diff options
Diffstat (limited to 'Source/Particles/Collision/UpdateMomentumPerezElastic.H')
-rw-r--r-- | Source/Particles/Collision/UpdateMomentumPerezElastic.H | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/Source/Particles/Collision/UpdateMomentumPerezElastic.H b/Source/Particles/Collision/UpdateMomentumPerezElastic.H new file mode 100644 index 000000000..948e8b075 --- /dev/null +++ b/Source/Particles/Collision/UpdateMomentumPerezElastic.H @@ -0,0 +1,252 @@ +#ifndef WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ +#define WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ + +#include <WarpXConst.H> +#include <AMReX_Random.H> +#include <cmath> // isnan() isinf() +#include <limits> // numeric_limits<float>::min() + +/* \brief Update particle velocities according to + * F. Perez et al., Phys.Plasmas.19.083104 (2012), + * which is based on Nanbu's method, PhysRevE.55.4642 (1997). + * @param[in] LmdD is max(Debye length, minimal interparticle distance). + * @param[in] L is the Coulomb log. A fixed L will be used if L > 0, + * otherwise L will be calculated based on the algorithm. + * To see if there are nan or inf updated velocities, + * compile with USE_ASSERTION=TRUE. +*/ + +template <typename T_R> +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void UpdateMomentumPerezElastic ( + T_R& u1x, T_R& u1y, T_R& u1z, T_R& u2x, T_R& u2y, T_R& u2z, + T_R const n1, T_R const n2, T_R const n12, + T_R const q1, T_R const m1, T_R const w1, + T_R const q2, T_R const m2, T_R const w2, + T_R const dt, T_R const L, T_R const lmdD) +{ + + // If g = u1 - u2 = 0, do not collide. + if ( std::abs(u1x-u2x) < std::numeric_limits<T_R>::min() && + std::abs(u1y-u2y) < std::numeric_limits<T_R>::min() && + std::abs(u1z-u2z) < std::numeric_limits<T_R>::min() ) + { return; } + + T_R constexpr inv_c2 = T_R(1.0) / ( PhysConst::c * PhysConst::c ); + + // Compute Lorentz factor gamma + T_R const g1 = std::sqrt( T_R(1.0) + (u1x*u1x+u1y*u1y+u1z*u1z)*inv_c2 ); + T_R const g2 = std::sqrt( T_R(1.0) + (u2x*u2x+u2y*u2y+u2z*u2z)*inv_c2 ); + + // Compute momenta + T_R const p1x = u1x * m1; + T_R const p1y = u1y * m1; + T_R const p1z = u1z * m1; + T_R const p2x = u2x * m2; + T_R const p2y = u2y * m2; + T_R const p2z = u2z * m2; + + // Compute center-of-mass (COM) velocity and gamma + T_R const mass_g = m1 * g1 + m2 * g2; + T_R const vcx = (p1x+p2x) / mass_g; + T_R const vcy = (p1y+p2y) / mass_g; + T_R const vcz = (p1z+p2z) / mass_g; + T_R const vcms = vcx*vcx + vcy*vcy + vcz*vcz; + T_R const gc = T_R(1.0) / std::sqrt( T_R(1.0) - vcms*inv_c2 ); + + // Compute vc dot v1 and v2 + T_R const vcDv1 = (vcx*u1x + vcy*u1y + vcz*u1z) / g1; + T_R const vcDv2 = (vcx*u2x + vcy*u2y + vcz*u2z) / g2; + + // Compute p1 star + T_R p1sx; + T_R p1sy; + T_R p1sz; + if ( vcms > std::numeric_limits<T_R>::min() ) + { + T_R const lorentz_tansform_factor = + ( (gc-T_R(1.0))/vcms*vcDv1 - gc )*m1*g1; + p1sx = p1x + vcx*lorentz_tansform_factor; + p1sy = p1y + vcy*lorentz_tansform_factor; + p1sz = p1z + vcz*lorentz_tansform_factor; + } + else // If vcms = 0, don't do Lorentz-transform. + { + p1sx = p1x; + p1sy = p1y; + p1sz = p1z; + } + T_R const p1sm = std::sqrt( p1sx*p1sx + p1sy*p1sy + p1sz*p1sz ); + + // Compute gamma star + T_R const g1s = ( T_R(1.0) - vcDv1*inv_c2 )*gc*g1; + T_R const g2s = ( T_R(1.0) - vcDv2*inv_c2 )*gc*g2; + + // Compute the Coulomb log lnLmd + T_R lnLmd; + if ( L > T_R(0.0) ) { lnLmd = L; } + else + { + // Compute b0 + T_R const b0 = std::abs(q1*q2) * inv_c2 / + (T_R(4.0)*MathConst::pi*PhysConst::ep0) * gc/mass_g * + ( m1*g1s*m2*g2s/(p1sm*p1sm*inv_c2) + T_R(1.0) ); + + // Compute the minimal impact parameter + T_R bmin = amrex::max(PhysConst::hbar*MathConst::pi/p1sm,b0); + + // Compute the Coulomb log lnLmd + lnLmd = amrex::max( T_R(2.0), + T_R(0.5)*std::log(T_R(1.0)+lmdD*lmdD/(bmin*bmin)) ); + } + + // Compute s + T_R s = n1*n2/n12 * dt*lnLmd*q1*q1*q2*q2 / + ( T_R(4.0) * MathConst::pi * PhysConst::ep0 * PhysConst::ep0 * + m1*g1*m2*g2/(inv_c2*inv_c2) ) * gc*p1sm/mass_g * + std::pow(m1*g1s*m2*g2s/(inv_c2*p1sm*p1sm) + T_R(1.0), 2.0); + + // Compute s' + T_R const vrel = mass_g*p1sm/(m1*g1s*m2*g2s*gc); + T_R const sp = std::pow(T_R(4.0)*MathConst::pi/T_R(3.0),T_R(1.0/3.0)) * + n1*n2/n12 * dt * vrel * (m1+m2) / + amrex::max( m1*std::pow(n1,T_R(2.0/3.0)), + m2*std::pow(n2,T_R(2.0/3.0)) ); + + // Determine s + s = amrex::min(s,sp); + + // Get random numbers + T_R r = amrex::Random(); + + // Compute scattering angle + T_R cosXs; + T_R sinXs; + if ( s <= T_R(0.1) ) + { + while ( true ) + { + cosXs = T_R(1.0) + s * std::log(r); + // Avoid the bug when r is too small such that cosXs < -1 + if ( cosXs >= T_R(-1.0) ) { break; } + r = amrex::Random(); + } + } + else if ( s > T_R(0.1) && s <= T_R(3.0) ) + { + T_R const Ainv = 0.0056958 + 0.9560202*s - 0.508139*s*s + + 0.47913906*s*s*s - 0.12788975*s*s*s*s + 0.02389567*s*s*s*s*s; + cosXs = Ainv * std::log( std::exp(T_R(-1.0)/Ainv) + + T_R(2.0) * r * std::sinh(T_R(1.0)/Ainv) ); + } + else if ( s > T_R(3.0) && s <= T_R(6.0) ) + { + T_R const A = T_R(3.0) * std::exp(-s); + cosXs = T_R(1.0)/A * std::log( std::exp(-A) + + T_R(2.0) * r * std::sinh(A) ); + } + else + { + cosXs = T_R(2.0) * r - T_R(1.0); + } + sinXs = std::sqrt(T_R(1.0) - cosXs*cosXs); + + // Get random azimuthal angle + T_R const phis = amrex::Random() * T_R(2.0) * MathConst::pi; + T_R const cosphis = std::cos(phis); + T_R const sinphis = std::sin(phis); + + // Compute post-collision momenta pfs in COM + T_R p1fsx; + T_R p1fsy; + T_R p1fsz; + // p1sp is the p1s perpendicular + T_R p1sp = std::sqrt( p1sx*p1sx + p1sy*p1sy ); + // Make sure p1sp is not almost zero + if ( p1sp > std::numeric_limits<T_R>::min() ) + { + p1fsx = ( p1sx*p1sz/p1sp ) * sinXs*cosphis + + ( p1sy*p1sm/p1sp ) * sinXs*sinphis + + ( p1sx ) * cosXs; + p1fsy = ( p1sy*p1sz/p1sp ) * sinXs*cosphis + + (-p1sx*p1sm/p1sp ) * sinXs*sinphis + + ( p1sy ) * cosXs; + p1fsz = (-p1sp ) * sinXs*cosphis + + ( T_R(0.0) ) * sinXs*sinphis + + ( p1sz ) * cosXs; + // Note a negative sign is different from + // Eq. (12) in Perez's paper, + // but they are the same due to the random nature of phis. + } + else + { + // If the previous p1sp is almost zero + // x->y y->z z->x + // This set is equivalent to the one in Nanbu's paper + p1sp = std::sqrt( p1sy*p1sy + p1sz*p1sz ); + p1fsy = ( p1sy*p1sx/p1sp ) * sinXs*cosphis + + ( p1sz*p1sm/p1sp ) * sinXs*sinphis + + ( p1sy ) * cosXs; + p1fsz = ( p1sz*p1sx/p1sp ) * sinXs*cosphis + + (-p1sy*p1sm/p1sp ) * sinXs*sinphis + + ( p1sz ) * cosXs; + p1fsx = (-p1sp ) * sinXs*cosphis + + ( T_R(0.0) ) * sinXs*sinphis + + ( p1sx ) * cosXs; + } + + T_R const p2fsx = -p1fsx; + T_R const p2fsy = -p1fsy; + T_R const p2fsz = -p1fsz; + + // Transform from COM to lab frame + T_R p1fx; T_R p2fx; + T_R p1fy; T_R p2fy; + T_R p1fz; T_R p2fz; + if ( vcms > std::numeric_limits<T_R>::min() ) + { + T_R const vcDp1fs = vcx*p1fsx + vcy*p1fsy + vcz*p1fsz; + T_R const vcDp2fs = vcx*p2fsx + vcy*p2fsy + vcz*p2fsz; + T_R const factor = (gc-T_R(1.0))/vcms; + T_R const factor1 = factor*vcDp1fs + m1*g1s*gc; + T_R const factor2 = factor*vcDp2fs + m2*g2s*gc; + p1fx = p1fsx + vcx * factor1; + p1fy = p1fsy + vcy * factor1; + p1fz = p1fsz + vcz * factor1; + p2fx = p2fsx + vcx * factor2; + p2fy = p2fsy + vcy * factor2; + p2fz = p2fsz + vcz * factor2; + } + else // If vcms = 0, don't do Lorentz-transform. + { + p1fx = p1fsx; + p1fy = p1fsy; + p1fz = p1fsz; + p2fx = p2fsx; + p2fy = p2fsy; + p2fz = p2fsz; + } + + // Rejection method + r = amrex::Random(); + if ( w2 > r*amrex::max(w1, w2) ) + { + u1x = p1fx / m1; + u1y = p1fy / m1; + u1z = p1fz / m1; + AMREX_ASSERT(!std::isnan(u1x+u1y+u1z+u2x+u2y+u2z)); + AMREX_ASSERT(!std::isinf(u1x+u1y+u1z+u2x+u2y+u2z)); + } + r = amrex::Random(); + if ( w1 > r*amrex::max(w1, w2) ) + { + u2x = p2fx / m2; + u2y = p2fy / m2; + u2z = p2fz / m2; + AMREX_ASSERT(!std::isnan(u1x+u1y+u1z+u2x+u2y+u2z)); + AMREX_ASSERT(!std::isinf(u1x+u1y+u1z+u2x+u2y+u2z)); + } + +} + +#endif // WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ |