aboutsummaryrefslogtreecommitdiff
path: root/Source/Diagnostics/SliceDiagnostic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/Diagnostics/SliceDiagnostic.cpp')
-rw-r--r--Source/Diagnostics/SliceDiagnostic.cpp475
1 files changed, 475 insertions, 0 deletions
diff --git a/Source/Diagnostics/SliceDiagnostic.cpp b/Source/Diagnostics/SliceDiagnostic.cpp
new file mode 100644
index 000000000..994f990c6
--- /dev/null
+++ b/Source/Diagnostics/SliceDiagnostic.cpp
@@ -0,0 +1,475 @@
+#include "SliceDiagnostic.H"
+#include <AMReX_MultiFabUtil.H>
+#include <AMReX_PlotFileUtil.H>
+#include <AMReX_FillPatchUtil_F.H>
+
+#include <WarpX.H>
+
+using namespace amrex;
+
+
+/* \brief
+ * The functions creates the slice for diagnostics based on the user-input.
+ * The slice can be 1D, 2D, or 3D and it inherts the index type of the underlying data.
+ * The implementation assumes that the slice is aligned with the coordinate axes.
+ * The input parameters are modified if the user-input does not comply with requirements of coarsenability or if the slice extent is not contained within the simulation domain.
+ * First a slice multifab (smf) with cell size equal to that of the simulation grid is created such that it extends from slice.dim_lo to slice.dim_hi and shares the same index space as the source multifab (mf)
+ * The values are copied from src mf to dst smf using amrex::ParallelCopy
+ * If interpolation is required, then on the smf, using data points stored in the ghost cells, the data in interpolated.
+ * If coarsening is required, then a coarse slice multifab is generated (cs_mf) and the
+ * values of the refined slice (smf) is averaged down to obtain the coarse slice.
+ * \param mf is the source multifab containing the field data
+ * \param dom_geom is the geometry of the domain and used in the function to obtain the
+ * CellSize of the underlying grid.
+ * \param slice_realbox defines the extent of the slice
+ * \param slice_cr_ratio provides the coarsening ratio for diagnostics
+ */
+
+std::unique_ptr<MultiFab>
+CreateSlice( const MultiFab& mf, const Vector<Geometry> &dom_geom,
+ RealBox &slice_realbox, IntVect &slice_cr_ratio )
+{
+ std::unique_ptr<MultiFab> smf;
+ std::unique_ptr<MultiFab> cs_mf;
+
+ Vector<int> slice_ncells(AMREX_SPACEDIM);
+ int nghost = 1;
+ int nlevels = dom_geom.size();
+ int ncomp = (mf).nComp();
+
+ AMREX_ALWAYS_ASSERT_WITH_MESSAGE( nlevels==1,
+ "Slice diagnostics does not work with mesh refinement yet (TO DO).");
+
+ const auto conversionType = (mf).ixType();
+ IntVect SliceType(AMREX_D_DECL(0,0,0));
+ for (int idim = 0; idim < AMREX_SPACEDIM; ++idim )
+ {
+ SliceType[idim] = conversionType.nodeCentered(idim);
+ }
+
+ const RealBox& real_box = dom_geom[0].ProbDomain();
+ RealBox slice_cc_nd_box;
+ int slice_grid_size = 32;
+
+ bool interpolate = false;
+ bool coarsen = false;
+
+ // same index space as domain //
+ IntVect slice_lo(AMREX_D_DECL(0,0,0));
+ IntVect slice_hi(AMREX_D_DECL(1,1,1));
+ IntVect interp_lo(AMREX_D_DECL(0,0,0));
+
+ CheckSliceInput(real_box, slice_cc_nd_box, slice_realbox, slice_cr_ratio,
+ dom_geom, SliceType, slice_lo,
+ slice_hi, interp_lo);
+ // Determine if interpolation is required and number of cells in slice //
+ for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
+
+ // Flag for interpolation if required //
+ if ( interp_lo[idim] == 1) {
+ interpolate = 1;
+ }
+
+ // For the case when a dimension is reduced //
+ if ( ( slice_hi[idim] - slice_lo[idim]) == 1) {
+ slice_ncells[idim] = 1;
+ }
+ else {
+ slice_ncells[idim] = ( slice_hi[idim] - slice_lo[idim] + 1 )
+ / slice_cr_ratio[idim];
+
+ int refined_ncells = slice_hi[idim] - slice_lo[idim] + 1 ;
+ if ( slice_cr_ratio[idim] > 1) {
+ coarsen = true;
+
+ // modify slice_grid_size if >= refines_cells //
+ if ( slice_grid_size >= refined_ncells ) {
+ slice_grid_size = refined_ncells - 1;
+ }
+
+ }
+ }
+ }
+
+ // Slice generation with index type inheritance //
+ Box slice(slice_lo, slice_hi);
+
+ Vector<BoxArray> sba(1);
+ sba[0].define(slice);
+ sba[0].maxSize(slice_grid_size);
+
+ // Distribution mapping for slice can be different from that of domain //
+ Vector<DistributionMapping> sdmap(1);
+ sdmap[0] = DistributionMapping{sba[0]};
+
+ smf.reset(new MultiFab(amrex::convert(sba[0],SliceType), sdmap[0],
+ ncomp, nghost));
+
+ // Copy data from domain to slice that has same cell size as that of //
+ // the domain mf. src and dst have the same number of ghost cells //
+ smf->ParallelCopy(mf, 0, 0, ncomp,nghost,nghost);
+
+ // inteprolate if required on refined slice //
+ if (interpolate == 1 ) {
+ InterpolateSliceValues( *smf, interp_lo, slice_cc_nd_box, dom_geom,
+ ncomp, nghost, slice_lo, slice_hi, SliceType, real_box);
+ }
+
+
+ if (coarsen == false) {
+ return smf;
+ }
+ else if ( coarsen == true ) {
+ Vector<BoxArray> crse_ba(1);
+ crse_ba[0] = sba[0];
+ crse_ba[0].coarsen(slice_cr_ratio);
+
+ AMREX_ALWAYS_ASSERT(crse_ba[0].size() == sba[0].size());
+
+ cs_mf.reset( new MultiFab(amrex::convert(crse_ba[0],SliceType),
+ sdmap[0], ncomp,nghost));
+
+ MultiFab& mfSrc = *smf;
+ MultiFab& mfDst = *cs_mf;
+
+ MFIter mfi_dst(mfDst);
+ for (MFIter mfi(mfSrc); mfi.isValid(); ++mfi) {
+
+ FArrayBox& Src_fabox = mfSrc[mfi];
+
+ const Box& Dst_bx = mfi_dst.validbox();
+ FArrayBox& Dst_fabox = mfDst[mfi_dst];
+
+ int scomp = 0;
+ int dcomp = 0;
+
+ IntVect cctype(AMREX_D_DECL(0,0,0));
+ if( SliceType==cctype ) {
+ amrex::amrex_avgdown(Dst_bx, Dst_fabox, Src_fabox, dcomp, scomp,
+ ncomp, slice_cr_ratio);
+ }
+ IntVect ndtype(AMREX_D_DECL(1,1,1));
+ if( SliceType == ndtype ) {
+ amrex::amrex_avgdown_nodes(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio);
+ }
+ if( SliceType == WarpX::Ex_nodal_flag ) {
+ amrex::amrex_avgdown_edges(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 0);
+ }
+ if( SliceType == WarpX::Ey_nodal_flag) {
+ amrex::amrex_avgdown_edges(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 1);
+ }
+ if( SliceType == WarpX::Ez_nodal_flag ) {
+ amrex::amrex_avgdown_edges(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 2);
+ }
+ if( SliceType == WarpX::Bx_nodal_flag) {
+ amrex::amrex_avgdown_faces(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 0);
+ }
+ if( SliceType == WarpX::By_nodal_flag ) {
+ amrex::amrex_avgdown_faces(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 1);
+ }
+ if( SliceType == WarpX::Bz_nodal_flag ) {
+ amrex::amrex_avgdown_faces(Dst_bx, Dst_fabox, Src_fabox, dcomp,
+ scomp, ncomp, slice_cr_ratio, 2);
+ }
+
+ if ( mfi_dst.isValid() ) {
+ ++mfi_dst;
+ }
+
+ }
+ return cs_mf;
+
+ }
+ amrex::Abort("Should not hit this return statement.");
+ return smf;
+}
+
+
+/* \brief
+ * This function modifies the slice input parameters under certain conditions.
+ * The coarsening ratio, slice_cr_ratio is modified if the input is not an exponent of 2.
+ * for example, if the coarsening ratio is 3, 5 or 6, which is not an exponent of 2,
+ * then the value of coarsening ratio is modified to the nearest exponent of 2.
+ * The default value for coarsening ratio is 1.
+ * slice_realbox.lo and slice_realbox.hi are set equal to the simulation domain lo and hi
+ * if for the user-input for the slice lo and hi coordinates are outside the domain.
+ * If the slice_realbox.lo and slice_realbox.hi coordinates do not align with the data
+ * points and the number of cells in that dimension is greater than 1, and if the extent of
+ * the slice in that dimension is not coarsenable, then the value lo and hi coordinates are
+ * shifted to the nearest coarsenable point to include some extra data points in the slice.
+ * If slice_realbox.lo==slice_realbox.hi, then that dimension has only one cell and no
+ * modifications are made to the value. If the lo and hi do not align with a data point,
+ * then it is flagged for interpolation.
+ * \param real_box a Real box defined for the underlying domain.
+ * \param slice_realbox a Real box for defining the slice dimension.
+ * \param slice_cc_nd_box a Real box for defining the modified lo and hi of the slice
+ * such that the coordinates align with the underlying data points.
+ * If the dimension is reduced to have only one cell, the slice_realbox is not modified and * instead the values are interpolated to the coordinate from the nearest data points.
+ * \param slice_cr_ratio contains values of the coarsening ratio which may be modified
+ * if the input values do not satisfy coarsenability conditions.
+ * \param slice_lo and slice_hi are the index values of the slice
+ * \param interp_lo are set to 0 or 1 if they are flagged for interpolation.
+ * The slice shares the same index space as that of the simulation domain.
+ */
+
+
+void
+CheckSliceInput( const RealBox real_box, RealBox &slice_cc_nd_box,
+ RealBox &slice_realbox, IntVect &slice_cr_ratio,
+ Vector<Geometry> dom_geom, IntVect const SliceType,
+ IntVect &slice_lo, IntVect &slice_hi, IntVect &interp_lo)
+{
+
+ IntVect slice_lo2(AMREX_D_DECL(0,0,0));
+ for ( int idim = 0; idim < AMREX_SPACEDIM; ++idim)
+ {
+ // Modify coarsening ratio if the input value is not an exponent of 2 for AMR //
+ if ( slice_cr_ratio[idim] > 0 ) {
+ int log_cr_ratio = floor ( log2( double(slice_cr_ratio[idim])));
+ slice_cr_ratio[idim] = exp2( double(log_cr_ratio) );
+ }
+
+ //// Default coarsening ratio is 1 //
+ // Modify lo if input is out of bounds //
+ if ( slice_realbox.lo(idim) < real_box.lo(idim) ) {
+ slice_realbox.setLo( idim, real_box.lo(idim));
+ amrex::Print() << " slice lo is out of bounds. " <<
+ " Modified it in dimension " << idim <<
+ " to be aligned with the domain box\n";
+ }
+
+ // Modify hi if input in out od bounds //
+ if ( slice_realbox.hi(idim) > real_box.hi(idim) ) {
+ slice_realbox.setHi( idim, real_box.hi(idim));
+ amrex::Print() << " slice hi is out of bounds." <<
+ " Modified it in dimension " << idim <<
+ " to be aligned with the domain box\n";
+ }
+
+ // Factor to ensure index values computation depending on index type //
+ double fac = ( 1.0 - SliceType[idim] )*dom_geom[0].CellSize(idim)*0.5;
+ // if dimension is reduced to one cell length //
+ if ( slice_realbox.hi(idim) - slice_realbox.lo(idim) <= 0)
+ {
+ slice_cc_nd_box.setLo( idim, slice_realbox.lo(idim) );
+ slice_cc_nd_box.setHi( idim, slice_realbox.hi(idim) );
+
+ if ( slice_cr_ratio[idim] > 1) slice_cr_ratio[idim] = 1;
+
+ // check for interpolation -- compute index lo with floor and ceil
+ if ( slice_cc_nd_box.lo(idim) - real_box.lo(idim) >= fac ) {
+ slice_lo[idim] = floor( ( (slice_cc_nd_box.lo(idim)
+ - (real_box.lo(idim) + fac ) )
+ / dom_geom[0].CellSize(idim)) + fac * 1E-10);
+ slice_lo2[idim] = ceil( ( (slice_cc_nd_box.lo(idim)
+ - (real_box.lo(idim) + fac) )
+ / dom_geom[0].CellSize(idim)) - fac * 1E-10 );
+ }
+ else {
+ slice_lo[idim] = round( (slice_cc_nd_box.lo(idim)
+ - (real_box.lo(idim) ) )
+ / dom_geom[0].CellSize(idim));
+ slice_lo2[idim] = ceil((slice_cc_nd_box.lo(idim)
+ - (real_box.lo(idim) ) )
+ / dom_geom[0].CellSize(idim) );
+ }
+
+ // flag for interpolation -- if reduced dimension location //
+ // does not align with data point //
+ if ( slice_lo[idim] == slice_lo2[idim]) {
+ if ( slice_cc_nd_box.lo(idim) - real_box.lo(idim) < fac ) {
+ interp_lo[idim] = 1;
+ }
+ }
+ else {
+ interp_lo[idim] = 1;
+ }
+
+ // ncells = 1 if dimension is reduced //
+ slice_hi[idim] = slice_lo[idim] + 1;
+ }
+ else
+ {
+ // moving realbox.lo and reabox.hi to nearest coarsenable grid point //
+ int index_lo = floor(((slice_realbox.lo(idim) + 1E-10
+ - (real_box.lo(idim))) / dom_geom[0].CellSize(idim)));
+ int index_hi = ceil(((slice_realbox.hi(idim) - 1E-10
+ - (real_box.lo(idim))) / dom_geom[0].CellSize(idim)));
+
+ bool modify_cr = true;
+
+ while ( modify_cr == true) {
+ int lo_new = index_lo;
+ int hi_new = index_hi;
+ int mod_lo = index_lo % slice_cr_ratio[idim];
+ int mod_hi = index_hi % slice_cr_ratio[idim];
+ modify_cr = false;
+
+ // To ensure that the index.lo is coarsenable //
+ if ( mod_lo > 0) {
+ lo_new = index_lo - mod_lo;
+ }
+ // To ensure that the index.hi is coarsenable //
+ if ( mod_hi > 0) {
+ hi_new = index_hi + (slice_cr_ratio[idim] - mod_hi);
+ }
+
+ // If modified index.hi is > baselinebox.hi, move the point //
+ // to the previous coarsenable point //
+ if ( (hi_new * dom_geom[0].CellSize(idim))
+ > real_box.hi(idim) - real_box.lo(idim) + dom_geom[0].CellSize(idim)*0.01 )
+ {
+ hi_new = index_hi - mod_hi;
+ }
+
+ if ( (hi_new - lo_new) == 0 ){
+ amrex::Print() << " Diagnostic Warning :: ";
+ amrex::Print() << " Coarsening ratio ";
+ amrex::Print() << slice_cr_ratio[idim] << " in dim "<< idim;
+ amrex::Print() << "is leading to zero cells for slice.";
+ amrex::Print() << " Thus reducing cr_ratio by half.\n";
+
+ slice_cr_ratio[idim] = slice_cr_ratio[idim]/2;
+ modify_cr = true;
+ }
+
+ if ( modify_cr == false ) {
+ index_lo = lo_new;
+ index_hi = hi_new;
+ }
+ slice_lo[idim] = index_lo;
+ slice_hi[idim] = index_hi - 1; // since default is cell-centered
+ }
+ slice_realbox.setLo( idim, index_lo * dom_geom[0].CellSize(idim)
+ + real_box.lo(idim) );
+ slice_realbox.setHi( idim, index_hi * dom_geom[0].CellSize(idim)
+ + real_box.lo(idim) );
+ slice_cc_nd_box.setLo( idim, slice_realbox.lo(idim) + fac );
+ slice_cc_nd_box.setHi( idim, slice_realbox.hi(idim) - fac );
+ }
+ }
+}
+
+
+/* \brief
+ * This function is called if the coordinates of the slice do not align with data points
+ * \param interp_lo is an IntVect which is flagged as 1, if interpolation
+ is required in the dimension.
+ */
+void
+InterpolateSliceValues(MultiFab& smf, IntVect interp_lo, RealBox slice_realbox,
+ Vector<Geometry> geom, int ncomp, int nghost,
+ IntVect slice_lo, IntVect slice_hi, IntVect SliceType,
+ const RealBox real_box)
+{
+ for (MFIter mfi(smf); mfi.isValid(); ++mfi)
+ {
+ const Box& bx = mfi.tilebox();
+ const auto IndType = smf.ixType();
+ const auto lo = amrex::lbound(bx);
+ const auto hi = amrex::ubound(bx);
+ FArrayBox& fabox = smf[mfi];
+
+ for ( int idim = 0; idim < AMREX_SPACEDIM; ++idim) {
+ if ( interp_lo[idim] == 1 ) {
+ InterpolateLo( bx, fabox, slice_lo, geom, idim, SliceType,
+ slice_realbox, 0, ncomp, nghost, real_box);
+ }
+ }
+ }
+
+}
+
+void
+InterpolateLo(const Box& bx, FArrayBox &fabox, IntVect slice_lo,
+ Vector<Geometry> geom, int idir, IntVect IndType,
+ RealBox slice_realbox, int srccomp, int ncomp,
+ int nghost, const RealBox real_box )
+{
+ auto fabarr = fabox.array();
+ const auto lo = amrex::lbound(bx);
+ const auto hi = amrex::ubound(bx);
+ double fac = ( 1.0-IndType[idir] )*geom[0].CellSize(idir) * 0.5;
+ int imin = slice_lo[idir];
+ double minpos = imin*geom[0].CellSize(idir) + fac + real_box.lo(idir);
+ double maxpos = (imin+1)*geom[0].CellSize(idir) + fac + real_box.lo(idir);
+ double slice_minpos = slice_realbox.lo(idir) ;
+
+ switch (idir) {
+ case 0:
+ {
+ if ( imin >= lo.x && imin <= lo.x) {
+ for (int n = srccomp; n < srccomp + ncomp; ++n) {
+ for (int k = lo.z; k <= hi.z; ++k) {
+ for (int j = lo.y; j <= hi.y; ++j) {
+ for (int i = lo.x; i <= hi.x; ++i) {
+ double minval = fabarr(i,j,k,n);
+ double maxval = fabarr(i+1,j,k,n);
+ double ratio = (maxval - minval) / (maxpos - minpos);
+ double xdiff = slice_minpos - minpos;
+ double newval = minval + xdiff * ratio;
+ fabarr(i,j,k,n) = newval;
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+ case 1:
+ {
+ if ( imin >= lo.y && imin <= lo.y) {
+ for (int n = srccomp; n < srccomp+ncomp; ++n) {
+ for (int k = lo.z; k <= hi.z; ++k) {
+ for (int j = lo.y; j <= hi.y; ++j) {
+ for (int i = lo.x; i <= hi.x; ++i) {
+ double minval = fabarr(i,j,k,n);
+ double maxval = fabarr(i,j+1,k,n);
+ double ratio = (maxval - minval) / (maxpos - minpos);
+ double xdiff = slice_minpos - minpos;
+ double newval = minval + xdiff * ratio;
+ fabarr(i,j,k,n) = newval;
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+ case 2:
+ {
+ if ( imin >= lo.z && imin <= lo.z) {
+ for (int n = srccomp; n < srccomp+ncomp; ++n) {
+ for (int k = lo.z; k <= hi.z; ++k) {
+ for (int j = lo.y; j <= hi.y; ++j) {
+ for (int i = lo.x; i <= hi.x; ++i) {
+ double minval = fabarr(i,j,k,n);
+ double maxval = fabarr(i,j,k+1,n);
+ double ratio = (maxval - minval) / (maxpos - minpos);
+ double xdiff = slice_minpos - minpos;
+ double newval = minval + xdiff * ratio;
+ fabarr(i,j,k,n) = newval;
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ }
+
+}
+
+
+
+
+
+
+