xPython/pywarpx/_libwarpx.py189
1 files changed, 145 insertions, 44 deletions
diff --git a/Python/pywarpx/_libwarpx.py b/Python/pywarpx/_libwarpx.py
index 0e340dfad..e0a7262be 100755
--- a/Python/pywarpx/_libwarpx.py
+++ b/Python/pywarpx/_libwarpx.py
@@ -53,7 +53,7 @@ LP_LP_c_char = ctypes.POINTER(LP_c_char)
PyBuf_READ = 0x100
PyBUF_WRITE = 0x200
-# this is a function for converting a ctypes pointer to a numpy array
+# this is a function for converting a ctypes pointer to a numpy array
def array1d_from_pointer(pointer, dtype, size):
if sys.version_info.major >= 3:
buffer_from_memory = ctypes.pythonapi.PyMemoryView_FromMemory
@@ -80,12 +80,21 @@ f.restype = LP_LP_c_double
f = libwarpx.warpx_getEfield
f.restype = LP_LP_c_double
+f = libwarpx.warpx_getEfieldLoVects
+f.restype = LP_c_int
+
f = libwarpx.warpx_getBfield
f.restype = LP_LP_c_double
+f = libwarpx.warpx_getBfieldLoVects
+f.restype = LP_c_int
+
f = libwarpx.warpx_getCurrentDensity
f.restype = LP_LP_c_double
+f = libwarpx.warpx_getCurrentDensityLoVects
+f.restype = LP_c_int
+
#f = libwarpx.warpx_getPMLSigma
#f.restype = LP_c_double
#
@@ -97,7 +106,7 @@ f.restype = LP_LP_c_double
f = libwarpx.warpx_addNParticles
f.argtypes = (ctypes.c_int, ctypes.c_int,
- ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),
+ ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),
ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),
ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),
ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"),
@@ -152,23 +161,23 @@ def amrex_init(argv):
def initialize(argv=None):
'''
-
- Initialize WarpX and AMReX. Must be called before
+
+ Initialize WarpX and AMReX. Must be called before
doing anything else.
-
+
'''
if argv is None:
argv = sys.argv
amrex_init(argv)
libwarpx.warpx_init()
-
+
def finalize():
'''
-
- Call finalize for WarpX and AMReX. Must be called at
+
+ Call finalize for WarpX and AMReX. Must be called at
the end of your script.
-
+
'''
libwarpx.warpx_finalize()
libwarpx.amrex_finalize()
@@ -176,18 +185,18 @@ def finalize():
def evolve(num_steps=-1):
'''
-
+
Evolve the simulation for num_steps steps. If num_steps=-1,
the simulation will be run until the end as specified in the
inputs file.
-
+
Parameters
----------
-
+
num_steps: int, the number of steps to take
-
+
'''
-
+
libwarpx.warpx_evolve(num_steps);
@@ -209,7 +218,7 @@ def evolve(num_steps=-1):
#def get_sigma_star(direction):
# '''
#
-# Return the 'sigma*' PML coefficients for the magnetic field
+# Return the 'sigma*' PML coefficients for the magnetic field
# in the given direction.
#
# '''
@@ -224,7 +233,7 @@ def evolve(num_steps=-1):
#def compute_pml_factors(lev, dt):
# '''
#
-# This recomputes the PML coefficients for a given level, using the
+# This recomputes the PML coefficients for a given level, using the
# time step dt. This needs to be called after modifying the coefficients
# from Python.
#
@@ -236,19 +245,19 @@ def add_particles(species_number=0,
x=0., y=0., z=0., ux=0., uy=0., uz=0., attr=0.,
unique_particles=True):
'''
-
+
A function for adding particles to the WarpX simulation.
-
+
Parameters
----------
-
+
species_number : the species to add the particle to (default = 0)
x, y, z : arrays or scalars of the particle positions (default = 0.)
ux, uy, uz : arrays or scalars of the particle momenta (default = 0.)
attr : a 2D numpy array or scalar with the particle attributes (default = 0.)
- unique_particles : whether the particles are unique or duplicated on
+ unique_particles : whether the particles are unique or duplicated on
several processes. (default = True)
-
+
'''
# --- Get length of arrays, set to one for scalars
@@ -295,12 +304,12 @@ def add_particles(species_number=0,
def get_particle_structs(species_number):
'''
-
+
This returns a list of numpy arrays containing the particle struct data
- on each tile for this process. The particle data is represented as a structured
- numpy array and contains the particle 'x', 'y', 'z', 'id', and 'cpu'.
+ on each tile for this process. The particle data is represented as a structured
+ numpy array and contains the particle 'x', 'y', 'z', 'id', and 'cpu'.
- The data for the numpy arrays are not copied, but share the underlying
+ The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
@@ -333,11 +342,11 @@ def get_particle_structs(species_number):
def get_particle_arrays(species_number, comp):
'''
-
+
This returns a list of numpy arrays containing the particle array data
on each tile for this process.
- The data for the numpy arrays are not copied, but share the underlying
+ The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
@@ -350,9 +359,9 @@ def get_particle_arrays(species_number, comp):
-------
A List of numpy arrays.
-
+
'''
-
+
particles_per_tile = LP_c_int()
num_tiles = ctypes.c_int(0)
data = libwarpx.warpx_getParticleArrays(species_number, comp,
@@ -537,11 +546,11 @@ def get_particle_Bz(species_number):
def get_mesh_electric_field(level, direction, include_ghosts=True):
'''
-
+
This returns a list of numpy arrays containing the mesh electric field
data on each grid for this process.
- The data for the numpy arrays are not copied, but share the underlying
+ The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
@@ -555,7 +564,7 @@ def get_mesh_electric_field(level, direction, include_ghosts=True):
-------
A List of numpy arrays.
-
+
'''
assert(level == 0)
@@ -564,13 +573,14 @@ def get_mesh_electric_field(level, direction, include_ghosts=True):
size = ctypes.c_int(0)
ngrow = ctypes.c_int(0)
data = libwarpx.warpx_getEfield(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
+ ctypes.byref(size), ctypes.byref(ngrow),
ctypes.byref(shapes))
ng = ngrow.value
grid_data = []
for i in range(size.value):
shape = tuple([shapes[dim*i + d] for d in range(dim)])
- arr = np.ctypeslib.as_array(data[i], shape)
+ # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
+ arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
arr.setflags(write=1)
if include_ghosts:
grid_data.append(arr)
@@ -584,11 +594,11 @@ def get_mesh_electric_field(level, direction, include_ghosts=True):
def get_mesh_magnetic_field(level, direction, include_ghosts=True):
'''
-
+
This returns a list of numpy arrays containing the mesh magnetic field
data on each grid for this process.
- The data for the numpy arrays are not copied, but share the underlying
+ The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
@@ -602,7 +612,7 @@ def get_mesh_magnetic_field(level, direction, include_ghosts=True):
-------
A List of numpy arrays.
-
+
'''
assert(level == 0)
@@ -611,13 +621,14 @@ def get_mesh_magnetic_field(level, direction, include_ghosts=True):
size = ctypes.c_int(0)
ngrow = ctypes.c_int(0)
data = libwarpx.warpx_getBfield(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
+ ctypes.byref(size), ctypes.byref(ngrow),
ctypes.byref(shapes))
ng = ngrow.value
grid_data = []
for i in range(size.value):
shape = tuple([shapes[dim*i + d] for d in range(dim)])
- arr = np.ctypeslib.as_array(data[i], shape)
+ # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
+ arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
arr.setflags(write=1)
if include_ghosts:
grid_data.append(arr)
@@ -631,11 +642,11 @@ def get_mesh_magnetic_field(level, direction, include_ghosts=True):
def get_mesh_current_density(level, direction, include_ghosts=True):
'''
-
+
This returns a list of numpy arrays containing the mesh current density
data on each grid for this process.
- The data for the numpy arrays are not copied, but share the underlying
+ The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
@@ -649,7 +660,7 @@ def get_mesh_current_density(level, direction, include_ghosts=True):
-------
A List of numpy arrays.
-
+
'''
assert(level == 0)
@@ -658,13 +669,14 @@ def get_mesh_current_density(level, direction, include_ghosts=True):
size = ctypes.c_int(0)
ngrow = ctypes.c_int(0)
data = libwarpx.warpx_getCurrentDensity(level, direction,
- ctypes.byref(size), ctypes.byref(ngrow),
+ ctypes.byref(size), ctypes.byref(ngrow),
ctypes.byref(shapes))
ng = ngrow.value
grid_data = []
for i in range(size.value):
shape = tuple([shapes[dim*i + d] for d in range(dim)])
- arr = np.ctypeslib.as_array(data[i], shape)
+ # --- The data is stored in Fortran order, hence shape is reversed and a transpose is taken.
+ arr = np.ctypeslib.as_array(data[i], shape[::-1]).T
arr.setflags(write=1)
if include_ghosts:
grid_data.append(arr)
@@ -674,3 +686,92 @@ def get_mesh_current_density(level, direction, include_ghosts=True):
libc.free(shapes)
libc.free(data)
return grid_data
+
+
+def _get_mesh_array_lovects(level, direction, include_ghosts=True, getarrayfunc=None):
+ assert(0 <= level and level <= libwarpx.warpx_finestLevel())
+
+ size = ctypes.c_int(0)
+ ngrow = ctypes.c_int(0)
+ data = getarrayfunc(level, direction, ctypes.byref(size), ctypes.byref(ngrow))
+
+ lovects_ref = np.ctypeslib.as_array(data, (size.value, dim))
+
+ # --- Make a copy of the data to avoid memory problems
+ # --- Also, take the transpose to give shape (dims, number of grids)
+ lovects = lovects_ref.copy().T
+
+ if not include_ghosts:
+ lovects += ngrow.value
+
+ del lovects_ref
+ libc.free(data)
+ return lovects
+
+
+def get_mesh_electric_field_lovects(level, direction, include_ghosts=True):
+ '''
+
+ This returns a list of the lo vectors of the arrays containing the mesh electric field
+ data on each grid for this process.
+
+ Parameters
+ ----------
+
+ level : the AMR level to get the data for
+ direction : the component of the data you want
+ include_ghosts : whether to include ghost zones or not
+
+ Returns
+ -------
+
+ A 2d numpy array of the lo vector for each grid with the shape (dims, number of grids)
+
+ '''
+ return _get_mesh_array_lovects(level, direction, include_ghosts, libwarpx.warpx_getEfieldLoVects)
+
+
+def get_mesh_magnetic_field_lovects(level, direction, include_ghosts=True):
+ '''
+
+ This returns a list of the lo vectors of the arrays containing the mesh electric field
+ data on each grid for this process.
+
+ Parameters
+ ----------
+
+ level : the AMR level to get the data for
+ direction : the component of the data you want
+ include_ghosts : whether to include ghost zones or not
+
+ Returns
+ -------
+
+ A 2d numpy array of the lo vector for each grid with the shape (dims, number of grids)
+
+ '''
+ return _get_mesh_array_lovects(level, direction, include_ghosts, libwarpx.warpx_getBfieldLoVects)
+
+
+def get_mesh_current_density_lovects(level, direction, include_ghosts=True):
+ '''
+
+ This returns a list of the lo vectors of the arrays containing the mesh electric field
+ data on each grid for this process.
+
+ Parameters
+ ----------
+
+ level : the AMR level to get the data for
+ direction : the component of the data you want
+ include_ghosts : whether to include ghost zones or not
+
+ Returns
+ -------
+
+ A 2d numpy array of the lo vector for each grid with the shape (dims, number of grids)
+
+ '''
+ return _get_mesh_array_lovects(level, direction, include_ghosts, libwarpx.warpx_getCurrentDensityLoVects)
+
+