diff options
Diffstat (limited to 'Python/pywarpx/picmi.py')
-rw-r--r-- | Python/pywarpx/picmi.py | 388 |
1 files changed, 388 insertions, 0 deletions
diff --git a/Python/pywarpx/picmi.py b/Python/pywarpx/picmi.py new file mode 100644 index 000000000..771edf85f --- /dev/null +++ b/Python/pywarpx/picmi.py @@ -0,0 +1,388 @@ +"""Classes following the PICMI standard +""" +import PICMI_Base +import numpy as np +import pywarpx + +codename = 'WarpX' + +# --- Values from WarpXConst.H +c = 299792458. +ep0 = 8.854187817e-12 +mu0 = 1.2566370614359173e-06 +q_e = 1.602176462e-19 +m_e = 9.10938291e-31 +m_p = 1.6726231e-27 + + +class Species(PICMI_Base.PICMI_Species): + def init(self, **kw): + + if self.particle_type == 'electron': + if self.charge is None: self.charge = '-q_e' + if self.mass is None: self.mass = 'm_e' + elif self.particle_type == 'positron': + if self.charge is None: self.charge = 'q_e' + if self.mass is None: self.mass = 'm_e' + elif self.particle_type == 'proton': + if self.charge is None: self.charge = 'q_e' + if self.mass is None: self.mass = 'm_p' + elif self.particle_type == 'anti-proton': + if self.charge is None: self.charge = '-q_e' + if self.mass is None: self.mass = 'm_p' + + def initialize_inputs(self, layout): + self.species_number = pywarpx.particles.nspecies + pywarpx.particles.nspecies += 1 + + if self.name is None: + self.name = 'species{}'.format(self.species_number) + + if pywarpx.particles.species_names is None: + pywarpx.particles.species_names = self.name + else: + pywarpx.particles.species_names += ' ' + self.name + + self.species = pywarpx.Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python') + pywarpx.Particles.particles_list.append(self.species) + + if self.initial_distribution is not None: + self.initial_distribution.initialize_inputs(self.species_number, layout, self.species) + + +PICMI_Base.PICMI_MultiSpecies.Species_class = Species +class MultiSpecies(PICMI_Base.PICMI_MultiSpecies): + pass + + +class GaussianBunchDistribution(PICMI_Base.PICMI_GaussianBunchDistribution): + def init(self, **kw): + if self.seed is not None: + print('Warning: WarpX does not support specifying the random number seed') + + def initialize_inputs(self, species_number, layout, species): + species.injection_style = "gaussian_beam" + species.x_m = self.centroid_position[0] + species.y_m = self.centroid_position[1] + species.z_m = self.centroid_position[2] + species.x_rms = self.rms_bunch_size[0] + species.y_rms = self.rms_bunch_size[1] + species.z_rms = self.rms_bunch_size[2] + + # --- Only PseudoRandomLayout is supported + species.npart = layout.n_macroparticles + + # --- Calculate the total charge. Note that charge might be a string instead of a number. + charge = species.charge + if charge == 'q_e' or charge == '+q_e': + charge = q_e + elif charge == '-q_e': + charge = -q_e + species.q_tot = self.number_real_particles*charge + + # --- These need to be defined even though they are not used + species.profile = "constant" + species.density = 1 + + # --- The PICMI standard doesn't yet have a way of specifying these values. + # --- They should default to the size of the domain. They are not typically + # --- necessary though since any particles outside the domain are rejected. + #species.xmin + #species.xmax + #species.ymin + #species.ymax + #species.zmin + #species.zmax + + if np.any(np.not_equal(self.velocity_divergence, 0.)): + species.momentum_distribution_type = "radial_expansion" + species.u_over_r = self.velocity_divergence[0] + #species.u_over_y = self.velocity_divergence[1] + #species.u_over_z = self.velocity_divergence[2] + elif np.any(np.not_equal(self.rms_velocity, 0.)): + species.momentum_distribution_type = "gaussian" + species.ux_m = self.centroid_velocity[0] + species.uy_m = self.centroid_velocity[1] + species.uz_m = self.centroid_velocity[2] + species.ux_th = self.rms_velocity[0] + species.uy_th = self.rms_velocity[1] + species.uz_th = self.rms_velocity[2] + else: + species.momentum_distribution_type = "constant" + species.ux = self.centroid_velocity[0] + species.uy = self.centroid_velocity[1] + species.uz = self.centroid_velocity[2] + + +class UniformDistribution(PICMI_Base.PICMI_UniformDistribution): + + def initialize_inputs(self, species_number, layout, species): + + if isinstance(layout, GriddedLayout): + species.injection_style = "nuniformpercell" + species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell + elif isinstance(layout, PseudoRandomLayout): + assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the GriddedLayout with UniformDistribution') + species.injection_style = "nrandompercell" + species.num_particles_per_cell = layout.n_macroparticles_per_cell + else: + raise Exception('WarpX does not support the specified layout for UniformDistribution') + + species.xmin = self.lower_bound[0] + species.xmax = self.upper_bound[0] + species.ymin = self.lower_bound[1] + species.ymax = self.upper_bound[1] + species.zmin = self.lower_bound[2] + species.zmax = self.upper_bound[2] + + # --- Only constant density is supported at this time + species.profile = "constant" + species.density = self.density + + if np.any(np.not_equal(self.rms_velocity, 0.)): + species.momentum_distribution_type = "gaussian" + species.ux_m = self.directed_velocity[0] + species.uy_m = self.directed_velocity[1] + species.uz_m = self.directed_velocity[2] + species.ux_th = self.rms_velocity[0] + species.uy_th = self.rms_velocity[1] + species.uz_th = self.rms_velocity[2] + else: + species.momentum_distribution_type = "constant" + species.ux = self.directed_velocity[0] + species.uy = self.directed_velocity[1] + species.uz = self.directed_velocity[2] + + if self.fill_in: + pywarpx.warpx.do_plasma_injection = 1 + if not hasattr(pywarpx.warpx, 'injected_plasma_species'): + pywarpx.warpx.injected_plasma_species = [] + + pywarpx.warpx.injected_plasma_species.append(species_number) + pywarpx.warpx.num_injected_species = len(pywarpx.warpx.injected_plasma_species) + + +class AnalyticDistribution(PICMI_Base.PICMI_AnalyticDistribution): + + def initialize_inputs(self, species_number, layout, species): + raise Exception('WarpX does not support AnalyticDistribution') + + +class ParticleList(PICMI_Base.PICMI_ParticleList): + def init(self, **kw): + + if len(x) > 1: + raise Exception('Only a single particle can be loaded') + + def initialize_inputs(self, species_number, layout, species): + + species.injection_style = "singleparticle" + species.single_particle_pos = [self.x[0], self.y[0], self.z[0]] + species.single_particle_vel = [self.ux[0]/c, self.uy[0]/c, self.uz[0]/c] + species.single_particle_weight = self.weight + + # --- These need to be defined even though they are not used + species.profile = "constant" + species.density = 1 + species.momentum_distribution_type = 'constant' + + +class ParticleDistributionPlanarInjector(PICMI_Base.PICMI_ParticleDistributionPlanarInjector): + pass + + +class GriddedLayout(PICMI_Base.PICMI_GriddedLayout): + pass + + +class PseudoRandomLayout(PICMI_Base.PICMI_PseudoRandomLayout): + pass + + +class BinomialSmoother(PICMI_Base.PICMI_BinomialSmoother): + pass + + +class CylindricalGrid(PICMI_Base.PICMI_CylindricalGrid): + def init(self, **kw): + raise Exception('WarpX does not support CylindricalGrid') + + +class Cartesian2DGrid(PICMI_Base.PICMI_Cartesian2DGrid): + def init(self, **kw): + self.max_grid_size = kw.get('max_grid_size', 32) + self.max_level = kw.get('max_level', 0) + self.coord_sys = kw.get('coord_sys', 0) + + def initialize_inputs(self): + pywarpx.amr.n_cell = self.number_of_cells + + # Maximum allowable size of each subdomain in the problem domain; + # this is used to decompose the domain for parallel calculations. + pywarpx.amr.max_grid_size = self.max_grid_size + + # Maximum level in hierarchy (for now must be 0, i.e., one level in total) + pywarpx.amr.max_level = self.max_level + + # Geometry + pywarpx.geometry.coord_sys = self.coord_sys + pywarpx.geometry.is_periodic = '%d %d %d'%(self.bc_xmin=='periodic', self.bc_ymin=='periodic') # Is periodic? + pywarpx.geometry.prob_lo = self.lower_bound # physical domain + pywarpx.geometry.prob_hi = self.upper_bound + + if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): + pywarpx.warpx.do_moving_window = 1 + if self.moving_window_velocity[0] != 0.: + pywarpx.warpx.moving_window_dir = 'x' + pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c # in units of the speed of light + if self.moving_window_velocity[1] != 0.: + pywarpx.warpx.moving_window_dir = 'y' + pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c # in units of the speed of light + + +class Cartesian3DGrid(PICMI_Base.PICMI_Cartesian3DGrid): + def init(self, **kw): + self.max_grid_size = kw.get('max_grid_size', 32) + self.max_level = kw.get('max_level', 0) + self.coord_sys = kw.get('coord_sys', 0) + + def initialize_inputs(self): + pywarpx.amr.n_cell = self.number_of_cells + + # Maximum allowable size of each subdomain in the problem domain; + # this is used to decompose the domain for parallel calculations. + pywarpx.amr.max_grid_size = self.max_grid_size + + # Maximum level in hierarchy (for now must be 0, i.e., one level in total) + pywarpx.amr.max_level = self.max_level + + # Geometry + pywarpx.geometry.coord_sys = self.coord_sys + pywarpx.geometry.is_periodic = '%d %d %d'%(self.bc_xmin=='periodic', self.bc_ymin=='periodic', self.bc_zmin=='periodic') # Is periodic? + pywarpx.geometry.prob_lo = self.lower_bound # physical domain + pywarpx.geometry.prob_hi = self.upper_bound + + if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): + pywarpx.warpx.do_moving_window = 1 + if self.moving_window_velocity[0] != 0.: + pywarpx.warpx.moving_window_dir = 'x' + pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c # in units of the speed of light + if self.moving_window_velocity[1] != 0.: + pywarpx.warpx.moving_window_dir = 'y' + pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c # in units of the speed of light + if self.moving_window_velocity[2] != 0.: + pywarpx.warpx.moving_window_dir = 'z' + pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/c # in units of the speed of light + + +class ElectromagneticSolver(PICMI_Base.PICMI_ElectromagneticSolver): + def init(self, **kw): + assert self.method is None or self.method in ['Yee'], Exception("Only 'Yee' FDTD is supported") + + def initialize_inputs(self): + + self.grid.initialize_inputs() + + if self.cfl is not None: + pywarpx.warpx.cfl = self.cfl + + if self.stencil_order is not None: + pywarpx.interpolation.nox = self.stencil_order[0] + pywarpx.interpolation.noy = self.stencil_order[1] + pywarpx.interpolation.noz = self.stencil_order[2] + + +class Electrostatic_solver(PICMI_Base.PICMI_Electrostatic_solver): + def initialize_inputs(self): + pass + + +class GaussianLaser(PICMI_Base.PICMI_GaussianLaser): + + def initialize_inputs(self): + pywarpx.warpx.use_laser = 1 + pywarpx.laser.profile = "Gaussian" + pywarpx.laser.wavelength = self.wavelength # The wavelength of the laser (in meters) + pywarpx.laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m) + pywarpx.laser.polarization = [np.cos(self.polarization_angle), np.sin(self.polarization_angle), 0.] # The main polarization vector + pywarpx.laser.profile_waist = self.waist # The waist of the laser (in meters) + pywarpx.laser.profile_duration = self.duration # The duration of the laser (in seconds) + + +class LaserAntenna(PICMI_Base.PICMI_LaserAntenna): + + def initialize_inputs(self, laser): + pywarpx.laser.position = self.position # This point is on the laser plane + pywarpx.laser.direction = self.normal_vector # The plane normal direction + pywarpx.laser.profile_focal_distance = laser.focal_position[2] - self.position[2] # Focal distance from the antenna (in meters) + pywarpx.laser.profile_t_peak = (self.position[2] - laser.centroid_position[2])/c # The time at which the laser reaches its peak (in seconds) + + +class Simulation(PICMI_Base.PICMI_Simulation): + def init(self, **kw): + + self.plot_int = kw.get('plot_int', None) + self.current_deposition_algo = kw.get('current_deposition_algo', None) + self.charge_deposition_algo = kw.get('charge_deposition_algo', None) + self.field_gathering_algo = kw.get('field_gathering_algo', None) + self.particle_pusher_algo = kw.get('particle_pusher_algo', None) + + self.inputs_initialized = False + self.warpx_initialized = False + + def initialize_inputs(self): + if self.inputs_initialized: + return + + self.inputs_initialized = True + + pywarpx.warpx.verbose = self.verbose + if self.time_step_size is not None: + pywarpx.warpx.const_dt = self.timestep + + pywarpx.amr.plot_int = self.plot_int + pywarpx.algo.current_deposition = self.current_deposition_algo + pywarpx.algo.charge_deposition = self.charge_deposition_algo + pywarpx.algo.field_gathering = self.field_gathering_algo + pywarpx.algo.particle_pusher = self.particle_pusher_algo + + self.solver.initialize_inputs() + + for i in range(len(self.species)): + assert self.calculate_self_fields[i], Exception('WarpX does not support species without self fields') + self.species[i].initialize_inputs(self.layouts[i]) + + for i in range(len(self.lasers)): + self.lasers[i].initialize_inputs() + self.laser_injection_methods[i].initialize_inputs(self.lasers[i]) + + def initialize_warpx(self, inputs_name=None): + if self.warpx_initialized: + return + + self.warpx_initialized = True + pywarpx.warpx.init() + + def write_input_file(self, inputs_name='inputs'): + self.initialize_inputs() + kw = {} + if self.max_steps is not None: + kw['max_step'] = self.max_steps + if self.max_time is not None: + kw['stop_time'] = self.max_time + pywarpx.warpx.write_inputs(inputs_name, **kw) + + def step(self, nsteps=None): + self.initialize_inputs() + self.initialize_warpx() + if nsteps is None: + if self.max_steps is not None: + nsteps = self.max_steps + else: + nsteps = -1 + pywarpx.warpx.evolve(nsteps) + + def finalize(self): + if self.warpx_initialized: + self.warpx_initialized = False + pywarpx.warpx.finalize() |