#! /usr/bin/env python import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.constants import c, e, m_e, epsilon_0 import numpy as np import yt yt.funcs.mylog.setLevel(50) # this will be the name of the plot file fn = sys.argv[1] # Parameters of the plasma ux = 0.01 n0 = 1.e25 wp = (n0*e**2/(m_e*epsilon_0))**.5 # Load the dataset ds = yt.load(fn) t = ds.current_time.to_ndarray().mean() # in order to extract a single scalar data = ds.covering_grid( 0, ds.domain_left_edge, ds.domain_dimensions ) # Check the J fields assert np.allclose( data['jz'].to_ndarray(), 0, atol=2.e-2 ) assert np.all( data['jy'].to_ndarray() == 0. ) # Check the Jx field, which oscillates at wp j_predicted = -n0*e*c*ux*np.cos( wp*t*39.5/40 ) # 40 timesteps / j at half-timestep jx = data['jx'].to_ndarray() assert np.allclose( jx[:32,:,0], j_predicted, rtol=0.1 ) assert np.allclose( jx[32:,:,0], 0, atol=1.e-2 ) # Check the E fields assert np.allclose( data['Ez'].to_ndarray(), 0, atol=5.e-5 ) assert np.all( data['Ey'].to_ndarray() == 0. ) # Check the Ex field, which oscillates at wp E_predicted = m_e * wp * ux * c / e * np.sin(wp*t) Ex = data['Ex'].to_ndarray() assert np.allclose( Ex[:32,:,0], E_predicted, rtol=0.1 ) assert np.allclose( Ex[32:,:,0], 0, atol=1.e-5 ) # Check the B fields assert np.all( data['Bx'].to_ndarray() == 0. ) assert np.allclose( data['By'].to_ndarray(), 0, atol=1.e-12 ) assert np.all( data['Bz'].to_ndarray() == 0. ) # Save an image to be displayed on the website t_plot = np.linspace(0.0, t, 200) plt.subplot(211) plt.plot( t_plot, -n0 * e * c * ux * np.cos( wp*t_plot ) ) plt.plot( 39.5/40*t, j_predicted, 'o' ) plt.ylabel( 'jx' ) plt.xlabel( 'Time' ) plt.subplot(212) plt.plot( t_plot, m_e * wp * ux * c / e * np.sin( wp*t_plot ) ) plt.plot( t, E_predicted, 'o' ) plt.ylabel( 'Ex' ) plt.xlabel( 'Time' ) plt.savefig("langmuir2d_analysis.png")