diff options
Diffstat (limited to 'Source/FieldSolver/WarpXPushFieldsEM.cpp')
-rw-r--r-- | Source/FieldSolver/WarpXPushFieldsEM.cpp | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/Source/FieldSolver/WarpXPushFieldsEM.cpp b/Source/FieldSolver/WarpXPushFieldsEM.cpp index 098e8f189..1df05bc0f 100644 --- a/Source/FieldSolver/WarpXPushFieldsEM.cpp +++ b/Source/FieldSolver/WarpXPushFieldsEM.cpp @@ -580,3 +580,144 @@ WarpX::EvolveF (int lev, PatchType patch_type, Real a_dt, DtType a_dt_type) } } } + +#ifdef WARPX_DIM_RZ +// This scales the current by the inverse volume and wraps around the depostion at negative radius. +// It is faster to apply this on the grid than to do it particle by particle. +// It is put here since there isn't another nice place for it. +void +WarpX::ApplyInverseVolumeScalingToCurrentDensity (MultiFab* Jx, MultiFab* Jy, MultiFab* Jz, int lev) +{ + const long ngJ = Jx->nGrow(); + const std::array<Real,3>& dx = WarpX::CellSize(lev); + const Real dr = dx[0]; + + Box tilebox; + + for ( MFIter mfi(*Jx, TilingIfNotGPU()); mfi.isValid(); ++mfi ) + { + + Array4<Real> const& Jr_arr = Jx->array(mfi); + Array4<Real> const& Jt_arr = Jy->array(mfi); + Array4<Real> const& Jz_arr = Jz->array(mfi); + + tilebox = mfi.tilebox(); + Box tbr = convert(tilebox, WarpX::jx_nodal_flag); + Box tbt = convert(tilebox, WarpX::jy_nodal_flag); + Box tbz = convert(tilebox, WarpX::jz_nodal_flag); + + // Lower corner of tile box physical domain + // Note that this is done before the tilebox.grow so that + // these do not include the guard cells. + const std::array<Real, 3>& xyzmin = WarpX::LowerCorner(tilebox, lev); + const Dim3 lo = lbound(tilebox); + const Real rmin = xyzmin[0]; + const int irmin = lo.x; + + // Rescale current in r-z mode since the inverse volume factor was not + // included in the current deposition. + amrex::ParallelFor(tbr, + [=] AMREX_GPU_DEVICE (int i, int j, int k) + { + // Wrap the current density deposited in the guard cells around + // to the cells above the axis. + // Note that Jr(i==0) is at 1/2 dr. + if (rmin == 0. && 0 <= i && i < ngJ) { + Jr_arr(i,j,0) -= Jr_arr(-1-i,j,0); + } + // Apply the inverse volume scaling + // Since Jr is not cell centered in r, no need for distinction + // between on axis and off-axis factors + const amrex::Real r = std::abs(rmin + (i - irmin + 0.5)*dr); + Jr_arr(i,j,0) /= (2.*MathConst::pi*r); + }); + amrex::ParallelFor(tbt, + [=] AMREX_GPU_DEVICE (int i, int j, int k) + { + // Wrap the current density deposited in the guard cells around + // to the cells above the axis. + // Jt is located on the boundary + if (rmin == 0. && 0 < i && i <= ngJ) { + Jt_arr(i,j,0) += Jt_arr(-i,j,0); + } + + // Apply the inverse volume scaling + // Jt is forced to zero on axis. + const amrex::Real r = std::abs(rmin + (i - irmin)*dr); + if (r == 0.) { + Jt_arr(i,j,0) = 0.; + } else { + Jt_arr(i,j,0) /= (2.*MathConst::pi*r); + } + }); + amrex::ParallelFor(tbz, + [=] AMREX_GPU_DEVICE (int i, int j, int k) + { + // Wrap the current density deposited in the guard cells around + // to the cells above the axis. + // Jz is located on the boundary + if (rmin == 0. && 0 < i && i <= ngJ) { + Jz_arr(i,j,0) += Jz_arr(-i,j,0); + } + + // Apply the inverse volume scaling + const amrex::Real r = std::abs(rmin + (i - irmin)*dr); + if (r == 0.) { + // Verboncoeur JCP 164, 421-427 (2001) : corrected volume on axis + Jz_arr(i,j,0) /= (MathConst::pi*dr/3.); + } else { + Jz_arr(i,j,0) /= (2.*MathConst::pi*r); + } + }); + } +} + +void +WarpX::ApplyInverseVolumeScalingToChargeDensity (MultiFab* Rho, int lev) +{ + const long ngRho = Rho->nGrow(); + const std::array<Real,3>& dx = WarpX::CellSize(lev); + const Real dr = dx[0]; + + Box tilebox; + + for ( MFIter mfi(*Rho, TilingIfNotGPU()); mfi.isValid(); ++mfi ) + { + + Array4<Real> const& Rho_arr = Rho->array(mfi); + + tilebox = mfi.tilebox(); + Box tb = convert(tilebox, IntVect::TheUnitVector()); + + // Lower corner of tile box physical domain + // Note that this is done before the tilebox.grow so that + // these do not include the guard cells. + const std::array<Real, 3>& xyzmin = WarpX::LowerCorner(tilebox, lev); + const Dim3 lo = lbound(tilebox); + const Real rmin = xyzmin[0]; + const int irmin = lo.x; + + // Rescale charge in r-z mode since the inverse volume factor was not + // included in the charge deposition. + amrex::ParallelFor(tb, Rho->nComp(), + [=] AMREX_GPU_DEVICE (int i, int j, int k, int icomp) + { + // Wrap the charge density deposited in the guard cells around + // to the cells above the axis. + // Rho is located on the boundary + if (rmin == 0. && 0 < i && i <= ngRho) { + Rho_arr(i,j,0,icomp) += Rho_arr(-i,j,0,icomp); + } + + // Apply the inverse volume scaling + const amrex::Real r = std::abs(rmin + (i - irmin)*dr); + if (r == 0.) { + // Verboncoeur JCP 164, 421-427 (2001) : corrected volume on axis + Rho_arr(i,j,0,icomp) /= (MathConst::pi*dr/3.); + } else { + Rho_arr(i,j,0,icomp) /= (2.*MathConst::pi*r); + } + }); + } +} +#endif |