aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp')
-rw-r--r--Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp171
1 files changed, 104 insertions, 67 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp b/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp
index 291fe945e..a2b695568 100644
--- a/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp
+++ b/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp
@@ -10,21 +10,13 @@ SpectralFieldData::SpectralFieldData( const BoxArray& realspace_ba,
const BoxArray& spectralspace_ba = k_space.spectralspace_ba;
// Allocate the arrays that contain the fields in spectral space
- Ex = SpectralField(spectralspace_ba, dm, 1, 0);
- Ey = SpectralField(spectralspace_ba, dm, 1, 0);
- Ez = SpectralField(spectralspace_ba, dm, 1, 0);
- Bx = SpectralField(spectralspace_ba, dm, 1, 0);
- By = SpectralField(spectralspace_ba, dm, 1, 0);
- Bz = SpectralField(spectralspace_ba, dm, 1, 0);
- Jx = SpectralField(spectralspace_ba, dm, 1, 0);
- Jy = SpectralField(spectralspace_ba, dm, 1, 0);
- Jz = SpectralField(spectralspace_ba, dm, 1, 0);
- rho_old = SpectralField(spectralspace_ba, dm, 1, 0);
- rho_new = SpectralField(spectralspace_ba, dm, 1, 0);
+ // (one component per field)
+ fields = SpectralField(spectralspace_ba, dm,
+ SpectralFieldIndex::n_fields, 0);
// Allocate temporary arrays - in real space and spectral space
// These arrays will store the data just before/after the FFT
- tmpRealField = SpectralField(realspace_ba, dm, 1, 0);
+ tmpRealField = MultiFab(realspace_ba, dm, 1, 0);
tmpSpectralField = SpectralField(spectralspace_ba, dm, 1, 0);
// By default, we assume the FFT is done from/to a nodal grid in real space
@@ -56,31 +48,65 @@ SpectralFieldData::SpectralFieldData( const BoxArray& realspace_ba,
// Loop over boxes and allocate the corresponding plan
// for each box owned by the local MPI proc
for ( MFIter mfi(spectralspace_ba, dm); mfi.isValid(); ++mfi ){
- Box bx = spectralspace_ba[mfi];
+ // Note: the size of the real-space box and spectral-space box
+ // differ when using real-to-complex FFT. When initializing
+ // the FFT plan, the valid dimensions are those of the real-space box.
+ IntVect fft_size = realspace_ba[mfi].length();
#ifdef AMREX_USE_GPU
- // Add cuFFT-specific code
+ // Create cuFFT plans
+ // Creating 3D plan for real to complex -- double precision
+ // Assuming CUDA is used for programming GPU
+ // Note that D2Z is inherently forward plan
+ // and Z2D is inherently backward plan
+ cufftResult result;
+#if (AMREX_SPACEDIM == 3)
+ result = cufftPlan3d( &forward_plan[mfi], fft_size[2],
+ fft_size[1],fft_size[0], CUFFT_D2Z);
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " cufftplan3d forward failed! \n";
+ }
+
+ result = cufftPlan3d( &backward_plan[mfi], fft_size[2],
+ fft_size[1], fft_size[0], CUFFT_Z2D);
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " cufftplan3d backward failed! \n";
+ }
+#else
+ result = cufftPlan2d( &forward_plan[mfi], fft_size[1],
+ fft_size[0], CUFFT_D2Z );
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " cufftplan2d forward failed! \n";
+ }
+
+ result = cufftPlan2d( &backward_plan[mfi], fft_size[1],
+ fft_size[0], CUFFT_Z2D );
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " cufftplan2d backward failed! \n";
+ }
+#endif
+
#else
// Create FFTW plans
forward_plan[mfi] =
// Swap dimensions: AMReX FAB are Fortran-order but FFTW is C-order
#if (AMREX_SPACEDIM == 3)
- fftw_plan_dft_3d( bx.length(2), bx.length(1), bx.length(0),
+ fftw_plan_dft_r2c_3d( fft_size[2], fft_size[1], fft_size[0],
#else
- fftw_plan_dft_2d( bx.length(1), bx.length(0),
+ fftw_plan_dft_r2c_2d( fft_size[1], fft_size[0],
#endif
- reinterpret_cast<fftw_complex*>( tmpRealField[mfi].dataPtr() ),
+ tmpRealField[mfi].dataPtr(),
reinterpret_cast<fftw_complex*>( tmpSpectralField[mfi].dataPtr() ),
- FFTW_FORWARD, FFTW_ESTIMATE );
+ FFTW_ESTIMATE );
backward_plan[mfi] =
// Swap dimensions: AMReX FAB are Fortran-order but FFTW is C-order
#if (AMREX_SPACEDIM == 3)
- fftw_plan_dft_3d( bx.length(2), bx.length(1), bx.length(0),
+ fftw_plan_dft_c2r_3d( fft_size[2], fft_size[1], fft_size[0],
#else
- fftw_plan_dft_2d( bx.length(1), bx.length(0),
+ fftw_plan_dft_c2r_2d( fft_size[1], fft_size[0],
#endif
reinterpret_cast<fftw_complex*>( tmpSpectralField[mfi].dataPtr() ),
- reinterpret_cast<fftw_complex*>( tmpRealField[mfi].dataPtr() ),
- FFTW_BACKWARD, FFTW_ESTIMATE );
+ tmpRealField[mfi].dataPtr(),
+ FFTW_ESTIMATE );
#endif
}
}
@@ -91,7 +117,9 @@ SpectralFieldData::~SpectralFieldData()
if (tmpRealField.size() > 0){
for ( MFIter mfi(tmpRealField); mfi.isValid(); ++mfi ){
#ifdef AMREX_USE_GPU
- // Add cuFFT-specific code
+ // Destroy cuFFT plans
+ cufftDestroy( forward_plan[mfi] );
+ cufftDestroy( backward_plan[mfi] );
#else
// Destroy FFTW plans
fftw_destroy_plan( forward_plan[mfi] );
@@ -131,28 +159,38 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf,
realspace_bx.enclosedCells(); // Discard last point in nodal direction
AMREX_ALWAYS_ASSERT( realspace_bx == tmpRealField[mfi].box() );
Array4<const Real> mf_arr = mf[mfi].array();
- Array4<Complex> tmp_arr = tmpRealField[mfi].array();
+ Array4<Real> tmp_arr = tmpRealField[mfi].array();
ParallelFor( realspace_bx,
[=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
- tmp_arr(i,j,k) = mf_arr(i,j,k,i_comp);
+ tmp_arr(i,j,k) = mf_arr(i,j,k,i_comp);
});
}
// Perform Fourier transform from `tmpRealField` to `tmpSpectralField`
#ifdef AMREX_USE_GPU
- // Add cuFFT-specific code ; make sure that this is done on the same
- // GPU stream as the above copy
+ // Perform Fast Fourier Transform on GPU using cuFFT
+ // make sure that this is done on the same
+ // GPU stream as the above copy
+ cufftResult result;
+ cudaStream_t stream = amrex::Gpu::Device::cudaStream();
+ cufftSetStream ( forward_plan[mfi], stream);
+ result = cufftExecD2Z( forward_plan[mfi],
+ tmpRealField[mfi].dataPtr(),
+ reinterpret_cast<cuDoubleComplex*>(
+ tmpSpectralField[mfi].dataPtr()) );
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " forward transform using cufftExecD2Z failed ! \n";
+ }
#else
fftw_execute( forward_plan[mfi] );
#endif
// Copy the spectral-space field `tmpSpectralField` to the appropriate
- // field (specified by the input argument field_index )
+ // index of the FabArray `fields` (specified by `field_index`)
// and apply correcting shift factor if the real space data comes
// from a cell-centered grid in real space instead of a nodal grid.
{
- SpectralField& field = getSpectralField( field_index );
- Array4<Complex> field_arr = field[mfi].array();
+ Array4<Complex> fields_arr = SpectralFieldData::fields[mfi].array();
Array4<const Complex> tmp_arr = tmpSpectralField[mfi].array();
const Complex* xshift_arr = xshift_FFTfromCell[mfi].dataPtr();
#if (AMREX_SPACEDIM == 3)
@@ -161,6 +199,7 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf,
const Complex* zshift_arr = zshift_FFTfromCell[mfi].dataPtr();
// Loop over indices within one box
const Box spectralspace_bx = tmpSpectralField[mfi].box();
+
ParallelFor( spectralspace_bx,
[=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
Complex spectral_field_value = tmp_arr(i,j,k);
@@ -168,10 +207,12 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf,
if (is_nodal_x==false) spectral_field_value *= xshift_arr[i];
#if (AMREX_SPACEDIM == 3)
if (is_nodal_y==false) spectral_field_value *= yshift_arr[j];
-#endif
if (is_nodal_z==false) spectral_field_value *= zshift_arr[k];
- // Copy field into temporary array
- field_arr(i,j,k) = spectral_field_value;
+#elif (AMREX_SPACEDIM == 2)
+ if (is_nodal_z==false) spectral_field_value *= zshift_arr[j];
+#endif
+ // Copy field into the right index
+ fields_arr(i,j,k,field_index) = spectral_field_value;
});
}
}
@@ -182,7 +223,8 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf,
* real space, and store it in the component `i_comp` of `mf` */
void
SpectralFieldData::BackwardTransform( MultiFab& mf,
- const int field_index, const int i_comp )
+ const int field_index,
+ const int i_comp )
{
// Check field index type, in order to apply proper shift in spectral space
const bool is_nodal_x = mf.is_nodal(0);
@@ -200,10 +242,8 @@ SpectralFieldData::BackwardTransform( MultiFab& mf,
// field (specified by the input argument field_index)
// and apply correcting shift factor if the field is to be transformed
// to a cell-centered grid in real space instead of a nodal grid.
- // Normalize (divide by 1/N) since the FFT+IFFT results in a factor N
{
- SpectralField& field = getSpectralField( field_index );
- Array4<const Complex> field_arr = field[mfi].array();
+ Array4<const Complex> field_arr = SpectralFieldData::fields[mfi].array();
Array4<Complex> tmp_arr = tmpSpectralField[mfi].array();
const Complex* xshift_arr = xshift_FFTtoCell[mfi].dataPtr();
#if (AMREX_SPACEDIM == 3)
@@ -212,60 +252,57 @@ SpectralFieldData::BackwardTransform( MultiFab& mf,
const Complex* zshift_arr = zshift_FFTtoCell[mfi].dataPtr();
// Loop over indices within one box
const Box spectralspace_bx = tmpSpectralField[mfi].box();
- // For normalization: divide by the number of points in the box
- const Real inv_N = 1./spectralspace_bx.numPts();
+
ParallelFor( spectralspace_bx,
[=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
- Complex spectral_field_value = field_arr(i,j,k);
+ Complex spectral_field_value = field_arr(i,j,k,field_index);
// Apply proper shift in each dimension
if (is_nodal_x==false) spectral_field_value *= xshift_arr[i];
#if (AMREX_SPACEDIM == 3)
if (is_nodal_y==false) spectral_field_value *= yshift_arr[j];
-#endif
if (is_nodal_z==false) spectral_field_value *= zshift_arr[k];
- // Copy field into temporary array (after normalization)
- tmp_arr(i,j,k) = inv_N*spectral_field_value;
+#elif (AMREX_SPACEDIM == 2)
+ if (is_nodal_z==false) spectral_field_value *= zshift_arr[j];
+#endif
+ // Copy field into temporary array
+ tmp_arr(i,j,k) = spectral_field_value;
});
}
// Perform Fourier transform from `tmpSpectralField` to `tmpRealField`
#ifdef AMREX_USE_GPU
- // Add cuFFT-specific code ; make sure that this is done on the same
+ // Perform Fast Fourier Transform on GPU using cuFFT.
+ // make sure that this is done on the same
// GPU stream as the above copy
+ cufftResult result;
+ cudaStream_t stream = amrex::Gpu::Device::cudaStream();
+ cufftSetStream ( backward_plan[mfi], stream);
+ result = cufftExecZ2D( backward_plan[mfi],
+ reinterpret_cast<cuDoubleComplex*>(
+ tmpSpectralField[mfi].dataPtr()),
+ tmpRealField[mfi].dataPtr() );
+ if ( result != CUFFT_SUCCESS ) {
+ amrex::Print() << " Backward transform using cufftexecZ2D failed! \n";
+ }
#else
fftw_execute( backward_plan[mfi] );
#endif
// Copy the temporary field `tmpRealField` to the real-space field `mf`
+
+ // Normalize (divide by 1/N) since the FFT+IFFT results in a factor N
{
const Box realspace_bx = tmpRealField[mfi].box();
Array4<Real> mf_arr = mf[mfi].array();
- Array4<const Complex> tmp_arr = tmpRealField[mfi].array();
+ Array4<const Real> tmp_arr = tmpRealField[mfi].array();
+ // Normalization: divide by the number of points in realspace
+ const Real inv_N = 1./realspace_bx.numPts();
+
ParallelFor( realspace_bx,
[=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept {
- mf_arr(i,j,k,i_comp) = tmp_arr(i,j,k).real();
+ // Copy and normalize field
+ mf_arr(i,j,k,i_comp) = inv_N*tmp_arr(i,j,k);
});
}
}
}
-
-
-SpectralField&
-SpectralFieldData::getSpectralField( const int field_index )
-{
- switch(field_index)
- {
- case SpectralFieldIndex::Ex : return Ex; break;
- case SpectralFieldIndex::Ey : return Ey; break;
- case SpectralFieldIndex::Ez : return Ez; break;
- case SpectralFieldIndex::Bx : return Bx; break;
- case SpectralFieldIndex::By : return By; break;
- case SpectralFieldIndex::Bz : return Bz; break;
- case SpectralFieldIndex::Jx : return Jx; break;
- case SpectralFieldIndex::Jy : return Jy; break;
- case SpectralFieldIndex::Jz : return Jz; break;
- case SpectralFieldIndex::rho_old : return rho_old; break;
- case SpectralFieldIndex::rho_new : return rho_new; break;
- default : return tmpSpectralField; // For synthax; should not occur in practice
- }
-}