diff options
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp | 171 |
1 files changed, 104 insertions, 67 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp b/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp index 291fe945e..a2b695568 100644 --- a/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp +++ b/Source/FieldSolver/SpectralSolver/SpectralFieldData.cpp @@ -10,21 +10,13 @@ SpectralFieldData::SpectralFieldData( const BoxArray& realspace_ba, const BoxArray& spectralspace_ba = k_space.spectralspace_ba; // Allocate the arrays that contain the fields in spectral space - Ex = SpectralField(spectralspace_ba, dm, 1, 0); - Ey = SpectralField(spectralspace_ba, dm, 1, 0); - Ez = SpectralField(spectralspace_ba, dm, 1, 0); - Bx = SpectralField(spectralspace_ba, dm, 1, 0); - By = SpectralField(spectralspace_ba, dm, 1, 0); - Bz = SpectralField(spectralspace_ba, dm, 1, 0); - Jx = SpectralField(spectralspace_ba, dm, 1, 0); - Jy = SpectralField(spectralspace_ba, dm, 1, 0); - Jz = SpectralField(spectralspace_ba, dm, 1, 0); - rho_old = SpectralField(spectralspace_ba, dm, 1, 0); - rho_new = SpectralField(spectralspace_ba, dm, 1, 0); + // (one component per field) + fields = SpectralField(spectralspace_ba, dm, + SpectralFieldIndex::n_fields, 0); // Allocate temporary arrays - in real space and spectral space // These arrays will store the data just before/after the FFT - tmpRealField = SpectralField(realspace_ba, dm, 1, 0); + tmpRealField = MultiFab(realspace_ba, dm, 1, 0); tmpSpectralField = SpectralField(spectralspace_ba, dm, 1, 0); // By default, we assume the FFT is done from/to a nodal grid in real space @@ -56,31 +48,65 @@ SpectralFieldData::SpectralFieldData( const BoxArray& realspace_ba, // Loop over boxes and allocate the corresponding plan // for each box owned by the local MPI proc for ( MFIter mfi(spectralspace_ba, dm); mfi.isValid(); ++mfi ){ - Box bx = spectralspace_ba[mfi]; + // Note: the size of the real-space box and spectral-space box + // differ when using real-to-complex FFT. When initializing + // the FFT plan, the valid dimensions are those of the real-space box. + IntVect fft_size = realspace_ba[mfi].length(); #ifdef AMREX_USE_GPU - // Add cuFFT-specific code + // Create cuFFT plans + // Creating 3D plan for real to complex -- double precision + // Assuming CUDA is used for programming GPU + // Note that D2Z is inherently forward plan + // and Z2D is inherently backward plan + cufftResult result; +#if (AMREX_SPACEDIM == 3) + result = cufftPlan3d( &forward_plan[mfi], fft_size[2], + fft_size[1],fft_size[0], CUFFT_D2Z); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " cufftplan3d forward failed! \n"; + } + + result = cufftPlan3d( &backward_plan[mfi], fft_size[2], + fft_size[1], fft_size[0], CUFFT_Z2D); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " cufftplan3d backward failed! \n"; + } +#else + result = cufftPlan2d( &forward_plan[mfi], fft_size[1], + fft_size[0], CUFFT_D2Z ); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " cufftplan2d forward failed! \n"; + } + + result = cufftPlan2d( &backward_plan[mfi], fft_size[1], + fft_size[0], CUFFT_Z2D ); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " cufftplan2d backward failed! \n"; + } +#endif + #else // Create FFTW plans forward_plan[mfi] = // Swap dimensions: AMReX FAB are Fortran-order but FFTW is C-order #if (AMREX_SPACEDIM == 3) - fftw_plan_dft_3d( bx.length(2), bx.length(1), bx.length(0), + fftw_plan_dft_r2c_3d( fft_size[2], fft_size[1], fft_size[0], #else - fftw_plan_dft_2d( bx.length(1), bx.length(0), + fftw_plan_dft_r2c_2d( fft_size[1], fft_size[0], #endif - reinterpret_cast<fftw_complex*>( tmpRealField[mfi].dataPtr() ), + tmpRealField[mfi].dataPtr(), reinterpret_cast<fftw_complex*>( tmpSpectralField[mfi].dataPtr() ), - FFTW_FORWARD, FFTW_ESTIMATE ); + FFTW_ESTIMATE ); backward_plan[mfi] = // Swap dimensions: AMReX FAB are Fortran-order but FFTW is C-order #if (AMREX_SPACEDIM == 3) - fftw_plan_dft_3d( bx.length(2), bx.length(1), bx.length(0), + fftw_plan_dft_c2r_3d( fft_size[2], fft_size[1], fft_size[0], #else - fftw_plan_dft_2d( bx.length(1), bx.length(0), + fftw_plan_dft_c2r_2d( fft_size[1], fft_size[0], #endif reinterpret_cast<fftw_complex*>( tmpSpectralField[mfi].dataPtr() ), - reinterpret_cast<fftw_complex*>( tmpRealField[mfi].dataPtr() ), - FFTW_BACKWARD, FFTW_ESTIMATE ); + tmpRealField[mfi].dataPtr(), + FFTW_ESTIMATE ); #endif } } @@ -91,7 +117,9 @@ SpectralFieldData::~SpectralFieldData() if (tmpRealField.size() > 0){ for ( MFIter mfi(tmpRealField); mfi.isValid(); ++mfi ){ #ifdef AMREX_USE_GPU - // Add cuFFT-specific code + // Destroy cuFFT plans + cufftDestroy( forward_plan[mfi] ); + cufftDestroy( backward_plan[mfi] ); #else // Destroy FFTW plans fftw_destroy_plan( forward_plan[mfi] ); @@ -131,28 +159,38 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf, realspace_bx.enclosedCells(); // Discard last point in nodal direction AMREX_ALWAYS_ASSERT( realspace_bx == tmpRealField[mfi].box() ); Array4<const Real> mf_arr = mf[mfi].array(); - Array4<Complex> tmp_arr = tmpRealField[mfi].array(); + Array4<Real> tmp_arr = tmpRealField[mfi].array(); ParallelFor( realspace_bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { - tmp_arr(i,j,k) = mf_arr(i,j,k,i_comp); + tmp_arr(i,j,k) = mf_arr(i,j,k,i_comp); }); } // Perform Fourier transform from `tmpRealField` to `tmpSpectralField` #ifdef AMREX_USE_GPU - // Add cuFFT-specific code ; make sure that this is done on the same - // GPU stream as the above copy + // Perform Fast Fourier Transform on GPU using cuFFT + // make sure that this is done on the same + // GPU stream as the above copy + cufftResult result; + cudaStream_t stream = amrex::Gpu::Device::cudaStream(); + cufftSetStream ( forward_plan[mfi], stream); + result = cufftExecD2Z( forward_plan[mfi], + tmpRealField[mfi].dataPtr(), + reinterpret_cast<cuDoubleComplex*>( + tmpSpectralField[mfi].dataPtr()) ); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " forward transform using cufftExecD2Z failed ! \n"; + } #else fftw_execute( forward_plan[mfi] ); #endif // Copy the spectral-space field `tmpSpectralField` to the appropriate - // field (specified by the input argument field_index ) + // index of the FabArray `fields` (specified by `field_index`) // and apply correcting shift factor if the real space data comes // from a cell-centered grid in real space instead of a nodal grid. { - SpectralField& field = getSpectralField( field_index ); - Array4<Complex> field_arr = field[mfi].array(); + Array4<Complex> fields_arr = SpectralFieldData::fields[mfi].array(); Array4<const Complex> tmp_arr = tmpSpectralField[mfi].array(); const Complex* xshift_arr = xshift_FFTfromCell[mfi].dataPtr(); #if (AMREX_SPACEDIM == 3) @@ -161,6 +199,7 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf, const Complex* zshift_arr = zshift_FFTfromCell[mfi].dataPtr(); // Loop over indices within one box const Box spectralspace_bx = tmpSpectralField[mfi].box(); + ParallelFor( spectralspace_bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { Complex spectral_field_value = tmp_arr(i,j,k); @@ -168,10 +207,12 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf, if (is_nodal_x==false) spectral_field_value *= xshift_arr[i]; #if (AMREX_SPACEDIM == 3) if (is_nodal_y==false) spectral_field_value *= yshift_arr[j]; -#endif if (is_nodal_z==false) spectral_field_value *= zshift_arr[k]; - // Copy field into temporary array - field_arr(i,j,k) = spectral_field_value; +#elif (AMREX_SPACEDIM == 2) + if (is_nodal_z==false) spectral_field_value *= zshift_arr[j]; +#endif + // Copy field into the right index + fields_arr(i,j,k,field_index) = spectral_field_value; }); } } @@ -182,7 +223,8 @@ SpectralFieldData::ForwardTransform( const MultiFab& mf, * real space, and store it in the component `i_comp` of `mf` */ void SpectralFieldData::BackwardTransform( MultiFab& mf, - const int field_index, const int i_comp ) + const int field_index, + const int i_comp ) { // Check field index type, in order to apply proper shift in spectral space const bool is_nodal_x = mf.is_nodal(0); @@ -200,10 +242,8 @@ SpectralFieldData::BackwardTransform( MultiFab& mf, // field (specified by the input argument field_index) // and apply correcting shift factor if the field is to be transformed // to a cell-centered grid in real space instead of a nodal grid. - // Normalize (divide by 1/N) since the FFT+IFFT results in a factor N { - SpectralField& field = getSpectralField( field_index ); - Array4<const Complex> field_arr = field[mfi].array(); + Array4<const Complex> field_arr = SpectralFieldData::fields[mfi].array(); Array4<Complex> tmp_arr = tmpSpectralField[mfi].array(); const Complex* xshift_arr = xshift_FFTtoCell[mfi].dataPtr(); #if (AMREX_SPACEDIM == 3) @@ -212,60 +252,57 @@ SpectralFieldData::BackwardTransform( MultiFab& mf, const Complex* zshift_arr = zshift_FFTtoCell[mfi].dataPtr(); // Loop over indices within one box const Box spectralspace_bx = tmpSpectralField[mfi].box(); - // For normalization: divide by the number of points in the box - const Real inv_N = 1./spectralspace_bx.numPts(); + ParallelFor( spectralspace_bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { - Complex spectral_field_value = field_arr(i,j,k); + Complex spectral_field_value = field_arr(i,j,k,field_index); // Apply proper shift in each dimension if (is_nodal_x==false) spectral_field_value *= xshift_arr[i]; #if (AMREX_SPACEDIM == 3) if (is_nodal_y==false) spectral_field_value *= yshift_arr[j]; -#endif if (is_nodal_z==false) spectral_field_value *= zshift_arr[k]; - // Copy field into temporary array (after normalization) - tmp_arr(i,j,k) = inv_N*spectral_field_value; +#elif (AMREX_SPACEDIM == 2) + if (is_nodal_z==false) spectral_field_value *= zshift_arr[j]; +#endif + // Copy field into temporary array + tmp_arr(i,j,k) = spectral_field_value; }); } // Perform Fourier transform from `tmpSpectralField` to `tmpRealField` #ifdef AMREX_USE_GPU - // Add cuFFT-specific code ; make sure that this is done on the same + // Perform Fast Fourier Transform on GPU using cuFFT. + // make sure that this is done on the same // GPU stream as the above copy + cufftResult result; + cudaStream_t stream = amrex::Gpu::Device::cudaStream(); + cufftSetStream ( backward_plan[mfi], stream); + result = cufftExecZ2D( backward_plan[mfi], + reinterpret_cast<cuDoubleComplex*>( + tmpSpectralField[mfi].dataPtr()), + tmpRealField[mfi].dataPtr() ); + if ( result != CUFFT_SUCCESS ) { + amrex::Print() << " Backward transform using cufftexecZ2D failed! \n"; + } #else fftw_execute( backward_plan[mfi] ); #endif // Copy the temporary field `tmpRealField` to the real-space field `mf` + + // Normalize (divide by 1/N) since the FFT+IFFT results in a factor N { const Box realspace_bx = tmpRealField[mfi].box(); Array4<Real> mf_arr = mf[mfi].array(); - Array4<const Complex> tmp_arr = tmpRealField[mfi].array(); + Array4<const Real> tmp_arr = tmpRealField[mfi].array(); + // Normalization: divide by the number of points in realspace + const Real inv_N = 1./realspace_bx.numPts(); + ParallelFor( realspace_bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { - mf_arr(i,j,k,i_comp) = tmp_arr(i,j,k).real(); + // Copy and normalize field + mf_arr(i,j,k,i_comp) = inv_N*tmp_arr(i,j,k); }); } } } - - -SpectralField& -SpectralFieldData::getSpectralField( const int field_index ) -{ - switch(field_index) - { - case SpectralFieldIndex::Ex : return Ex; break; - case SpectralFieldIndex::Ey : return Ey; break; - case SpectralFieldIndex::Ez : return Ez; break; - case SpectralFieldIndex::Bx : return Bx; break; - case SpectralFieldIndex::By : return By; break; - case SpectralFieldIndex::Bz : return Bz; break; - case SpectralFieldIndex::Jx : return Jx; break; - case SpectralFieldIndex::Jy : return Jy; break; - case SpectralFieldIndex::Jz : return Jz; break; - case SpectralFieldIndex::rho_old : return rho_old; break; - case SpectralFieldIndex::rho_new : return rho_new; break; - default : return tmpSpectralField; // For synthax; should not occur in practice - } -} |