diff options
Diffstat (limited to 'Source/Particles/Collision')
-rw-r--r-- | Source/Particles/Collision/CollisionType.H | 39 | ||||
-rw-r--r-- | Source/Particles/Collision/CollisionType.cpp | 241 | ||||
-rw-r--r-- | Source/Particles/Collision/ComputeTemperature.H | 39 | ||||
-rw-r--r-- | Source/Particles/Collision/ElasticCollisionPerez.H | 105 | ||||
-rw-r--r-- | Source/Particles/Collision/Make.package | 10 | ||||
-rw-r--r-- | Source/Particles/Collision/ShuffleFisherYates.H | 29 | ||||
-rw-r--r-- | Source/Particles/Collision/UpdateMomentumPerezElastic.H | 252 |
7 files changed, 715 insertions, 0 deletions
diff --git a/Source/Particles/Collision/CollisionType.H b/Source/Particles/Collision/CollisionType.H new file mode 100644 index 000000000..d020f47e8 --- /dev/null +++ b/Source/Particles/Collision/CollisionType.H @@ -0,0 +1,39 @@ +#ifndef WARPX_PARTICLES_COLLISION_COLLISIONTYPE_H_ +#define WARPX_PARTICLES_COLLISION_COLLISIONTYPE_H_ + +#include "WarpXParticleContainer.H" +#include <AMReX_DenseBins.H> +#include <AMReX_REAL.H> +#include <AMReX_ParmParse.H> + +class CollisionType +{ +public: + int m_species1_index; + int m_species2_index; + bool m_isSameSpecies; + amrex::Real m_CoulombLog; + + CollisionType( + const std::vector<std::string>& species_names, + std::string const collision_name); + + /** Perform all binary collisions within a tile + * + * @param lev AMR level of the tile + * @param mfi iterator for multifab + * @param species1/2 pointer to species container + * @param isSameSpecies true if collision is between same species + * @param CoulombLog user input Coulomb logrithm + * + */ + + static void doCoulombCollisionsWithinTile ( + int const lev, amrex::MFIter const& mfi, + std::unique_ptr<WarpXParticleContainer>& species1, + std::unique_ptr<WarpXParticleContainer>& species2, + bool const isSameSpecies, amrex::Real const CoulombLog ); + +}; + +#endif // WARPX_PARTICLES_COLLISION_COLLISIONTYPE_H_ diff --git a/Source/Particles/Collision/CollisionType.cpp b/Source/Particles/Collision/CollisionType.cpp new file mode 100644 index 000000000..b8014579d --- /dev/null +++ b/Source/Particles/Collision/CollisionType.cpp @@ -0,0 +1,241 @@ +#include "CollisionType.H" +#include "ShuffleFisherYates.H" +#include "ElasticCollisionPerez.H" +#include <WarpX.H> + +CollisionType::CollisionType( + const std::vector<std::string>& species_names, + std::string const collision_name) +{ + +#if defined WARPX_DIM_XZ + amrex::Abort("Collisions only work in 3D geometry for now."); +#elif defined WARPX_DIM_RZ + amrex::Abort("Collisions only work in Cartesian geometry for now."); +#endif + + // read collision species + std::vector<std::string> collision_species; + amrex::ParmParse pp(collision_name); + pp.getarr("species", collision_species); + AMREX_ALWAYS_ASSERT_WITH_MESSAGE(collision_species.size() == 2, + "Collision species must name exactly two species."); + + // default Coulomb log, if < 0, will be computed automatically + m_CoulombLog = -1.0; + pp.query("CoulombLog", m_CoulombLog); + + for (int i=0; i<species_names.size(); i++) + { + if (species_names[i] == collision_species[0]) + { m_species1_index = i; } + if (species_names[i] == collision_species[1]) + { m_species2_index = i; } + } + + if (collision_species[0] == collision_species[1]) + m_isSameSpecies = true; + else + m_isSameSpecies = false; + +} + +using namespace amrex; +// Define shortcuts for frequently-used type names +using ParticleType = WarpXParticleContainer::ParticleType; +using ParticleTileType = WarpXParticleContainer::ParticleTileType; +using ParticleBins = DenseBins<ParticleType>; +using index_type = ParticleBins::index_type; + +namespace { + + /* Find the particles and count the particles that are in each cell. + Note that this does *not* rearrange particle arrays */ + ParticleBins + findParticlesInEachCell( int const lev, MFIter const& mfi, + ParticleTileType const& ptile) { + + // Extract particle structures for this tile + int const np = ptile.numParticles(); + ParticleType const* particle_ptr = ptile.GetArrayOfStructs()().data(); + + // Extract box properties + Geometry const& geom = WarpX::GetInstance().Geom(lev); + Box const& cbx = mfi.tilebox(IntVect::TheZeroVector()); //Cell-centered box + const auto lo = lbound(cbx); + const auto dxi = geom.InvCellSizeArray(); + const auto plo = geom.ProbLoArray(); + + // Find particles that are in each cell ; + // results are stored in the object `bins`. + ParticleBins bins; + bins.build(np, particle_ptr, cbx, + // Pass lambda function that returns the cell index + [=] AMREX_GPU_HOST_DEVICE (const ParticleType& p) noexcept -> IntVect + { + return IntVect(AMREX_D_DECL((p.pos(0)-plo[0])*dxi[0] - lo.x, + (p.pos(1)-plo[1])*dxi[1] - lo.y, + (p.pos(2)-plo[2])*dxi[2] - lo.z)); + }); + + return bins; + } + +} + +/** Perform all binary collisions within a tile + * + * @param lev AMR level of the tile + * @param mfi iterator for multifab + * @param species1/2 pointer to species container + * @param isSameSpecies true if collision is between same species + * @param CoulombLog user input Coulomb logrithm + * + */ +void CollisionType::doCoulombCollisionsWithinTile + ( int const lev, MFIter const& mfi, + std::unique_ptr<WarpXParticleContainer>& species_1, + std::unique_ptr<WarpXParticleContainer>& species_2, + bool const isSameSpecies, Real const CoulombLog ) +{ + + if ( isSameSpecies ) // species_1 == species_2 + { + // Extract particles in the tile that `mfi` points to + ParticleTileType& ptile_1 = species_1->ParticlesAt(lev, mfi); + + // Find the particles that are in each cell of this tile + ParticleBins bins_1 = findParticlesInEachCell( lev, mfi, ptile_1 ); + + // Loop over cells, and collide the particles in each cell + + // Extract low-level data + int const n_cells = bins_1.numBins(); + // - Species 1 + auto& soa_1 = ptile_1.GetStructOfArrays(); + ParticleReal * const AMREX_RESTRICT ux_1 = + soa_1.GetRealData(PIdx::ux).data(); + ParticleReal * const AMREX_RESTRICT uy_1 = + soa_1.GetRealData(PIdx::uy).data(); + ParticleReal * const AMREX_RESTRICT uz_1 = + soa_1.GetRealData(PIdx::uz).data(); + ParticleReal const * const AMREX_RESTRICT w_1 = + soa_1.GetRealData(PIdx::w).data(); + index_type* indices_1 = bins_1.permutationPtr(); + index_type const* cell_offsets_1 = bins_1.offsetsPtr(); + Real q1 = species_1->getCharge(); + Real m1 = species_1->getMass(); + + const Real dt = WarpX::GetInstance().getdt(lev); + Geometry const& geom = WarpX::GetInstance().Geom(lev); + const Real dV = geom.CellSize(0)*geom.CellSize(1)*geom.CellSize(2); + + // Loop over cells + amrex::ParallelFor( n_cells, + [=] AMREX_GPU_DEVICE (int i_cell) noexcept + { + // The particles from species1 that are in the cell `i_cell` are + // given by the `indices_1[cell_start_1:cell_stop_1]` + index_type const cell_start_1 = cell_offsets_1[i_cell]; + index_type const cell_stop_1 = cell_offsets_1[i_cell+1]; + index_type const cell_half_1 = (cell_start_1+cell_stop_1)/2; + + // Do not collide if there is only one particle in the cell + if ( cell_stop_1 - cell_start_1 >= 2 ) + { + // shuffle + ShuffleFisherYates( + indices_1, cell_start_1, cell_half_1 ); + + // Call the function in order to perform collisions + ElasticCollisionPerez( + cell_start_1, cell_half_1, + cell_half_1, cell_stop_1, + indices_1, indices_1, + ux_1, uy_1, uz_1, ux_1, uy_1, uz_1, w_1, w_1, + q1, q1, m1, m1, Real(-1.0), Real(-1.0), + dt, CoulombLog, dV ); + } + } + ); + } + else // species_1 != species_2 + { + // Extract particles in the tile that `mfi` points to + ParticleTileType& ptile_1 = species_1->ParticlesAt(lev, mfi); + ParticleTileType& ptile_2 = species_2->ParticlesAt(lev, mfi); + + // Find the particles that are in each cell of this tile + ParticleBins bins_1 = findParticlesInEachCell( lev, mfi, ptile_1 ); + ParticleBins bins_2 = findParticlesInEachCell( lev, mfi, ptile_2 ); + + // Loop over cells, and collide the particles in each cell + + // Extract low-level data + int const n_cells = bins_1.numBins(); + // - Species 1 + auto& soa_1 = ptile_1.GetStructOfArrays(); + ParticleReal * const AMREX_RESTRICT ux_1 = + soa_1.GetRealData(PIdx::ux).data(); + ParticleReal * const AMREX_RESTRICT uy_1 = + soa_1.GetRealData(PIdx::uy).data(); + ParticleReal * const AMREX_RESTRICT uz_1 = + soa_1.GetRealData(PIdx::uz).data(); + ParticleReal const * const AMREX_RESTRICT w_1 = + soa_1.GetRealData(PIdx::w).data(); + index_type* indices_1 = bins_1.permutationPtr(); + index_type const* cell_offsets_1 = bins_1.offsetsPtr(); + Real q1 = species_1->getCharge(); + Real m1 = species_1->getMass(); + // - Species 2 + auto& soa_2 = ptile_2.GetStructOfArrays(); + Real* ux_2 = soa_2.GetRealData(PIdx::ux).data(); + Real* uy_2 = soa_2.GetRealData(PIdx::uy).data(); + Real* uz_2 = soa_2.GetRealData(PIdx::uz).data(); + Real* w_2 = soa_2.GetRealData(PIdx::w).data(); + index_type* indices_2 = bins_2.permutationPtr(); + index_type const* cell_offsets_2 = bins_2.offsetsPtr(); + Real q2 = species_2->getCharge(); + Real m2 = species_2->getMass(); + + const Real dt = WarpX::GetInstance().getdt(lev); + Geometry const& geom = WarpX::GetInstance().Geom(lev); + const Real dV = geom.CellSize(0)*geom.CellSize(1)*geom.CellSize(2); + + // Loop over cells + amrex::ParallelFor( n_cells, + [=] AMREX_GPU_DEVICE (int i_cell) noexcept + { + // The particles from species1 that are in the cell `i_cell` are + // given by the `indices_1[cell_start_1:cell_stop_1]` + index_type const cell_start_1 = cell_offsets_1[i_cell]; + index_type const cell_stop_1 = cell_offsets_1[i_cell+1]; + // Same for species 2 + index_type const cell_start_2 = cell_offsets_2[i_cell]; + index_type const cell_stop_2 = cell_offsets_2[i_cell+1]; + + // ux from species1 can be accessed like this: + // ux_1[ indices_1[i] ], where i is between + // cell_start_1 (inclusive) and cell_start_2 (exclusive) + + // Do not collide if one species is missing in the cell + if ( cell_stop_1 - cell_start_1 >= 1 && + cell_stop_2 - cell_start_2 >= 1 ) + { + // shuffle + ShuffleFisherYates(indices_1, cell_start_1, cell_stop_1); + ShuffleFisherYates(indices_2, cell_start_2, cell_stop_2); + + // Call the function in order to perform collisions + ElasticCollisionPerez( + cell_start_1, cell_stop_1, cell_start_2, cell_stop_2, + indices_1, indices_2, + ux_1, uy_1, uz_1, ux_2, uy_2, uz_2, w_1, w_2, + q1, q2, m1, m2, Real(-1.0), Real(-1.0), + dt, CoulombLog, dV ); + } + } + ); + } // end if ( isSameSpecies) + +} diff --git a/Source/Particles/Collision/ComputeTemperature.H b/Source/Particles/Collision/ComputeTemperature.H new file mode 100644 index 000000000..3cc96fb52 --- /dev/null +++ b/Source/Particles/Collision/ComputeTemperature.H @@ -0,0 +1,39 @@ +#ifndef WARPX_PARTICLES_COLLISION_COMPUTE_TEMPERATURE_H_ +#define WARPX_PARTICLES_COLLISION_COMPUTE_TEMPERATURE_H_ + +#include <WarpXConst.H> + +template <typename T_index, typename T_R> +T_R ComputeTemperature ( + T_index const Is, T_index const Ie, T_index const *I, + T_R const *ux, T_R const *uy, T_R const *uz, T_R const m ) +{ + + T_R constexpr inv_c2 = T_R(1.0) / ( PhysConst::c * PhysConst::c ); + + int N = Ie - Is; + if ( N == 0 ) { return T_R(0.0); } + + T_R vx = T_R(0.0); T_R vy = T_R(0.0); + T_R vz = T_R(0.0); T_R vs = T_R(0.0); + T_R gm = T_R(0.0); T_R us = T_R(0.0); + + for (int i = Is; i < Ie; ++i) + { + us = ( ux[ I[i] ] * ux[ I[i] ] + + uy[ I[i] ] * uy[ I[i] ] + + uz[ I[i] ] * uz[ I[i] ] ); + gm = std::sqrt( T_R(1.0) + us*inv_c2 ); + vx += ux[ I[i] ] / gm; + vy += uy[ I[i] ] / gm; + vz += uz[ I[i] ] / gm; + vs += us / gm / gm; + } + + vx = vx / N; vy = vy / N; + vz = vz / N; vs = vs / N; + + return m/T_R(3.0)*(vs-(vx*vx+vy*vy+vz*vz)); +} + +#endif // WARPX_PARTICLES_COLLISION_COMPUTE_TEMPERATURE_H_ diff --git a/Source/Particles/Collision/ElasticCollisionPerez.H b/Source/Particles/Collision/ElasticCollisionPerez.H new file mode 100644 index 000000000..8e16d95cc --- /dev/null +++ b/Source/Particles/Collision/ElasticCollisionPerez.H @@ -0,0 +1,105 @@ +#ifndef WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ +#define WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ + +#include "UpdateMomentumPerezElastic.H" +#include "ComputeTemperature.H" +#include <WarpXConst.H> +#include <AMReX_Random.H> + +/** \brief Prepare information for and call + * UpdateMomentumPerezElastic(). + * @param[in] I1s,I2s is the start index for I1,I2 (inclusive). + * @param[in] I1e,I2e is the start index for I1,I2 (exclusive). + * @param[in] I1 and I2 are the index arrays. + * @param[in,out] u1 and u2 are the velocity arrays (u=v*gamma), + * they could be either different or the same, + * their lengths are not needed, + * @param[in] I1 and I2 determine all elements that will be used. + * @param[in] w1 and w2 are arrays of weights. + * @param[in] q1 and q2 are charges. m1 and m2 are masses. + * @param[in] T1 and T2 are temperatures (Joule) + * and will be used if greater than zero, + * otherwise will be computed. + * @param[in] dt is the time step length between two collision calls. + * @param[in] L is the Coulomb log and will be used if greater than zero, + * otherwise will be computed. + * @param[in] dV is the volume of the corresponding cell. +*/ + +template <typename T_index, typename T_R> +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void ElasticCollisionPerez ( + T_index const I1s, T_index const I1e, + T_index const I2s, T_index const I2e, + T_index *I1, T_index *I2, + T_R *u1x, T_R *u1y, T_R *u1z, + T_R *u2x, T_R *u2y, T_R *u2z, + T_R const *w1, T_R const *w2, + T_R const q1, T_R const q2, + T_R const m1, T_R const m2, + T_R const T1, T_R const T2, + T_R const dt, T_R const L, T_R const dV) +{ + + T_R constexpr inv_c2 = T_R(1.0)/(PhysConst::c*PhysConst::c); + int NI1 = I1e - I1s; + int NI2 = I2e - I2s; + + // get local T1t and T2t + T_R T1t; T_R T2t; + if ( T1 <= T_R(0.0) && L <= T_R(0.0) ) + { + T1t = ComputeTemperature(I1s,I1e,I1,u1x,u1y,u1z,m1); + } + else { T1t = T1; } + if ( T2 <= T_R(0.0) && L <= T_R(0.0) ) + { + T2t = ComputeTemperature(I2s,I2e,I2,u2x,u2y,u2z,m2); + } + else { T2t = T2; } + + // local density + T_R n1 = T_R(0.0); + T_R n2 = T_R(0.0); + T_R n12 = T_R(0.0); + for (int i1=I1s; i1<I1e; ++i1) { n1 += w1[ I1[i1] ]; } + for (int i2=I2s; i2<I2e; ++i2) { n2 += w2[ I2[i2] ]; } + n1 = n1 / dV; n2 = n2 / dV; + { + int i1 = I1s; int i2 = I2s; + for (int k = 0; k < amrex::max(NI1,NI2); ++k) + { + n12 += amrex::min( w1[ I1[i1] ], w2[ I2[i2] ] ); + ++i1; if ( i1 == I1e ) { i1 = I1s; } + ++i2; if ( i2 == I2e ) { i2 = I2s; } + } + n12 = n12 / dV; + } + + // compute Debye length lmdD + T_R lmdD; + lmdD = T_R(1.0)/std::sqrt( n1*q1*q1/(T1t*PhysConst::ep0) + + n2*q2*q2/(T2t*PhysConst::ep0) ); + T_R rmin = std::pow( T_R(4.0) * MathConst::pi / T_R(3.0) * + amrex::max(n1,n2), T_R(-1.0/3.0) ); + lmdD = amrex::max(lmdD, rmin); + + // call UpdateMomentumPerezElastic() + { + int i1 = I1s; int i2 = I2s; + for (int k = 0; k < amrex::max(NI1,NI2); ++k) + { + UpdateMomentumPerezElastic( + u1x[ I1[i1] ], u1y[ I1[i1] ], u1z[ I1[i1] ], + u2x[ I2[i2] ], u2y[ I2[i2] ], u2z[ I2[i2] ], + n1, n2, n12, + q1, m1, w1[ I1[i1] ], q2, m2, w2[ I2[i2] ], + dt, L, lmdD); + ++i1; if ( i1 == I1e ) { i1 = I1s; } + ++i2; if ( i2 == I2e ) { i2 = I2s; } + } + } + +} + +#endif // WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ diff --git a/Source/Particles/Collision/Make.package b/Source/Particles/Collision/Make.package new file mode 100644 index 000000000..163508fb7 --- /dev/null +++ b/Source/Particles/Collision/Make.package @@ -0,0 +1,10 @@ +CEXE_headers += CollisionType.H +CEXE_headers += ElasticCollisionPerez.H +CEXE_headers += ShuffleFisherYates.H +CEXE_headers += UpdateMomentumPerezElastic.H +CEXE_headers += ComputeTemperature.H + +CEXE_sources += CollisionType.cpp + +INCLUDE_LOCATIONS += $(WARPX_HOME)/Source/Particles/Collision +VPATH_LOCATIONS += $(WARPX_HOME)/Source/Particles/Collision diff --git a/Source/Particles/Collision/ShuffleFisherYates.H b/Source/Particles/Collision/ShuffleFisherYates.H new file mode 100644 index 000000000..621e654d6 --- /dev/null +++ b/Source/Particles/Collision/ShuffleFisherYates.H @@ -0,0 +1,29 @@ +#ifndef WARPX_PARTICLES_COLLISION_SHUFFLE_FISHER_YATES_H_ +#define WARPX_PARTICLES_COLLISION_SHUFFLE_FISHER_YATES_H_ + +#include <AMReX_Random.H> + +/* \brief Shuffle array according to Fisher-Yates algorithm. + * Only shuffle the part between is <= i < ie, n = ie-is. + * T_index shall be + * amrex::DenseBins<WarpXParticleContainer::ParticleType>::index_type +*/ + +template <typename T_index> +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void ShuffleFisherYates (T_index *array, T_index const is, T_index const ie) +{ + int j; + T_index buf; + for (int i = ie-1; i >= is+1; --i) + { + // get random number j: is <= j <= i + j = amrex::Random_int(i-is+1) + is; + // swop the ith array element with the jth + buf = array[i]; + array[i] = array[j]; + array[j] = buf; + } +} + +#endif // WARPX_PARTICLES_COLLISION_SHUFFLE_FISHER_YATES_H_ diff --git a/Source/Particles/Collision/UpdateMomentumPerezElastic.H b/Source/Particles/Collision/UpdateMomentumPerezElastic.H new file mode 100644 index 000000000..948e8b075 --- /dev/null +++ b/Source/Particles/Collision/UpdateMomentumPerezElastic.H @@ -0,0 +1,252 @@ +#ifndef WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ +#define WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ + +#include <WarpXConst.H> +#include <AMReX_Random.H> +#include <cmath> // isnan() isinf() +#include <limits> // numeric_limits<float>::min() + +/* \brief Update particle velocities according to + * F. Perez et al., Phys.Plasmas.19.083104 (2012), + * which is based on Nanbu's method, PhysRevE.55.4642 (1997). + * @param[in] LmdD is max(Debye length, minimal interparticle distance). + * @param[in] L is the Coulomb log. A fixed L will be used if L > 0, + * otherwise L will be calculated based on the algorithm. + * To see if there are nan or inf updated velocities, + * compile with USE_ASSERTION=TRUE. +*/ + +template <typename T_R> +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void UpdateMomentumPerezElastic ( + T_R& u1x, T_R& u1y, T_R& u1z, T_R& u2x, T_R& u2y, T_R& u2z, + T_R const n1, T_R const n2, T_R const n12, + T_R const q1, T_R const m1, T_R const w1, + T_R const q2, T_R const m2, T_R const w2, + T_R const dt, T_R const L, T_R const lmdD) +{ + + // If g = u1 - u2 = 0, do not collide. + if ( std::abs(u1x-u2x) < std::numeric_limits<T_R>::min() && + std::abs(u1y-u2y) < std::numeric_limits<T_R>::min() && + std::abs(u1z-u2z) < std::numeric_limits<T_R>::min() ) + { return; } + + T_R constexpr inv_c2 = T_R(1.0) / ( PhysConst::c * PhysConst::c ); + + // Compute Lorentz factor gamma + T_R const g1 = std::sqrt( T_R(1.0) + (u1x*u1x+u1y*u1y+u1z*u1z)*inv_c2 ); + T_R const g2 = std::sqrt( T_R(1.0) + (u2x*u2x+u2y*u2y+u2z*u2z)*inv_c2 ); + + // Compute momenta + T_R const p1x = u1x * m1; + T_R const p1y = u1y * m1; + T_R const p1z = u1z * m1; + T_R const p2x = u2x * m2; + T_R const p2y = u2y * m2; + T_R const p2z = u2z * m2; + + // Compute center-of-mass (COM) velocity and gamma + T_R const mass_g = m1 * g1 + m2 * g2; + T_R const vcx = (p1x+p2x) / mass_g; + T_R const vcy = (p1y+p2y) / mass_g; + T_R const vcz = (p1z+p2z) / mass_g; + T_R const vcms = vcx*vcx + vcy*vcy + vcz*vcz; + T_R const gc = T_R(1.0) / std::sqrt( T_R(1.0) - vcms*inv_c2 ); + + // Compute vc dot v1 and v2 + T_R const vcDv1 = (vcx*u1x + vcy*u1y + vcz*u1z) / g1; + T_R const vcDv2 = (vcx*u2x + vcy*u2y + vcz*u2z) / g2; + + // Compute p1 star + T_R p1sx; + T_R p1sy; + T_R p1sz; + if ( vcms > std::numeric_limits<T_R>::min() ) + { + T_R const lorentz_tansform_factor = + ( (gc-T_R(1.0))/vcms*vcDv1 - gc )*m1*g1; + p1sx = p1x + vcx*lorentz_tansform_factor; + p1sy = p1y + vcy*lorentz_tansform_factor; + p1sz = p1z + vcz*lorentz_tansform_factor; + } + else // If vcms = 0, don't do Lorentz-transform. + { + p1sx = p1x; + p1sy = p1y; + p1sz = p1z; + } + T_R const p1sm = std::sqrt( p1sx*p1sx + p1sy*p1sy + p1sz*p1sz ); + + // Compute gamma star + T_R const g1s = ( T_R(1.0) - vcDv1*inv_c2 )*gc*g1; + T_R const g2s = ( T_R(1.0) - vcDv2*inv_c2 )*gc*g2; + + // Compute the Coulomb log lnLmd + T_R lnLmd; + if ( L > T_R(0.0) ) { lnLmd = L; } + else + { + // Compute b0 + T_R const b0 = std::abs(q1*q2) * inv_c2 / + (T_R(4.0)*MathConst::pi*PhysConst::ep0) * gc/mass_g * + ( m1*g1s*m2*g2s/(p1sm*p1sm*inv_c2) + T_R(1.0) ); + + // Compute the minimal impact parameter + T_R bmin = amrex::max(PhysConst::hbar*MathConst::pi/p1sm,b0); + + // Compute the Coulomb log lnLmd + lnLmd = amrex::max( T_R(2.0), + T_R(0.5)*std::log(T_R(1.0)+lmdD*lmdD/(bmin*bmin)) ); + } + + // Compute s + T_R s = n1*n2/n12 * dt*lnLmd*q1*q1*q2*q2 / + ( T_R(4.0) * MathConst::pi * PhysConst::ep0 * PhysConst::ep0 * + m1*g1*m2*g2/(inv_c2*inv_c2) ) * gc*p1sm/mass_g * + std::pow(m1*g1s*m2*g2s/(inv_c2*p1sm*p1sm) + T_R(1.0), 2.0); + + // Compute s' + T_R const vrel = mass_g*p1sm/(m1*g1s*m2*g2s*gc); + T_R const sp = std::pow(T_R(4.0)*MathConst::pi/T_R(3.0),T_R(1.0/3.0)) * + n1*n2/n12 * dt * vrel * (m1+m2) / + amrex::max( m1*std::pow(n1,T_R(2.0/3.0)), + m2*std::pow(n2,T_R(2.0/3.0)) ); + + // Determine s + s = amrex::min(s,sp); + + // Get random numbers + T_R r = amrex::Random(); + + // Compute scattering angle + T_R cosXs; + T_R sinXs; + if ( s <= T_R(0.1) ) + { + while ( true ) + { + cosXs = T_R(1.0) + s * std::log(r); + // Avoid the bug when r is too small such that cosXs < -1 + if ( cosXs >= T_R(-1.0) ) { break; } + r = amrex::Random(); + } + } + else if ( s > T_R(0.1) && s <= T_R(3.0) ) + { + T_R const Ainv = 0.0056958 + 0.9560202*s - 0.508139*s*s + + 0.47913906*s*s*s - 0.12788975*s*s*s*s + 0.02389567*s*s*s*s*s; + cosXs = Ainv * std::log( std::exp(T_R(-1.0)/Ainv) + + T_R(2.0) * r * std::sinh(T_R(1.0)/Ainv) ); + } + else if ( s > T_R(3.0) && s <= T_R(6.0) ) + { + T_R const A = T_R(3.0) * std::exp(-s); + cosXs = T_R(1.0)/A * std::log( std::exp(-A) + + T_R(2.0) * r * std::sinh(A) ); + } + else + { + cosXs = T_R(2.0) * r - T_R(1.0); + } + sinXs = std::sqrt(T_R(1.0) - cosXs*cosXs); + + // Get random azimuthal angle + T_R const phis = amrex::Random() * T_R(2.0) * MathConst::pi; + T_R const cosphis = std::cos(phis); + T_R const sinphis = std::sin(phis); + + // Compute post-collision momenta pfs in COM + T_R p1fsx; + T_R p1fsy; + T_R p1fsz; + // p1sp is the p1s perpendicular + T_R p1sp = std::sqrt( p1sx*p1sx + p1sy*p1sy ); + // Make sure p1sp is not almost zero + if ( p1sp > std::numeric_limits<T_R>::min() ) + { + p1fsx = ( p1sx*p1sz/p1sp ) * sinXs*cosphis + + ( p1sy*p1sm/p1sp ) * sinXs*sinphis + + ( p1sx ) * cosXs; + p1fsy = ( p1sy*p1sz/p1sp ) * sinXs*cosphis + + (-p1sx*p1sm/p1sp ) * sinXs*sinphis + + ( p1sy ) * cosXs; + p1fsz = (-p1sp ) * sinXs*cosphis + + ( T_R(0.0) ) * sinXs*sinphis + + ( p1sz ) * cosXs; + // Note a negative sign is different from + // Eq. (12) in Perez's paper, + // but they are the same due to the random nature of phis. + } + else + { + // If the previous p1sp is almost zero + // x->y y->z z->x + // This set is equivalent to the one in Nanbu's paper + p1sp = std::sqrt( p1sy*p1sy + p1sz*p1sz ); + p1fsy = ( p1sy*p1sx/p1sp ) * sinXs*cosphis + + ( p1sz*p1sm/p1sp ) * sinXs*sinphis + + ( p1sy ) * cosXs; + p1fsz = ( p1sz*p1sx/p1sp ) * sinXs*cosphis + + (-p1sy*p1sm/p1sp ) * sinXs*sinphis + + ( p1sz ) * cosXs; + p1fsx = (-p1sp ) * sinXs*cosphis + + ( T_R(0.0) ) * sinXs*sinphis + + ( p1sx ) * cosXs; + } + + T_R const p2fsx = -p1fsx; + T_R const p2fsy = -p1fsy; + T_R const p2fsz = -p1fsz; + + // Transform from COM to lab frame + T_R p1fx; T_R p2fx; + T_R p1fy; T_R p2fy; + T_R p1fz; T_R p2fz; + if ( vcms > std::numeric_limits<T_R>::min() ) + { + T_R const vcDp1fs = vcx*p1fsx + vcy*p1fsy + vcz*p1fsz; + T_R const vcDp2fs = vcx*p2fsx + vcy*p2fsy + vcz*p2fsz; + T_R const factor = (gc-T_R(1.0))/vcms; + T_R const factor1 = factor*vcDp1fs + m1*g1s*gc; + T_R const factor2 = factor*vcDp2fs + m2*g2s*gc; + p1fx = p1fsx + vcx * factor1; + p1fy = p1fsy + vcy * factor1; + p1fz = p1fsz + vcz * factor1; + p2fx = p2fsx + vcx * factor2; + p2fy = p2fsy + vcy * factor2; + p2fz = p2fsz + vcz * factor2; + } + else // If vcms = 0, don't do Lorentz-transform. + { + p1fx = p1fsx; + p1fy = p1fsy; + p1fz = p1fsz; + p2fx = p2fsx; + p2fy = p2fsy; + p2fz = p2fsz; + } + + // Rejection method + r = amrex::Random(); + if ( w2 > r*amrex::max(w1, w2) ) + { + u1x = p1fx / m1; + u1y = p1fy / m1; + u1z = p1fz / m1; + AMREX_ASSERT(!std::isnan(u1x+u1y+u1z+u2x+u2y+u2z)); + AMREX_ASSERT(!std::isinf(u1x+u1y+u1z+u2x+u2y+u2z)); + } + r = amrex::Random(); + if ( w1 > r*amrex::max(w1, w2) ) + { + u2x = p2fx / m2; + u2y = p2fy / m2; + u2z = p2fz / m2; + AMREX_ASSERT(!std::isnan(u1x+u1y+u1z+u2x+u2y+u2z)); + AMREX_ASSERT(!std::isinf(u1x+u1y+u1z+u2x+u2y+u2z)); + } + +} + +#endif // WARPX_PARTICLES_COLLISION_UPDATE_MOMENTUM_PEREZ_ELASTIC_H_ |