# Maximum number of time steps max_step = 80 # number of grid points amr.n_cell = 128 # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. amr.max_grid_size = 64 # Maximum level in hierarchy (for now must be 0, i.e., one level in total) amr.max_level = 0 # Geometry geometry.coord_sys = 0 # 0: Cartesian geometry.prob_lo = -20.e-6 # physical domain geometry.prob_hi = 20.e-6 # Boundary condition boundary.field_lo = periodic boundary.field_hi = periodic warpx.serialize_ics = 1 # Verbosity warpx.verbose = 1 # Algorithms algo.field_gathering = energy-conserving warpx.use_filter = 0 # Order of particle shape factors algo.particle_shape = 1 # CFL warpx.cfl = 0.8 # Parameters for the plasma wave my_constants.epsilon = 0.01 my_constants.n0 = 2.e24 # electron and positron densities, #/m^3 my_constants.wp = sqrt(2.*n0*q_e**2/(epsilon0*m_e)) # plasma frequency my_constants.kp = wp/clight # plasma wavenumber my_constants.k = 2.*pi/20.e-6 # perturbation wavenumber # Note: kp is calculated in SI for a density of 4e24 (i.e. 2e24 electrons + 2e24 positrons) # k is calculated so as to have 2 periods within the 40e-6 wide box. # Particles particles.species_names = electrons positrons electrons.charge = -q_e electrons.mass = m_e electrons.injection_style = "NUniformPerCell" electrons.num_particles_per_cell_each_dim = 2 electrons.zmin = -20.e-6 electrons.zmax = 20.e-6 electrons.profile = constant electrons.density = n0 # number of electrons per m^3 electrons.momentum_distribution_type = parse_momentum_function electrons.momentum_function_ux(x,y,z) = "epsilon * k/kp * sin(k*x) * cos(k*y) * cos(k*z)" electrons.momentum_function_uy(x,y,z) = "epsilon * k/kp * cos(k*x) * sin(k*y) * cos(k*z)" electrons.momentum_function_uz(x,y,z) = "epsilon * k/kp * cos(k*x) * cos(k*y) * sin(k*z)" positrons.charge = q_e positrons.mass = m_e positrons.injection_style = "NUniformPerCell" positrons.num_particles_per_cell_each_dim = 2 positrons.zmin = -20.e-6 positrons.zmax = 20.e-6 positrons.profile = constant positrons.density = n0 # number of positrons per m^3 positrons.momentum_distribution_type = parse_momentum_function positrons.momentum_function_ux(x,y,z) = "-epsilon * k/kp * sin(k*x) * cos(k*y) * cos(k*z)" positrons.momentum_function_uy(x,y,z) = "-epsilon * k/kp * cos(k*x) * sin(k*y) * cos(k*z)" positrons.momentum_function_uz(x,y,z) = "-epsilon * k/kp * cos(k*x) * cos(k*y) * sin(k*z)" # Diagnostics diagnostics.diags_names = diag1 openpmd diag1.intervals = 40 diag1.diag_type = Full openpmd.intervals = 40 openpmd.diag_type = Full openpmd.format = openpmd