aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/WarpXPushFieldsEM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/FieldSolver/WarpXPushFieldsEM.cpp')
-rw-r--r--Source/FieldSolver/WarpXPushFieldsEM.cpp360
1 files changed, 297 insertions, 63 deletions
diff --git a/Source/FieldSolver/WarpXPushFieldsEM.cpp b/Source/FieldSolver/WarpXPushFieldsEM.cpp
index f08b44adb..21000424d 100644
--- a/Source/FieldSolver/WarpXPushFieldsEM.cpp
+++ b/Source/FieldSolver/WarpXPushFieldsEM.cpp
@@ -6,6 +6,7 @@
#include <WarpXConst.H>
#include <WarpX_f.H>
#include <WarpX_K.H>
+#include <WarpX_FDTD.H>
#ifdef WARPX_USE_PY
#include <WarpX_py.H>
#endif
@@ -16,6 +17,75 @@
using namespace amrex;
+#ifdef WARPX_USE_PSATD
+namespace {
+ void
+ PushPSATDSinglePatch (
+ SpectralSolver& solver,
+ std::array<std::unique_ptr<amrex::MultiFab>,3>& Efield,
+ std::array<std::unique_ptr<amrex::MultiFab>,3>& Bfield,
+ std::array<std::unique_ptr<amrex::MultiFab>,3>& current,
+ std::unique_ptr<amrex::MultiFab>& rho ) {
+
+ using Idx = SpectralFieldIndex;
+
+ // Perform forward Fourier transform
+ solver.ForwardTransform(*Efield[0], Idx::Ex);
+ solver.ForwardTransform(*Efield[1], Idx::Ey);
+ solver.ForwardTransform(*Efield[2], Idx::Ez);
+ solver.ForwardTransform(*Bfield[0], Idx::Bx);
+ solver.ForwardTransform(*Bfield[1], Idx::By);
+ solver.ForwardTransform(*Bfield[2], Idx::Bz);
+ solver.ForwardTransform(*current[0], Idx::Jx);
+ solver.ForwardTransform(*current[1], Idx::Jy);
+ solver.ForwardTransform(*current[2], Idx::Jz);
+ solver.ForwardTransform(*rho, Idx::rho_old, 0);
+ solver.ForwardTransform(*rho, Idx::rho_new, 1);
+ // Advance fields in spectral space
+ solver.pushSpectralFields();
+ // Perform backward Fourier Transform
+ solver.BackwardTransform(*Efield[0], Idx::Ex);
+ solver.BackwardTransform(*Efield[1], Idx::Ey);
+ solver.BackwardTransform(*Efield[2], Idx::Ez);
+ solver.BackwardTransform(*Bfield[0], Idx::Bx);
+ solver.BackwardTransform(*Bfield[1], Idx::By);
+ solver.BackwardTransform(*Bfield[2], Idx::Bz);
+ }
+}
+
+void
+WarpX::PushPSATD (amrex::Real a_dt)
+{
+ for (int lev = 0; lev <= finest_level; ++lev) {
+ AMREX_ALWAYS_ASSERT_WITH_MESSAGE(dt[lev] == a_dt, "dt must be consistent");
+ if (fft_hybrid_mpi_decomposition){
+#ifndef AMREX_USE_CUDA // Only available on CPU
+ PushPSATD_hybridFFT(lev, a_dt);
+#endif
+ } else {
+ PushPSATD_localFFT(lev, a_dt);
+ }
+
+ // Evolve the fields in the PML boxes
+ if (do_pml && pml[lev]->ok()) {
+ pml[lev]->PushPSATD();
+ }
+ }
+}
+
+void
+WarpX::PushPSATD_localFFT (int lev, amrex::Real /* dt */)
+{
+ // Update the fields on the fine and coarse patch
+ PushPSATDSinglePatch( *spectral_solver_fp[lev],
+ Efield_fp[lev], Bfield_fp[lev], current_fp[lev], rho_fp[lev] );
+ if (spectral_solver_cp[lev]) {
+ PushPSATDSinglePatch( *spectral_solver_cp[lev],
+ Efield_cp[lev], Bfield_cp[lev], current_cp[lev], rho_cp[lev] );
+ }
+}
+#endif
+
void
WarpX::EvolveB (Real a_dt)
{
@@ -40,7 +110,8 @@ WarpX::EvolveB (int lev, PatchType patch_type, amrex::Real a_dt)
{
const int patch_level = (patch_type == PatchType::fine) ? lev : lev-1;
const std::array<Real,3>& dx = WarpX::CellSize(patch_level);
- Real dtsdx = a_dt/dx[0], dtsdy = a_dt/dx[1], dtsdz = a_dt/dx[2];
+ const Real dtsdx = a_dt/dx[0], dtsdy = a_dt/dx[1], dtsdz = a_dt/dx[2];
+ const Real dxinv = 1./dx[0];
MultiFab *Ex, *Ey, *Ez, *Bx, *By, *Bz;
if (patch_type == PatchType::fine)
@@ -81,13 +152,13 @@ WarpX::EvolveB (int lev, PatchType patch_type, amrex::Real a_dt)
const Box& tby = mfi.tilebox(By_nodal_flag);
const Box& tbz = mfi.tilebox(Bz_nodal_flag);
+ auto const& Bxfab = Bx->array(mfi);
+ auto const& Byfab = By->array(mfi);
+ auto const& Bzfab = Bz->array(mfi);
+ auto const& Exfab = Ex->array(mfi);
+ auto const& Eyfab = Ey->array(mfi);
+ auto const& Ezfab = Ez->array(mfi);
if (do_nodal) {
- auto const& Bxfab = Bx->array(mfi);
- auto const& Byfab = By->array(mfi);
- auto const& Bzfab = Bz->array(mfi);
- auto const& Exfab = Ex->array(mfi);
- auto const& Eyfab = Ey->array(mfi);
- auto const& Ezfab = Ez->array(mfi);
amrex::ParallelFor(tbx,
[=] AMREX_GPU_DEVICE (int j, int k, int l)
{
@@ -103,22 +174,54 @@ WarpX::EvolveB (int lev, PatchType patch_type, amrex::Real a_dt)
{
warpx_push_bz_nodal(j,k,l,Bzfab,Exfab,Eyfab,dtsdx,dtsdy);
});
- } else {
- // Call picsar routine for each tile
- warpx_push_bvec(
- tbx.loVect(), tbx.hiVect(),
- tby.loVect(), tby.hiVect(),
- tbz.loVect(), tbz.hiVect(),
- &n_rz_azimuthal_modes,
- BL_TO_FORTRAN_3D((*Ex)[mfi]),
- BL_TO_FORTRAN_3D((*Ey)[mfi]),
- BL_TO_FORTRAN_3D((*Ez)[mfi]),
- BL_TO_FORTRAN_3D((*Bx)[mfi]),
- BL_TO_FORTRAN_3D((*By)[mfi]),
- BL_TO_FORTRAN_3D((*Bz)[mfi]),
- &dtsdx, &dtsdy, &dtsdz,
- &xmin, &dx[0],
- &WarpX::maxwell_fdtd_solver_id);
+ } else if (WarpX::maxwell_fdtd_solver_id == 0) {
+ amrex::ParallelFor(tbx,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_bx_yee(j,k,l,Bxfab,Eyfab,Ezfab,dtsdy,dtsdz);
+ });
+ amrex::ParallelFor(tby,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_by_yee(j,k,l,Byfab,Exfab,Ezfab,dtsdx,dtsdz);
+ });
+ amrex::ParallelFor(tbz,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_bz_yee(j,k,l,Bzfab,Exfab,Eyfab,dtsdx,dtsdy,dxinv,xmin);
+ });
+ } else if (WarpX::maxwell_fdtd_solver_id == 1) {
+ Real betaxy, betaxz, betayx, betayz, betazx, betazy;
+ Real gammax, gammay, gammaz;
+ Real alphax, alphay, alphaz;
+ warpx_calculate_ckc_coefficients(dtsdx, dtsdy, dtsdz,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ amrex::ParallelFor(tbx,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_bx_ckc(j,k,l,Bxfab,Eyfab,Ezfab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
+ amrex::ParallelFor(tby,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_by_ckc(j,k,l,Byfab,Exfab,Ezfab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
+ amrex::ParallelFor(tbz,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_bz_ckc(j,k,l,Bzfab,Exfab,Eyfab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
}
if (cost) {
@@ -190,9 +293,10 @@ WarpX::EvolveE (int lev, PatchType patch_type, amrex::Real a_dt)
const Real mu_c2_dt = (PhysConst::mu0*PhysConst::c*PhysConst::c) * a_dt;
const Real c2dt = (PhysConst::c*PhysConst::c) * a_dt;
- int patch_level = (patch_type == PatchType::fine) ? lev : lev-1;
+ const int patch_level = (patch_type == PatchType::fine) ? lev : lev-1;
const std::array<Real,3>& dx = WarpX::CellSize(patch_level);
- Real dtsdx_c2 = c2dt/dx[0], dtsdy_c2 = c2dt/dx[1], dtsdz_c2 = c2dt/dx[2];
+ const Real dtsdx_c2 = c2dt/dx[0], dtsdy_c2 = c2dt/dx[1], dtsdz_c2 = c2dt/dx[2];
+ const Real dxinv = 1./dx[0];
MultiFab *Ex, *Ey, *Ez, *Bx, *By, *Bz, *jx, *jy, *jz, *F;
if (patch_type == PatchType::fine)
@@ -241,16 +345,17 @@ WarpX::EvolveE (int lev, PatchType patch_type, amrex::Real a_dt)
const Box& tey = mfi.tilebox(Ey_nodal_flag);
const Box& tez = mfi.tilebox(Ez_nodal_flag);
+ auto const& Exfab = Ex->array(mfi);
+ auto const& Eyfab = Ey->array(mfi);
+ auto const& Ezfab = Ez->array(mfi);
+ auto const& Bxfab = Bx->array(mfi);
+ auto const& Byfab = By->array(mfi);
+ auto const& Bzfab = Bz->array(mfi);
+ auto const& jxfab = jx->array(mfi);
+ auto const& jyfab = jy->array(mfi);
+ auto const& jzfab = jz->array(mfi);
+
if (do_nodal) {
- auto const& Exfab = Ex->array(mfi);
- auto const& Eyfab = Ey->array(mfi);
- auto const& Ezfab = Ez->array(mfi);
- auto const& Bxfab = Bx->array(mfi);
- auto const& Byfab = By->array(mfi);
- auto const& Bzfab = Bz->array(mfi);
- auto const& jxfab = jx->array(mfi);
- auto const& jyfab = jy->array(mfi);
- auto const& jzfab = jz->array(mfi);
amrex::ParallelFor(tex,
[=] AMREX_GPU_DEVICE (int j, int k, int l)
{
@@ -267,38 +372,76 @@ WarpX::EvolveE (int lev, PatchType patch_type, amrex::Real a_dt)
warpx_push_ez_nodal(j,k,l,Ezfab,Bxfab,Byfab,jzfab,mu_c2_dt,dtsdx_c2,dtsdy_c2);
});
} else {
- // Call picsar routine for each tile
- warpx_push_evec(
- tex.loVect(), tex.hiVect(),
- tey.loVect(), tey.hiVect(),
- tez.loVect(), tez.hiVect(),
- &n_rz_azimuthal_modes,
- BL_TO_FORTRAN_3D((*Ex)[mfi]),
- BL_TO_FORTRAN_3D((*Ey)[mfi]),
- BL_TO_FORTRAN_3D((*Ez)[mfi]),
- BL_TO_FORTRAN_3D((*Bx)[mfi]),
- BL_TO_FORTRAN_3D((*By)[mfi]),
- BL_TO_FORTRAN_3D((*Bz)[mfi]),
- BL_TO_FORTRAN_3D((*jx)[mfi]),
- BL_TO_FORTRAN_3D((*jy)[mfi]),
- BL_TO_FORTRAN_3D((*jz)[mfi]),
- &mu_c2_dt,
- &dtsdx_c2, &dtsdy_c2, &dtsdz_c2,
- &xmin, &dx[0]);
+ amrex::ParallelFor(tex,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ex_yee(j,k,l,Exfab,Byfab,Bzfab,jxfab,mu_c2_dt,dtsdy_c2,dtsdz_c2);
+ });
+ amrex::ParallelFor(tey,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ey_yee(j,k,l,Eyfab,Bxfab,Bzfab,jyfab,mu_c2_dt,dtsdx_c2,dtsdz_c2,xmin);
+ });
+ amrex::ParallelFor(tez,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ez_yee(j,k,l,Ezfab,Bxfab,Byfab,jzfab,mu_c2_dt,dtsdx_c2,dtsdy_c2,dxinv,xmin);
+ });
}
if (F)
{
- warpx_push_evec_f(
- tex.loVect(), tex.hiVect(),
- tey.loVect(), tey.hiVect(),
- tez.loVect(), tez.hiVect(),
- BL_TO_FORTRAN_3D((*Ex)[mfi]),
- BL_TO_FORTRAN_3D((*Ey)[mfi]),
- BL_TO_FORTRAN_3D((*Ez)[mfi]),
- BL_TO_FORTRAN_3D((*F)[mfi]),
- &dtsdx_c2, &dtsdy_c2, &dtsdz_c2,
- &WarpX::maxwell_fdtd_solver_id);
+ auto const& Ffab = F->array(mfi);
+ if (WarpX::maxwell_fdtd_solver_id == 0) {
+ amrex::ParallelFor(tex,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ex_f_yee(j,k,l,Exfab,Ffab,dtsdx_c2);
+ });
+ amrex::ParallelFor(tey,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ey_f_yee(j,k,l,Eyfab,Ffab,dtsdy_c2);
+ });
+ amrex::ParallelFor(tez,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ez_f_yee(j,k,l,Ezfab,Ffab,dtsdz_c2);
+ });
+ }
+ else if (WarpX::maxwell_fdtd_solver_id == 1) {
+ Real betaxy, betaxz, betayx, betayz, betazx, betazy;
+ Real gammax, gammay, gammaz;
+ Real alphax, alphay, alphaz;
+ warpx_calculate_ckc_coefficients(dtsdx_c2, dtsdy_c2, dtsdz_c2,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ amrex::ParallelFor(tex,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ex_f_ckc(j,k,l,Exfab,Ffab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
+ amrex::ParallelFor(tey,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ey_f_ckc(j,k,l,Eyfab,Ffab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
+ amrex::ParallelFor(tez,
+ [=] AMREX_GPU_DEVICE (int j, int k, int l)
+ {
+ warpx_push_ez_f_ckc(j,k,l,Ezfab,Ffab,
+ betaxy, betaxz, betayx, betayz, betazx, betazy,
+ gammax, gammay, gammaz,
+ alphax, alphay, alphaz);
+ });
+ }
}
if (cost) {
@@ -388,7 +531,7 @@ WarpX::EvolveF (int lev, PatchType patch_type, Real a_dt, DtType a_dt_type)
static constexpr Real mu_c2 = PhysConst::mu0*PhysConst::c*PhysConst::c;
- int patch_level = (patch_type == PatchType::fine) ? lev : lev-1;
+ const int patch_level = (patch_type == PatchType::fine) ? lev : lev-1;
const auto& dx = WarpX::CellSize(patch_level);
const std::array<Real,3> dtsdx {a_dt/dx[0], a_dt/dx[1], a_dt/dx[2]};
@@ -438,3 +581,94 @@ WarpX::EvolveF (int lev, PatchType patch_type, Real a_dt, DtType a_dt_type)
}
}
+#ifdef WARPX_DIM_RZ
+// This scales the current by the inverse volume and wraps around the depostion at negative radius.
+// It is faster to apply this on the grid than to do it particle by particle.
+// It is put here since there isn't another nice place for it.
+void
+WarpX::ApplyInverseVolumeScalingToCurrentDensity (MultiFab* Jx, MultiFab* Jy, MultiFab* Jz, int lev)
+{
+ const long ngJ = Jx->nGrow();
+ const std::array<Real,3>& dx = WarpX::CellSize(lev);
+ const Real dr = dx[0];
+
+ Box tilebox;
+
+ for ( MFIter mfi(*Jx, TilingIfNotGPU()); mfi.isValid(); ++mfi )
+ {
+
+ Array4<Real> const& Jr_arr = Jx->array(mfi);
+ Array4<Real> const& Jt_arr = Jy->array(mfi);
+ Array4<Real> const& Jz_arr = Jz->array(mfi);
+
+ tilebox = mfi.tilebox();
+ Box tbr = convert(tilebox, WarpX::jx_nodal_flag);
+ Box tbt = convert(tilebox, WarpX::jy_nodal_flag);
+ Box tbz = convert(tilebox, WarpX::jz_nodal_flag);
+
+ // Lower corner of tile box physical domain
+ // Note that this is done before the tilebox.grow so that
+ // these do not include the guard cells.
+ const std::array<Real, 3>& xyzmin = WarpX::LowerCorner(tilebox, lev);
+ const Dim3 lo = lbound(tilebox);
+ const Real rmin = xyzmin[0];
+ const int irmin = lo.x;
+
+ // Rescale current in r-z mode since the inverse volume factor was not
+ // included in the current deposition.
+ amrex::ParallelFor(tbr,
+ [=] AMREX_GPU_DEVICE (int i, int j, int k)
+ {
+ // Wrap the current density deposited in the guard cells around
+ // to the cells above the axis.
+ // Note that Jr(i==0) is at 1/2 dr.
+ if (rmin == 0. && 0 <= i && i < ngJ) {
+ Jr_arr(i,j,0) -= Jr_arr(-1-i,j,0);
+ }
+ // Apply the inverse volume scaling
+ // Since Jr is not cell centered in r, no need for distinction
+ // between on axis and off-axis factors
+ const amrex::Real r = std::abs(rmin + (i - irmin + 0.5)*dr);
+ Jr_arr(i,j,0) /= (2.*MathConst::pi*r);
+ });
+ amrex::ParallelFor(tbt,
+ [=] AMREX_GPU_DEVICE (int i, int j, int k)
+ {
+ // Wrap the current density deposited in the guard cells around
+ // to the cells above the axis.
+ // Jt is located on the boundary
+ if (rmin == 0. && 0 < i && i <= ngJ) {
+ Jt_arr(i,j,0) += Jt_arr(-i,j,0);
+ }
+
+ // Apply the inverse volume scaling
+ // Jt is forced to zero on axis.
+ const amrex::Real r = std::abs(rmin + (i - irmin)*dr);
+ if (r == 0.) {
+ Jt_arr(i,j,0) = 0.;
+ } else {
+ Jt_arr(i,j,0) /= (2.*MathConst::pi*r);
+ }
+ });
+ amrex::ParallelFor(tbz,
+ [=] AMREX_GPU_DEVICE (int i, int j, int k)
+ {
+ // Wrap the current density deposited in the guard cells around
+ // to the cells above the axis.
+ // Jz is located on the boundary
+ if (rmin == 0. && 0 < i && i <= ngJ) {
+ Jz_arr(i,j,0) += Jz_arr(-i,j,0);
+ }
+
+ // Apply the inverse volume scaling
+ const amrex::Real r = std::abs(rmin + (i - irmin)*dr);
+ if (r == 0.) {
+ // Verboncoeur JCP 164, 421-427 (2001) : corrected volume on axis
+ Jz_arr(i,j,0) /= (MathConst::pi*dr/3.);
+ } else {
+ Jz_arr(i,j,0) /= (2.*MathConst::pi*r);
+ }
+ });
+ }
+}
+#endif