#!/usr/bin/env python3 import argparse import sys import numpy as np from pywarpx import callbacks, picmi # Create the parser and add the argument parser = argparse.ArgumentParser() parser.add_argument( '-u', '--unique', action='store_true', help="Whether injected particles should be treated as unique" ) # Parse the input args, left = parser.parse_known_args() sys.argv = sys.argv[:1] + left ########################## # numerics parameters ########################## dt = 7.5e-10 # --- Nb time steps max_steps = 10 # --- grid nx = 64 ny = 64 xmin = 0 xmax = 0.03 ymin = 0 ymax = 0.03 ########################## # numerics components ########################## grid = picmi.Cartesian2DGrid( number_of_cells = [nx, ny], lower_bound = [xmin, ymin], upper_bound = [xmax, ymax], lower_boundary_conditions = ['dirichlet', 'periodic'], upper_boundary_conditions = ['dirichlet', 'periodic'], lower_boundary_conditions_particles = ['absorbing', 'periodic'], upper_boundary_conditions_particles = ['absorbing', 'periodic'], moving_window_velocity = None, warpx_max_grid_size = 32 ) solver = picmi.ElectrostaticSolver( grid=grid, method='Multigrid', required_precision=1e-6, warpx_self_fields_verbosity=0 ) ########################## # physics components ########################## electrons = picmi.Species( particle_type='electron', name='electrons' ) ########################## # diagnostics ########################## field_diag = picmi.FieldDiagnostic( name = 'diag1', grid = grid, period = 10, data_list = ['phi'], write_dir = '.', warpx_file_prefix = f"Python_particle_attr_access_{'unique_' if args.unique else ''}plt" ) ########################## # simulation setup ########################## sim = picmi.Simulation( solver = solver, time_step_size = dt, max_steps = max_steps, verbose = 1 ) sim.add_species( electrons, layout = picmi.GriddedLayout( n_macroparticle_per_cell=[0, 0], grid=grid ) ) sim.add_diagnostic(field_diag) sim.initialize_inputs() sim.initialize_warpx() ########################## # python particle data access ########################## # set numpy random seed so that the particle properties generated # below will be reproducible from run to run np.random.seed(30025025) sim.extension.add_real_comp('electrons', 'newPid') my_id = sim.extension.getMyProc() def add_particles(): nps = 10 * (my_id + 1) x = np.linspace(0.005, 0.025, nps) y = np.zeros(nps) z = np.linspace(0.005, 0.025, nps) ux = np.random.normal(loc=0, scale=1e3, size=nps) uy = np.random.normal(loc=0, scale=1e3, size=nps) uz = np.random.normal(loc=0, scale=1e3, size=nps) w = np.ones(nps) * 2.0 newPid = 5.0 sim.extension.add_particles( species_name='electrons', x=x, y=y, z=z, ux=ux, uy=uy, uz=uz, w=w, newPid=newPid, unique_particles=args.unique ) callbacks.installbeforestep(add_particles) ########################## # simulation run ########################## sim.step(max_steps - 1) ########################## # check that the new PIDs # are properly set ########################## assert (sim.extension.get_particle_count('electrons') == 270 / (2 - args.unique)) assert (sim.extension.get_particle_comp_index('electrons', 'w') == 0) assert (sim.extension.get_particle_comp_index('electrons', 'newPid') == 4) new_pid_vals = sim.extension.get_particle_arrays( 'electrons', 'newPid', 0 ) for vals in new_pid_vals: assert np.allclose(vals, 5) ########################## # take the final sim step ########################## sim.step(1)