diff options
Diffstat (limited to 'Source/FieldSolver')
-rw-r--r-- | Source/FieldSolver/WarpX_QED_Field_Pushers.cpp | 175 | ||||
-rw-r--r-- | Source/FieldSolver/WarpX_QED_K.H | 322 |
2 files changed, 497 insertions, 0 deletions
diff --git a/Source/FieldSolver/WarpX_QED_Field_Pushers.cpp b/Source/FieldSolver/WarpX_QED_Field_Pushers.cpp new file mode 100644 index 000000000..afc205aa2 --- /dev/null +++ b/Source/FieldSolver/WarpX_QED_Field_Pushers.cpp @@ -0,0 +1,175 @@ +#include <cmath> +#include <limits> + +#include <WarpX.H> +#include <WarpXConst.H> +#include <WarpX_f.H> +#include <WarpX_K.H> +#include <WarpX_PML_kernels.H> +#include <WarpX_FDTD.H> +#ifdef WARPX_USE_PY +#include <WarpX_py.H> +#endif + +#include <WarpX_QED_K.H> + +#include <PML_current.H> + +#ifdef BL_USE_SENSEI_INSITU +#include <AMReX_AmrMeshInSituBridge.H> +#endif + +using namespace amrex; + + +void +WarpX::Hybrid_QED_Push (amrex::Vector<amrex::Real> dt) +{ + if (WarpX::do_nodal == 0) { + Print()<<"The do_nodal flag is tripped.\n"; + try{ + throw "Error: The Hybrid QED method is currently only compatible with the nodal scheme.\n"; + } + catch (const char* msg) { + std::cerr << msg << std::endl; + exit(0); + } + } + for (int lev = 0; lev <= finest_level; ++lev) { + Hybrid_QED_Push(lev, dt[lev]); + } +} + +void +WarpX::Hybrid_QED_Push (int lev, Real a_dt) +{ + BL_PROFILE("WarpX::Hybrid_QED_Push()"); + Hybrid_QED_Push(lev, PatchType::fine, a_dt); + if (lev > 0) + { + Hybrid_QED_Push(lev, PatchType::coarse, a_dt); + } +} + +void +WarpX::Hybrid_QED_Push (int lev, PatchType patch_type, Real a_dt) +{ + const int patch_level = (patch_type == PatchType::fine) ? lev : lev-1; + const std::array<Real,3>& dx_vec= WarpX::CellSize(patch_level); + const Real dx = dx_vec[0]; + const Real dy = dx_vec[1]; + const Real dz = dx_vec[2]; + + MultiFab *Ex, *Ey, *Ez, *Bx, *By, *Bz; + if (patch_type == PatchType::fine) + { + Ex = Efield_fp[lev][0].get(); + Ey = Efield_fp[lev][1].get(); + Ez = Efield_fp[lev][2].get(); + Bx = Bfield_fp[lev][0].get(); + By = Bfield_fp[lev][1].get(); + Bz = Bfield_fp[lev][2].get(); + } + else + { + Ex = Efield_cp[lev][0].get(); + Ey = Efield_cp[lev][1].get(); + Ez = Efield_cp[lev][2].get(); + Bx = Bfield_cp[lev][0].get(); + By = Bfield_cp[lev][1].get(); + Bz = Bfield_cp[lev][2].get(); + } + + MultiFab* cost = costs[lev].get(); + const IntVect& rr = (lev > 0) ? refRatio(lev-1) : IntVect::TheUnitVector(); + + // xmin is only used by the kernel for cylindrical geometry, + // in which case it is actually rmin. + const Real xmin = Geom(0).ProbLo(0); + + // Loop through the grids, and over the tiles within each grid +#ifdef _OPENMP +#pragma omp parallel if (Gpu::notInLaunchRegion()) +#endif + for ( MFIter mfi(*Bx, TilingIfNotGPU()); mfi.isValid(); ++mfi ) + { + Real wt = amrex::second(); + + // Get boxes for E and B + const Box& tbx = mfi.tilebox(Bx_nodal_flag); + const Box& tby = mfi.tilebox(By_nodal_flag); + const Box& tbz = mfi.tilebox(Bz_nodal_flag); + + const Box& tex = mfi.tilebox(Ex_nodal_flag); + const Box& tey = mfi.tilebox(Ey_nodal_flag); + const Box& tez = mfi.tilebox(Ez_nodal_flag); + + // Get field arrays + auto const& Bxfab = Bx->array(mfi); + auto const& Byfab = By->array(mfi); + auto const& Bzfab = Bz->array(mfi); + auto const& Exfab = Ex->array(mfi); + auto const& Eyfab = Ey->array(mfi); + auto const& Ezfab = Ez->array(mfi); + + // Define grown box with 1 ghost cell for finite difference stencil + const Box& gex = amrex::grow(tex,1); + const Box& gey = amrex::grow(tey,1); + const Box& gez = amrex::grow(tez,1); + + // Temporary arrays for electric field, protected by Elixir on GPU + FArrayBox tmpEx_fab(gex,1); + Elixir tmpEx_eli = tmpEx_fab.elixir(); + auto const& tmpEx = tmpEx_fab.array(); + + FArrayBox tmpEy_fab(gey,1); + Elixir tmpEy_eli = tmpEy_fab.elixir(); + auto const& tmpEy = tmpEy_fab.array(); + + FArrayBox tmpEz_fab(gez,1); + Elixir tmpEz_eli = tmpEz_fab.elixir(); + auto const& tmpEz = tmpEz_fab.array(); + + // Copy electric field to temporary arrays + AMREX_PARALLEL_FOR_4D( + gex, 1, i, j, k, n, + { tmpEx(i,j,k,n) = Exfab(i,j,k,n); } + ); + + AMREX_PARALLEL_FOR_4D( + gey, 1, i, j, k, n, + { tmpEy(i,j,k,n) = Eyfab(i,j,k,n); } + ); + + AMREX_PARALLEL_FOR_4D( + gez, 1, i, j, k, n, + { tmpEz(i,j,k,n) = Ezfab(i,j,k,n); } + ); + + // Apply QED correction to electric field, using temporary arrays. + amrex::ParallelFor( + tbx, + [=] AMREX_GPU_DEVICE (int j, int k, int l) + { + warpx_hybrid_QED_push(j,k,l, Exfab, Eyfab, Ezfab, Bxfab, Byfab, + Bzfab, tmpEx, tmpEy, tmpEz, dx, dy, dz, + a_dt); + } + ); + + if (cost) { + Box cbx = mfi.tilebox(IntVect{AMREX_D_DECL(0,0,0)}); + if (patch_type == PatchType::coarse) cbx.refine(rr); + wt = (amrex::second() - wt) / cbx.d_numPts(); + auto costfab = cost->array(mfi); + + amrex::ParallelFor( + cbx, + [=] AMREX_GPU_DEVICE (int i, int j, int k) + { + costfab(i,j,k) += wt; + } + ); + } + } +} diff --git a/Source/FieldSolver/WarpX_QED_K.H b/Source/FieldSolver/WarpX_QED_K.H new file mode 100644 index 000000000..7c55ce4df --- /dev/null +++ b/Source/FieldSolver/WarpX_QED_K.H @@ -0,0 +1,322 @@ +#ifndef WarpX_QED_K_h +#define WarpX_QED_K_h + +#include <AMReX_FArrayBox.H> +#include <WarpXConst.H> +#include <cmath> + +using namespace amrex; + +/** + * calc_M calculates the Magnetization field of the vacuum at a specific point and returns it as a three component vector + * \param[in] arr This is teh empty array that will be filled with the components of the M-field + * \param[in] ex The x-component of the E-field at the point at whicht the M-field is to be calculated + * \param[in] ey The y-component of the E-field at the point at whicht the M-field is to be calculated + * \param[in] ez The z-component of the E-field at the point at whicht the M-field is to be calculated + * \param[in] bx The x-component of the B-field at the point at whicht the M-field is to be calculated + * \param[in] by The y-component of the B-field at the point at whicht the M-field is to be calculated + * \param[in] bz The z-component of the B-field at the point at whicht the M-field is to be calculated + * \param[in] xi The quantum parameter being used for the simulation + * \param[in] c2 The speed of light squared + */ +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void calc_M(Real arr [], Real ex, Real ey, Real ez, Real bx, Real by, Real bz, Real xi, Real c2) +{ + const Real ee = ex*ex+ey*ey+ez*ez; + const Real bb = bx*bx+by*by+bz*bz; + const Real eb = ex*bx+ey*by+ez*bz; + arr[0] = -2*xi*c2*( 2*bx*(ee-c2*bb) - 7*ex*eb ); + arr[1] = -2*xi*c2*( 2*by*(ee-c2*bb) - 7*ey*eb ); + arr[2] = -2*xi*c2*( 2*bz*(ee-c2*bb) - 7*ez*eb ); +}; + + +/** + * warpx_hybrid_QED_push uses an FDTD scheme to calculate QED corrections to + * Maxwell's equations and preforms a half timestep correction to the E-fields + * + * \param[in] Ex This function modifies the Ex field at the end + * \param[in] Ey This function modifies the Ey field at the end + * \param[in] Ez This function modifies the Ez field at the end + * \param[in] Bx The QED corrections are non-linear functions of B. However, + * they do not modify B itself + * \param[in] By The QED corrections are non-linear functions of B. However, + * they do not modify B itself + * \param[in] Bz The QED corrections are non-linear functions of B. However, + * they do not modify B itself + * \param[in] tempEx Since the corrections to E at a given node are non-linear functions + * of the values of E on the surronding nodes, temp arrays are used so that + * modifications to one node do not influence the corrections to the surronding nodes + * \param[in] tempEy Since the corrections to E at a given node are non-linear functions + * of the values of E on the surronding nodes, temp arrays are used so that modifications to + * one node do not influence the corrections to the surronding nodes + * \param[in] tempEz Since the corrections to E at a given node are non-linear functions + * of the values of E on the surronding nodes, temp arrays are used so that modifications to + * one node do not influence the corrections to the surronding nodes + * \param[in] dx The x spatial step, used for calculating curls + * \param[in] dy The y spatial step, used for calculating curls + * \param[in] dz The z spatial step, used for calulating curls + * \param[in] dt The temporal step, used for the half push/correction to the E-fields at the end of the function + */ +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void warpx_hybrid_QED_push (int j, int k, int l, Array4<Real> const& Ex, Array4<Real> + const& Ey, Array4<Real> const& Ez, Array4<Real> const& Bx, + Array4<Real> const& By, Array4<Real const> const& Bz, + Array4<Real> const& tmpEx, Array4<Real> const& tmpEy, + Array4<Real> const& tmpEz, Real dx, Real dy, Real dz, Real dt) +{ + + +// Defining constants to be used in the calculations + +constexpr amrex::Real c2 = PhysConst::c * PhysConst::c; +const amrex::Real xi = WarpX::quantum_xi; +const amrex::Real dxi = 1./dx; +const amrex::Real dzi = 1./dz; + +#if (AMREX_SPACEDIM == 3) +const amrex::Real dyi = 1./dy; + + // Picking out points for stencil to be used in curl function of M + + amrex::Real Mpx [3] = {0.,0.,0.}; + amrex::Real Mnx [3] = {0.,0.,0.}; + amrex::Real Mpy [3] = {0.,0.,0.}; + amrex::Real Mny [3] = {0.,0.,0.}; + amrex::Real Mpz [3] = {0.,0.,0.}; + amrex::Real Mnz [3] = {0.,0.,0.}; + + // Calcualting the M-field at the chosen stencil points + + calc_M(Mpx, tmpEx(j+1,k,l), tmpEy(j+1,k,l), tmpEz(j+1,k,l), + Bx(j+1,k,l), By(j+1,k,l), Bz(j+1,k,l), xi, c2); + calc_M(Mnx, tmpEx(j-1,k,l), tmpEy(j-1,k,l), tmpEz(j-1,k,l), + Bx(j-1,k,l), By(j-1,k,l), Bz(j-1,k,l), xi, c2); + calc_M(Mpy, tmpEx(j,k+1,l), tmpEy(j,k+1,l), tmpEz(j,k+1,l), + Bx(j,k+1,l), By(j,k+1,l), Bz(j,k+1,l), xi, c2); + calc_M(Mny, tmpEx(j,k-1,l), tmpEy(j,k-1,l), tmpEz(j,k-1,l), + Bx(j,k-1,l), By(j,k-1,l), Bz(j,k-1,l), xi, c2); + calc_M(Mpz, tmpEx(j,k,l+1), tmpEy(j,k,l+1), tmpEz(j,k,l+1), + Bx(j,k,l+1), By(j,k,l+1), Bz(j,k,l+1), xi, c2); + calc_M(Mnz, tmpEx(j,k,l-1), tmpEy(j,k,l-1), tmpEz(j,k,l-1), + Bx(j,k,l-1), By(j,k,l-1), Bz(j,k,l-1), xi, c2); + + // Calculating necessary curls + + const amrex::Real VxM[3] = { + 0.5*( (Mpy[2]-Mny[2])*dyi - (Mpz[1]-Mnz[1])*dzi ), + 0.5*( (Mpz[0]-Mnz[0])*dzi - (Mpx[2]-Mnx[2])*dxi ), + 0.5*( (Mpx[1]-Mnx[1])*dxi - (Mpy[0]-Mny[0])*dyi ), + }; + + const amrex::Real VxE[3] = { + 0.5*( (tmpEz(j,k+1,l)-tmpEz(j,k-1,l) )*dyi - (tmpEy(j,k,l+1)-tmpEy(j,k,l-1) )*dzi ), + 0.5*( (tmpEx(j,k,l+1)-tmpEx(j,k,l-1) )*dzi - (tmpEz(j+1,k,l)-tmpEz(j-1,k,l) )*dxi ), + 0.5*( (tmpEy(j+1,k,l)-tmpEy(j-1,k,l) )*dxi - (tmpEx(j,k+1,l)-tmpEx(j,k-1,l) )*dyi ), + }; + + const amrex::Real VxB[3] = { + 0.5*( (Bz(j,k+1,l)-Bz(j,k-1,l) )*dyi - (By(j,k,l+1)-By(j,k,l-1) )*dzi ), + 0.5*( (Bx(j,k,l+1)-Bx(j,k,l-1) )*dzi - (Bz(j+1,k,l)-Bz(j-1,k,l) )*dxi ), + 0.5*( (By(j+1,k,l)-By(j-1,k,l) )*dxi - (Bx(j,k+1,l)-Bx(j,k-1,l) )*dyi ), + }; + + // Defining comapct values for QED corrections + + const amrex::Real ex = tmpEx(j,k,l); + const amrex::Real ey = tmpEy(j,k,l); + const amrex::Real ez = tmpEz(j,k,l); + const amrex::Real bx = Bx(j,k,l); + const amrex::Real by = By(j,k,l); + const amrex::Real bz = Bz(j,k,l); + const amrex::Real ee = ex*ex + ey*ey + ez*ez; + const amrex::Real bb = bx*bx + by*by + bz*bz; + const amrex::Real eb = ex*bx + ey*by + ez*bz; + const amrex::Real EVxE = ex*VxE[0] + ey*VxE[1] + ez*VxE[2]; + const amrex::Real BVxE = bx*VxE[0] + by*VxE[1] + bz*VxE[2]; + const amrex::Real EVxB = ex*VxB[0] + ey*VxB[1] + ez*VxB[2]; + const amrex::Real BVxB = bx*VxB[0] + by*VxB[1] + bz*VxB[2]; + + const amrex::Real beta = 4*xi*( ee - c2*bb ) + PhysConst::ep0; + + const amrex::Real Alpha[3] = { + 2*xi*c2*( -7*bx*EVxE - 7*VxE[0]*eb + 4*ex*BVxE ) + VxM[0], + 2*xi*c2*( -7*by*EVxE - 7*VxE[1]*eb + 4*ey*BVxE ) + VxM[1], + 2*xi*c2*( -7*bz*EVxE - 7*VxE[2]*eb + 4*ez*BVxE ) + VxM[2] + }; + + const amrex::Real Omega[3] = { + Alpha[0] + 2*xi*c2*( 4*ex*EVxB + 2*VxB[0]*( ee - c2*bb ) + 7*c2*bx*BVxB ), + Alpha[1] + 2*xi*c2*( 4*ey*EVxB + 2*VxB[1]*( ee - c2*bb ) + 7*c2*by*BVxB ), + Alpha[2] + 2*xi*c2*( 4*ez*EVxB + 2*VxB[2]*( ee - c2*bb ) + 7*c2*bz*BVxB ) + }; + + // Calcualting matrix values for the QED correction algorithm + + const amrex::Real a00 = beta + xi*( 8*ex*ex + 14*c2*bx*bx ); + + const amrex::Real a11 = beta + xi*( 8*ey*ey + 14*c2*by*by ); + + const amrex::Real a22 = beta + xi*( 8*ez*ez + 14*c2*bz*bz ); + + const amrex::Real a01 = xi*( 2*ex*ey + 14*c2*bx*by ); + + const amrex::Real a02 = xi*( 2*ex*ez + 14*c2*bx*bz ); + + const amrex::Real a12 = xi*( 2*ez*ey + 14*c2*bz*by ); + + const amrex::Real detA = a00*( a11*a22 - a12*a12 ) - a01*( a01*a22 - a02*a12 )+a02*( a01*a12 - a02*a11 ); + + // Calcualting the rows of the inverse matrix using the general 3x3 inverse form + + const amrex::Real invAx[3] = {a22*a11 - a12*a12, a12*a02 - a22*a01, a12*a01 - a11*a02}; + + const amrex::Real invAy[3] = {a02*a12 - a22*a01, a00*a22 - a02*a02, a01*a02 - a12*a00}; + + const amrex::Real invAz[3] = {a12*a01 - a02*a11, a02*a01 - a12*a00, a11*a00 - a01*a01}; + + // Calcualting the final QED corrections by mutliplying the Omega vector with the inverse matrix + + const amrex::Real dEx = (-1/detA)*(invAx[0]*Omega[0] + + invAx[1]*Omega[1] + + invAx[2]*Omega[2]); + + const amrex::Real dEy = (-1/detA)*(invAy[0]*Omega[0] + + invAy[1]*Omega[1] + + invAy[2]*Omega[2]); + + const amrex::Real dEz = (-1/detA)*(invAz[0]*Omega[0] + + invAz[1]*Omega[1] + + invAz[2]*Omega[2]); + + // Adding the QED corrections to the origional fields + + Ex(j,k,l) = Ex(j,k,l) + 0.5*dt*dEx; + + Ey(j,k,l) = Ey(j,k,l) + 0.5*dt*dEy; + + Ez(j,k,l) = Ez(j,k,l) + 0.5*dt*dEz; + + +// 2D case - follows naturally from 3D case +#else + + // Picking out points for stencil to be used in curl function of M + + amrex::Real Mpx [3] = {0.,0.,0.}; + amrex::Real Mnx [3] = {0.,0.,0.}; + amrex::Real Mpz [3] = {0.,0.,0.}; + amrex::Real Mnz [3] = {0.,0.,0.}; + + // Calcualting the M-field at the chosen stencil points + + calc_M(Mpx, tmpEx(j+1,k,0), tmpEy(j+1,k,0), tmpEz(j+1,k,0), + Bx(j+1,k,0), By(j+1,k,0), Bz(j+1,k,0), xi, c2); + calc_M(Mnx, tmpEx(j-1,k,0), tmpEy(j-1,k,0), tmpEz(j-1,k,0), + Bx(j-1,k,0), By(j-1,k,0), Bz(j-1,k,0), xi, c2); + calc_M(Mpz, tmpEx(j,k+1,0), tmpEy(j,k+1,0), tmpEz(j,k+1,0), + Bx(j,k+1,0), By(j,k+1,0), Bz(j,k+1,0), xi, c2); + calc_M(Mnz, tmpEx(j,k-1,0), tmpEy(j,k-1,0), tmpEz(j,k-1,0), + Bx(j,k-1,0), By(j,k-1,0), Bz(j,k-1,0), xi, c2); + + // Calculating necessary curls + + const amrex::Real VxM[3] = { + -0.5*(Mpz[1]-Mnz[1])*dzi, + 0.5*( (Mpz[0]-Mnz[0])*dzi - (Mpx[2]-Mnx[2])*dxi ), + 0.5*(Mpx[1]-Mnx[1])*dxi, + }; + + const amrex::Real VxE[3] = { + -0.5*(tmpEy(j,k+1,0)-tmpEy(j,k-1,0) )*dzi, + 0.5*( (tmpEx(j,k+1,0)-tmpEx(j,k-1,0) )*dzi - (tmpEz(j+1,k,0)-tmpEz(j-1,k,0) )*dxi ), + 0.5*(tmpEy(j+1,k,0)-tmpEy(j-1,k,0) )*dxi, + }; + + const amrex::Real VxB[3] = { + -0.5*(By(j,k+1,0)-By(j,k-1,0) )*dzi, + 0.5*( (Bx(j,k+1,0)-Bx(j,k-1,0) )*dzi - (Bz(j+1,k,0)-Bz(j-1,k,0) )*dxi ), + 0.5*(By(j+1,k,0)-By(j-1,k,0) )*dxi, + }; + + // Defining comapct values for QED corrections + + const amrex::Real ex = tmpEx(j,k,0); + const amrex::Real ey = tmpEy(j,k,0); + const amrex::Real ez = tmpEz(j,k,0); + const amrex::Real bx = Bx(j,k,0); + const amrex::Real by = By(j,k,0); + const amrex::Real bz = Bz(j,k,0); + const amrex::Real ee = ex*ex + ey*ey + ez*ez; + const amrex::Real bb = bx*bx + by*by + bz*bz; + const amrex::Real eb = ex*bx + ey*by + ez*bz; + const amrex::Real EVxE = ex*VxE[0] + ey*VxE[1] + ez*VxE[2]; + const amrex::Real BVxE = bx*VxE[0] + by*VxE[1] + bz*VxE[2]; + const amrex::Real EVxB = ex*VxB[0] + ey*VxB[1] + ez*VxB[2]; + const amrex::Real BVxB = bx*VxB[0] + by*VxB[1] + bz*VxB[2]; + + const amrex::Real beta = 4*xi*( ee - c2*bb ) + PhysConst::ep0; + + const amrex::Real Alpha[3] = { + 2*xi*c2*( -7*bx*EVxE - 7*VxE[0]*eb + 4*ex*BVxE ) + VxM[0], + 2*xi*c2*( -7*by*EVxE - 7*VxE[1]*eb + 4*ey*BVxE ) + VxM[1], + 2*xi*c2*( -7*bz*EVxE - 7*VxE[2]*eb + 4*ez*BVxE ) + VxM[2] + }; + + const amrex::Real Omega[3] = { + Alpha[0] + 2*xi*c2*( 4*ex*EVxB + 2*VxB[0]*( ee - c2*bb ) + 7*c2*bx*BVxB ), + Alpha[1] + 2*xi*c2*( 4*ey*EVxB + 2*VxB[1]*( ee - c2*bb ) + 7*c2*by*BVxB ), + Alpha[2] + 2*xi*c2*( 4*ez*EVxB + 2*VxB[2]*( ee - c2*bb ) + 7*c2*bz*BVxB ) + }; + + // Calcualting matrix values for the QED correction algorithm + + const amrex::Real a00 = beta + xi*( 8*ex*ex + 14*c2*bx*bx ); + + const amrex::Real a11 = beta + xi*( 8*ey*ey + 14*c2*by*by ); + + const amrex::Real a22 = beta + xi*( 8*ez*ez + 14*c2*bz*bz ); + + const amrex::Real a01 = xi*( 2*ex*ey + 14*c2*bx*by ); + + const amrex::Real a02 = xi*( 2*ex*ez + 14*c2*bx*bz ); + + const amrex::Real a12 = xi*( 2*ez*ey + 14*c2*bz*by ); + + const amrex::Real detA = a00*( a11*a22 - a12*a12 ) - a01*( a01*a22 - a02*a12 ) + a02*( a01*a12 - a02*a11 ); + + // Calcualting inverse matrix values using the general 3x3 form + + const amrex::Real invAx[3] = {a22*a11 - a12*a12, a12*a02 - a22*a01, a12*a01 - a11*a02}; + + const amrex::Real invAy[3] = {a02*a12 - a22*a01, a00*a22 - a02*a02, a01*a02 - a12*a00}; + + const amrex::Real invAz[3] = {a12*a01 - a02*a11, a02*a01 - a12*a00, a11*a00 - a01*a01}; + + // Calcualting the final QED corrections by mutliplying the Omega vector with the inverse matrix + + const amrex::Real dEx = (-1/detA)*(invAx[0]*Omega[0] + + invAx[1]*Omega[1] + + invAx[2]*Omega[2]); + + const amrex::Real dEy = (-1/detA)*(invAy[0]*Omega[0] + + invAy[1]*Omega[1] + + invAy[2]*Omega[2]); + + const amrex::Real dEz = (-1/detA)*(invAz[0]*Omega[0] + + invAz[1]*Omega[1] + + invAz[2]*Omega[2]); + + // Adding the QED corrections to the origional fields + + Ex(j,k,0) = Ex(j,k,0) + 0.5*dt*dEx; + + Ey(j,k,0) = Ey(j,k,0) + 0.5*dt*dEy; + + Ez(j,k,0) = Ez(j,k,0) + 0.5*dt*dEz; + +#endif + +} + +#endif |