diff options
Diffstat (limited to 'Source/Particles/Collision/BackgroundMCCCollision.cpp')
-rw-r--r-- | Source/Particles/Collision/BackgroundMCCCollision.cpp | 382 |
1 files changed, 382 insertions, 0 deletions
diff --git a/Source/Particles/Collision/BackgroundMCCCollision.cpp b/Source/Particles/Collision/BackgroundMCCCollision.cpp new file mode 100644 index 000000000..c723a2800 --- /dev/null +++ b/Source/Particles/Collision/BackgroundMCCCollision.cpp @@ -0,0 +1,382 @@ +/* Copyright 2021 Modern Electron + * + * This file is part of WarpX. + * + * License: BSD-3-Clause-LBNL + */ +#include "BackgroundMCCCollision.H" +#include "MCCScattering.H" +#include "Particles/ParticleCreation/FilterCopyTransform.H" +#include "Particles/ParticleCreation/SmartCopy.H" +#include "Utils/ParticleUtils.H" +#include "Utils/WarpXUtil.H" +#include "Utils/WarpXProfilerWrapper.H" +#include "WarpX.H" + +#include <AMReX_ParmParse.H> +#include <AMReX_REAL.H> +#include <AMReX_Vector.H> + +#include <string> + +BackgroundMCCCollision::BackgroundMCCCollision (std::string const collision_name) + : CollisionBase(collision_name) +{ + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_species_names.size() == 1, + "Background MCC must have exactly one species."); + + amrex::ParmParse pp(collision_name); + + pp.query("background_density", m_background_density); + pp.query("background_temperature", m_background_temperature); + + // if the neutral mass is specified use it, but if ionization is + // included the mass of the secondary species of that interaction + // will be used. If no neutral mass is specified and ionization is not + // included the mass of the colliding species will be used + m_background_mass = -1; + pp.query("background_mass", m_background_mass); + + // query for a list of collision processes + // these could be elastic, excitation, charge_exchange, back, etc. + amrex::Vector<std::string> scattering_process_names; + pp.queryarr("scattering_processes", scattering_process_names); + + // create a vector of MCCProcess objects from each scattering + // process name + for (auto scattering_process : scattering_process_names) { + std::string kw_cross_section = scattering_process + "_cross_section"; + std::string cross_section_file; + pp.query(kw_cross_section.c_str(), cross_section_file); + + amrex::Real energy = 0.0; + // if the scattering process is excitation or ionization get the + // energy associated with that process + if (scattering_process.find("excitation") != std::string::npos || + scattering_process.find("ionization") != std::string::npos) { + std::string kw_energy = scattering_process + "_energy"; + pp.get(kw_energy.c_str(), energy); + } + + auto process = new MCCProcess(scattering_process, cross_section_file, energy); + + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(process->m_type != MCCProcessType::INVALID, + "Cannot add an unknown MCC process type"); + + // if the scattering process is ionization get the secondary species + // only one ionization process is supported, the vector + // m_ionization_processes is only used to make it simple to calculate + // the maximum collision frequency with the same function used for + // particle conserving processes + if (process->m_type == MCCProcessType::IONIZATION) { + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!ionization_flag, + "Background MCC only supports a single ionization process"); + ionization_flag = true; + + std::string secondary_species; + pp.get("ionization_species", secondary_species); + m_species_names.push_back(secondary_species); + + m_ionization_processes.push_back(process); + } else { + m_scattering_processes.push_back(process); + } + + amrex::Gpu::synchronize(); + } +} + +/** Calculate the maximum collision frequency using a fixed energy grid that + * ranges from 1e-4 to 5000 eV in 0.2 eV increments + */ +amrex::Real +BackgroundMCCCollision::get_nu_max(amrex::Gpu::ManagedVector<MCCProcess*> const& mcc_processes) +{ + using namespace amrex::literals; + amrex::Real nu, nu_max = 0.0; + + for (double E = 1e-4; E < 5000; E+=0.2) { + amrex::Real sigma_E = 0.0; + + // loop through all collision pathways + for (const auto &scattering_process : mcc_processes) { + // get collision cross-section + sigma_E += scattering_process->getCrossSection(E); + } + + // calculate collision frequency + nu = ( + m_background_density * std::sqrt(2.0_rt / m_mass1 * PhysConst::q_e) + * sigma_E * std::sqrt(E) + ); + if (nu > nu_max) { + nu_max = nu; + } + } + return nu_max; +} + +void +BackgroundMCCCollision::doCollisions (amrex::Real cur_time, MultiParticleContainer* mypc) +{ + WARPX_PROFILE("BackgroundMCCCollision::doCollisions()"); + using namespace amrex::literals; + + const amrex::Real dt = WarpX::GetInstance().getdt(0); + if ( int(std::floor(cur_time/dt)) % m_ndt != 0 ) return; + + auto& species1 = mypc->GetParticleContainerFromName(m_species_names[0]); + // this is a very ugly hack to have species2 be a reference and be + // defined in the scope of doCollisions + auto& species2 = ( + (m_species_names.size() == 2) ? + mypc->GetParticleContainerFromName(m_species_names[1]) : + mypc->GetParticleContainerFromName(m_species_names[0]) + ); + + if (!init_flag) { + m_mass1 = species1.getMass(); + + // calculate maximum collision frequency without ionization + m_nu_max = get_nu_max(m_scattering_processes); + + // calculate total collision probability + auto coll_n = m_nu_max * dt; + m_total_collision_prob = 1.0_rt - std::exp(-coll_n); + + // dt has to be small enough that a linear expansion of the collision + // probability is sufficiently accurately, otherwise the MCC results + // will be very heavily affected by small changes in the timestep + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(coll_n < 0.1_rt, + "dt is too large to ensure accurate MCC results" + ); + + if (ionization_flag) { + // calculate maximum collision frequency for ionization + m_nu_max_ioniz = get_nu_max(m_ionization_processes); + + // calculate total ionization probability + auto coll_n_ioniz = m_nu_max_ioniz * dt; + m_total_collision_prob_ioniz = 1.0_rt - std::exp(-coll_n_ioniz); + + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(coll_n_ioniz < 0.1_rt, + "dt is too large to ensure accurate MCC results" + ); + + // if an ionization process is included the secondary species mass + // is taken as the background mass + m_background_mass = species2.getMass(); + } + // if no neutral species mass was specified and ionization is not + // included assume that the collisions will be with neutrals of the + // same mass as the colliding species (like with ion-neutral collisions) + else if (m_background_mass == -1) { + m_background_mass = species1.getMass(); + } + + amrex::Print() << + "Setting up collisions for " << m_species_names[0] << " with total " + "collision probability: " << + m_total_collision_prob + m_total_collision_prob_ioniz << "\n"; + + init_flag = true; + } + + // Loop over refinement levels + auto const flvl = species1.finestLevel(); + for (int lev = 0; lev <= flvl; ++lev) { + + // firstly loop over particles box by box and do all particle conserving + // scattering +#ifdef _OPENMP +#pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) +#endif + for (WarpXParIter pti(species1, lev); pti.isValid(); ++pti) { + doBackgroundCollisionsWithinTile(pti); + } + + // secondly perform ionization through the SmartCopyFactory if needed + if (ionization_flag) { + doBackgroundIonization(lev, species1, species2); + } + } +} + + +/** Perform all particle conserving MCC collisions within a tile + * + * @param pti particle iterator + * + */ +void BackgroundMCCCollision::doBackgroundCollisionsWithinTile +( WarpXParIter& pti ) +{ + using namespace amrex::literals; + + // So that CUDA code gets its intrinsic, not the host-only C++ library version + using std::sqrt; + + // get particle count + const long np = pti.numParticles(); + + // get collider properties + amrex::Real mass1 = m_mass1; + + // get neutral properties + amrex::Real n_a = m_background_density; + amrex::Real T_a = m_background_temperature; + amrex::Real mass_a = m_background_mass; + amrex::Real vel_std = sqrt(PhysConst::kb * T_a / mass_a); + + // get collision parameters + auto scattering_processes = m_scattering_processes.data(); + auto process_count = m_scattering_processes.size(); + + amrex::Real total_collision_prob = m_total_collision_prob; + amrex::Real nu_max = m_nu_max; + + // get Struct-Of-Array particle data, also called attribs + auto& attribs = pti.GetAttribs(); + amrex::ParticleReal* const AMREX_RESTRICT ux = attribs[PIdx::ux].dataPtr(); + amrex::ParticleReal* const AMREX_RESTRICT uy = attribs[PIdx::uy].dataPtr(); + amrex::ParticleReal* const AMREX_RESTRICT uz = attribs[PIdx::uz].dataPtr(); + + amrex::ParallelForRNG(np, + [=] AMREX_GPU_HOST_DEVICE (long ip, amrex::RandomEngine const& engine) + { + // determine if this particle should collide + if (amrex::Random(engine) > total_collision_prob) return; + + amrex::Real v_coll, v_coll2, E_coll, sigma_E, nu_i = 0; + amrex::Real col_select = amrex::Random(engine); + amrex::ParticleReal ua_x, ua_y, ua_z; + amrex::ParticleReal uCOM_x, uCOM_y, uCOM_z; + + // get velocities of gas particles from a Maxwellian distribution + ua_x = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); + ua_y = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); + ua_z = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); + + // calculate the center of momentum velocity + uCOM_x = (mass1 * ux[ip] + mass_a * ua_x) / (mass1 + mass_a); + uCOM_y = (mass1 * uy[ip] + mass_a * ua_y) / (mass1 + mass_a); + uCOM_z = (mass1 * uz[ip] + mass_a * ua_z) / (mass1 + mass_a); + + // calculate relative velocity of collision and collision energy if + // the colliding particle is an ion. For electron collisions we + // cannot use the relative velocity since that allows the + // possibility where the electron kinetic energy in the lab frame + // is insufficient to cause excitation but not in the COM frame - + // for energy to balance this situation requires the neutral to + // lose energy during the collision which we don't currently + // account for. + if (mass_a / mass1 > 1e3) { + v_coll2 = ux[ip]*ux[ip] + uy[ip]*uy[ip] + uz[ip]*uz[ip]; + E_coll = 0.5_rt * mass1 * v_coll2 / PhysConst::q_e; + } + else { + v_coll2 = ( + (ux[ip] - ua_x)*(ux[ip] - ua_x) + + (uy[ip] - ua_y)*(uy[ip] - ua_y) + + (uz[ip] - ua_z)*(uz[ip] - ua_z) + ); + E_coll = ( + 0.5_rt * mass1 * mass_a / (mass1 + mass_a) * v_coll2 + / PhysConst::q_e + ); + } + v_coll = sqrt(v_coll2); + + // loop through all collision pathways + for (size_t i = 0; i < process_count; i++) { + auto const& scattering_process = **(scattering_processes + i); + + // get collision cross-section + sigma_E = scattering_process.getCrossSection(E_coll); + + // calculate normalized collision frequency + nu_i += n_a * sigma_E * v_coll / nu_max; + + // check if this collision should be performed and call + // the appropriate scattering function + if (col_select > nu_i) continue; + + if (scattering_process.m_type == MCCProcessType::ELASTIC) { + ElasticScattering( + ux[ip], uy[ip], uz[ip], uCOM_x, uCOM_y, uCOM_z, engine + ); + } + else if (scattering_process.m_type == MCCProcessType::BACK) { + BackScattering( + ux[ip], uy[ip], uz[ip], uCOM_x, uCOM_y, uCOM_z + ); + } + else if (scattering_process.m_type == MCCProcessType::CHARGE_EXCHANGE) { + ChargeExchange(ux[ip], uy[ip], uz[ip], ua_x, ua_y, ua_z); + } + else if (scattering_process.m_type == MCCProcessType::EXCITATION) { + // get the new velocity magnitude + amrex::Real vp = sqrt( + 2.0_rt / mass1 * PhysConst::q_e + * (E_coll - scattering_process.m_energy_penalty) + ); + RandomizeVelocity(ux[ip], uy[ip], uz[ip], vp, engine); + } + break; + } + } + ); +} + + +/** Perform MCC ionization interactions + * + * @param pti particle iterator + * @param species1/2 reference to species container used to inject new + particles from ionization events + * + */ +void BackgroundMCCCollision::doBackgroundIonization +( int lev, WarpXParticleContainer& species1, + WarpXParticleContainer& species2) +{ + WARPX_PROFILE("BackgroundMCCCollision::doBackgroundIonization()"); + + SmartCopyFactory copy_factory_elec(species1, species1); + SmartCopyFactory copy_factory_ion(species1, species2); + const auto CopyElec = copy_factory_elec.getSmartCopy(); + const auto CopyIon = copy_factory_ion.getSmartCopy(); + + const auto Filter = ImpactIonizationFilterFunc( + *m_ionization_processes[0], + m_mass1, m_total_collision_prob_ioniz, + m_nu_max_ioniz / m_background_density + ); + + amrex::Real vel_std = std::sqrt( + PhysConst::kb * m_background_temperature / m_background_mass + ); + +#ifdef AMREX_USE_OMP +#pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) +#endif + for (WarpXParIter pti(species1, lev); pti.isValid(); ++pti) { + auto& elec_tile = species1.ParticlesAt(lev, pti); + auto& ion_tile = species2.ParticlesAt(lev, pti); + + const auto np_elec = elec_tile.numParticles(); + const auto np_ion = ion_tile.numParticles(); + + auto Transform = ImpactIonizationTransformFunc( + m_ionization_processes[0]->m_energy_penalty, m_mass1, vel_std + ); + + const auto num_added = filterCopyTransformParticles<1>( + elec_tile, ion_tile, elec_tile, np_elec, np_ion, + Filter, CopyElec, CopyIon, Transform + ); + + setNewParticleIDs(elec_tile, np_elec, num_added); + setNewParticleIDs(ion_tile, np_ion, num_added); + } +} |