aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp')
-rw-r--r--Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp60
1 files changed, 43 insertions, 17 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp b/Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp
index ddb2020d8..2fe78cedd 100644
--- a/Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp
+++ b/Source/FieldSolver/SpectralSolver/SpectralKSpace.cpp
@@ -28,19 +28,33 @@ SpectralKSpace::SpectralKSpace( const BoxArray& realspace_ba,
// For local FFTs, boxes in spectral space start at 0 in
// each direction and have the same number of points as the
// (cell-centered) real space box
- // TODO: this will be different for the real-to-complex FFT
// TODO: this will be different for the hybrid FFT scheme
Box realspace_bx = realspace_ba[i];
- Print() << realspace_bx.smallEnd() << " " << realspace_bx.bigEnd() << std::endl;
- Box bx = Box( IntVect::TheZeroVector(),
- realspace_bx.bigEnd() - realspace_bx.smallEnd() );
- spectral_bl.push_back( bx );
+ IntVect fft_size = realspace_bx.length();
+ // Because the spectral solver uses real-to-complex FFTs, we only
+ // need the positive k values along the fastest axis
+ // (first axis for AMReX Fortran-order arrays) in spectral space.
+ // This effectively reduces the size of the spectral space by half
+ // see e.g. the FFTW documentation for real-to-complex FFTs
+ IntVect spectral_bx_size = fft_size;
+ spectral_bx_size[0] = fft_size[0]/2 + 1;
+ // Define the corresponding box
+ Box spectral_bx = Box( IntVect::TheZeroVector(),
+ spectral_bx_size - IntVect::TheUnitVector() );
+ spectral_bl.push_back( spectral_bx );
}
spectralspace_ba.define( spectral_bl );
// Allocate the components of the k vector: kx, ky (only in 3D), kz
+ bool only_positive_k;
for (int i_dim=0; i_dim<AMREX_SPACEDIM; i_dim++) {
- k_vec[i_dim] = getKComponent( dm, i_dim );
+ if (i_dim==0) {
+ // Real-to-complex FFTs: first axis contains only the positive k
+ only_positive_k = true;
+ } else {
+ only_positive_k = false;
+ }
+ k_vec[i_dim] = getKComponent(dm, realspace_ba, i_dim, only_positive_k);
}
}
@@ -50,7 +64,9 @@ SpectralKSpace::SpectralKSpace( const BoxArray& realspace_ba,
*/
KVectorComponent
SpectralKSpace::getKComponent( const DistributionMapping& dm,
- const int i_dim ) const
+ const BoxArray& realspace_ba,
+ const int i_dim,
+ const bool only_positive_k ) const
{
// Initialize an empty ManagedVector in each box
KVectorComponent k_comp(spectralspace_ba, dm);
@@ -65,21 +81,31 @@ SpectralKSpace::getKComponent( const DistributionMapping& dm,
k.resize( N );
// Fill the k vector
- const Real dk = 2*MathConst::pi/(N*dx[i_dim]);
+ IntVect fft_size = realspace_ba[mfi].length();
+ const Real dk = 2*MathConst::pi/(fft_size[i_dim]*dx[i_dim]);
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( bx.smallEnd(i_dim) == 0,
"Expected box to start at 0, in spectral space.");
AMREX_ALWAYS_ASSERT_WITH_MESSAGE( bx.bigEnd(i_dim) == N-1,
"Expected different box end index in spectral space.");
- const int mid_point = (N+1)/2;
- // Fill positive values of k (FFT conventions: first half is positive)
- for (int i=0; i<mid_point; i++ ){
- k[i] = i*dk;
- }
- // Fill negative values of k (FFT conventions: second half is negative)
- for (int i=mid_point; i<N; i++){
- k[i] = (i-N)*dk;
+ if (only_positive_k){
+ // Fill the full axis with positive k values
+ // (typically: first axis, in a real-to-complex FFT)
+ for (int i=0; i<N; i++ ){
+ k[i] = i*dk;
+ }
+ } else {
+ const int mid_point = (N+1)/2;
+ // Fill positive values of k
+ // (FFT conventions: first half is positive)
+ for (int i=0; i<mid_point; i++ ){
+ k[i] = i*dk;
+ }
+ // Fill negative values of k
+ // (FFT conventions: second half is negative)
+ for (int i=mid_point; i<N; i++){
+ k[i] = (i-N)*dk;
+ }
}
- // TODO: this will be different for the real-to-complex transform
// TODO: this will be different for the hybrid FFT scheme
}
return k_comp;