aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp')
-rw-r--r--Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp18
1 files changed, 8 insertions, 10 deletions
diff --git a/Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp b/Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp
index 347a0ad6c..7213e599b 100644
--- a/Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp
+++ b/Source/FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.cpp
@@ -59,8 +59,6 @@ void HybridPICModel::AllocateLevelMFs (int lev, const BoxArray& ba, const Distri
const IntVect& jz_nodal_flag,
const IntVect& rho_nodal_flag)
{
- auto & warpx = WarpX::GetInstance();
-
// The "electron_pressure_fp" multifab stores the electron pressure calculated
// from the specified equation of state.
// The "rho_fp_temp" multifab is used to store the ion charge density
@@ -69,24 +67,24 @@ void HybridPICModel::AllocateLevelMFs (int lev, const BoxArray& ba, const Distri
// interpolated or extrapolated to appropriate timesteps.
// The "current_fp_ampere" multifab stores the total current calculated as
// the curl of B.
- warpx.AllocInitMultiFab(electron_pressure_fp[lev], amrex::convert(ba, rho_nodal_flag),
+ WarpX::AllocInitMultiFab(electron_pressure_fp[lev], amrex::convert(ba, rho_nodal_flag),
dm, ncomps, ngRho, lev, "electron_pressure_fp", 0.0_rt);
- warpx.AllocInitMultiFab(rho_fp_temp[lev], amrex::convert(ba, rho_nodal_flag),
+ WarpX::AllocInitMultiFab(rho_fp_temp[lev], amrex::convert(ba, rho_nodal_flag),
dm, ncomps, ngRho, lev, "rho_fp_temp", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_temp[lev][0], amrex::convert(ba, jx_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_temp[lev][0], amrex::convert(ba, jx_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_temp[x]", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_temp[lev][1], amrex::convert(ba, jy_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_temp[lev][1], amrex::convert(ba, jy_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_temp[y]", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_temp[lev][2], amrex::convert(ba, jz_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_temp[lev][2], amrex::convert(ba, jz_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_temp[z]", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_ampere[lev][0], amrex::convert(ba, jx_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_ampere[lev][0], amrex::convert(ba, jx_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_ampere[x]", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_ampere[lev][1], amrex::convert(ba, jy_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_ampere[lev][1], amrex::convert(ba, jy_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_ampere[y]", 0.0_rt);
- warpx.AllocInitMultiFab(current_fp_ampere[lev][2], amrex::convert(ba, jz_nodal_flag),
+ WarpX::AllocInitMultiFab(current_fp_ampere[lev][2], amrex::convert(ba, jz_nodal_flag),
dm, ncomps, ngJ, lev, "current_fp_ampere[z]", 0.0_rt);
}