#!/usr/bin/env python3 import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable import numpy as np from pywarpx import picmi # Number of time steps max_steps = 100 # Grid nx = 128 nz = 128 # Domain xmin = 0.e-6 zmin = 0.e-6 xmax = 50.e-6 zmax = 50.e-6 # Cell size dx = (xmax - xmin) / nx dz = (zmax - zmin) / nz # Domain decomposition max_grid_size_x = 64 max_grid_size_z = 64 # PML nxpml = 10 nzpml = 10 field_boundary = ['open', 'open'] # Spectral order nox = 8 noz = 8 # Guard cells nxg = 8 nzg = 8 # Initialize grid grid = picmi.Cartesian2DGrid(number_of_cells = [nx,nz], lower_bound = [xmin,zmin], upper_bound = [xmax,zmax], lower_boundary_conditions = field_boundary, upper_boundary_conditions = field_boundary, guard_cells = [nxg,nzg], moving_window_velocity = [0.,0.,0], warpx_max_grid_size_x = max_grid_size_x, warpx_max_grid_size_y = max_grid_size_z) # Initialize field solver solver = picmi.ElectromagneticSolver(grid=grid, cfl=0.95, method='PSATD', stencil_order = [nox,noz], divE_cleaning = 1, divB_cleaning = 1, pml_divE_cleaning = 1, pml_divB_cleaning = 1, warpx_psatd_update_with_rho = True) # Initialize diagnostics diag_field_list = ["E", "B"] field_diag = picmi.FieldDiagnostic(name = 'diag1', grid = grid, period = 10, write_dir = '.', warpx_file_prefix = 'Python_wrappers_plt', data_list = diag_field_list) # Initialize simulation sim = picmi.Simulation(solver = solver, max_steps = max_steps, verbose = 1, particle_shape = 'cubic', warpx_current_deposition_algo = 'direct', warpx_particle_pusher_algo = 'boris', warpx_field_gathering_algo = 'energy-conserving', warpx_use_filter = 1) # Add diagnostics to simulation sim.add_diagnostic(field_diag) # Write input file to run with compiled version sim.write_input_file(file_name = 'inputs_2d') # Whether to include guard cells in data returned by Python wrappers include_ghosts = 1 # Compute min and max of fields data def compute_minmax(data): vmax = np.abs(data).max() vmin = -vmax return vmin, vmax # Plot fields data either in valid domain or in PML def plot_data(data, pml, title, name): fig, ax = plt.subplots(nrows = 1, ncols = 1, gridspec_kw = dict(wspace = 0.5), figsize = [6,5]) cax = make_axes_locatable(ax).append_axes('right', size='5%', pad='5%') lw = 0.8 ls = '--' if pml: # Draw PMLs and ghost regions ax.axvline(x = 0 , linewidth = lw, linestyle = ls) ax.axvline(x = 0+nxg , linewidth = lw, linestyle = ls) ax.axvline(x = -nxpml , linewidth = lw, linestyle = ls) ax.axvline(x = nx , linewidth = lw, linestyle = ls) ax.axvline(x = nx-nxg , linewidth = lw, linestyle = ls) ax.axvline(x = nx+nxpml, linewidth = lw, linestyle = ls) ax.axhline(y = 0 , linewidth = lw, linestyle = ls) ax.axhline(y = 0+nzg , linewidth = lw, linestyle = ls) ax.axhline(y = -nzpml , linewidth = lw, linestyle = ls) ax.axhline(y = nz , linewidth = lw, linestyle = ls) ax.axhline(y = nz-nzg , linewidth = lw, linestyle = ls) ax.axhline(y = nz+nzpml, linewidth = lw, linestyle = ls) # Annotations ax.annotate('PML', xy = (-nxpml//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML', xy = (nx+nxpml//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML', xy = (nx//2,-nzpml//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('PML', xy = (nx//2,nz+nzpml//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (-nxpml-nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx-nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx+nxpml+nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx//2,nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx//2,-nzpml-nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx//2,nz-nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('PML ghost', xy = (nx//2,nz+nzpml+nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') # Set extent and sliced data extent = np.array([-nxg-nxpml, nx+nxpml+nxg, -nzg-nzpml, nz+nzpml+nzg]) else: # Draw ghost regions ax.axvline(x = 0 , linewidth = lw, linestyle = ls) ax.axvline(x = nx, linewidth = lw, linestyle = ls) ax.axhline(y = 0 , linewidth = lw, linestyle = ls) ax.axhline(y = nz, linewidth = lw, linestyle = ls) # Annotations ax.annotate('ghost', xy = (-nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('ghost', xy = (nx+nxg//2,nz//2), rotation = 'vertical', ha = 'center', va = 'center') ax.annotate('ghost', xy = (nx//2,-nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') ax.annotate('ghost', xy = (nx//2,nz+nzg//2), rotation = 'horizontal', ha = 'center', va = 'center') # Set extent and sliced data extent = np.array([-nxg, nx+nxg, -nzg, nz+nzg]) X = data[:,:].transpose() # Min and max for colorbar vmin, vmax = compute_minmax(X) # Display data as image im = ax.imshow(X = X, origin = 'lower', extent = extent, vmin = vmin, vmax = vmax, cmap = 'seismic') # Add colorbar to plot fig.colorbar(im, cax = cax) # Set label for x- and y-axis, set title ax.set_xlabel('x') ax.set_ylabel('z') ax.set_title(title) # Set plot title suptitle = 'PML in (x,z), 4 grids 64 x 64' plt.suptitle(suptitle) # Save figure figname = 'figure_' + name + '.png' fig.savefig(figname, dpi = 100) # Initialize fields data (unit pulse) and apply smoothing def init_data(data): impulse_1d = np.array([1./4., 1./2., 1./4.]) impulse = np.outer(impulse_1d, impulse_1d) data[nx//2-1:nx//2+2,nz//2-1:nz//2+2] = impulse # Initialize inputs and WarpX instance sim.initialize_inputs() sim.initialize_warpx() # Get fields data using Python wrappers import pywarpx.fields as pwxf Ex = pwxf.ExFPWrapper(include_ghosts = include_ghosts) Ey = pwxf.EyFPWrapper(include_ghosts = include_ghosts) Ez = pwxf.EzFPWrapper(include_ghosts = include_ghosts) Bx = pwxf.BxFPWrapper(include_ghosts = include_ghosts) By = pwxf.ByFPWrapper(include_ghosts = include_ghosts) Bz = pwxf.BzFPWrapper(include_ghosts = include_ghosts) F = pwxf.FFPWrapper(include_ghosts = include_ghosts) G = pwxf.GFPWrapper(include_ghosts = include_ghosts) Expml = pwxf.ExFPPMLWrapper(include_ghosts = include_ghosts) Eypml = pwxf.EyFPPMLWrapper(include_ghosts = include_ghosts) Ezpml = pwxf.EzFPPMLWrapper(include_ghosts = include_ghosts) Bxpml = pwxf.BxFPPMLWrapper(include_ghosts = include_ghosts) Bypml = pwxf.ByFPPMLWrapper(include_ghosts = include_ghosts) Bzpml = pwxf.BzFPPMLWrapper(include_ghosts = include_ghosts) Fpml = pwxf.FFPPMLWrapper(include_ghosts = include_ghosts) Gpml = pwxf.GFPPMLWrapper(include_ghosts = include_ghosts) # Initialize fields data in valid domain init_data(Ex) init_data(Ey) init_data(Ez) init_data(Bx) init_data(By) init_data(Bz) init_data(F) init_data(G) # Advance simulation until last time step sim.step(max_steps) # Plot E plot_data(Ex, pml = False, title = 'Ex', name = 'Ex') plot_data(Ey, pml = False, title = 'Ey', name = 'Ey') plot_data(Ez, pml = False, title = 'Ez', name = 'Ez') # Plot B plot_data(Bx, pml = False, title = 'Bx', name = 'Bx') plot_data(By, pml = False, title = 'By', name = 'By') plot_data(Bz, pml = False, title = 'Bz', name = 'Bz') # F and G plot_data(F, pml = False, title = 'F', name = 'F') plot_data(G, pml = False, title = 'G', name = 'G') # Plot E in PML plot_data(Expml[:,:,0], pml = True, title = 'Exy in PML', name = 'Exy') plot_data(Expml[:,:,1], pml = True, title = 'Exz in PML', name = 'Exz') plot_data(Expml[:,:,2], pml = True, title = 'Exx in PML', name = 'Exx') plot_data(Eypml[:,:,0], pml = True, title = 'Eyz in PML', name = 'Eyz') plot_data(Eypml[:,:,1], pml = True, title = 'Eyx in PML', name = 'Eyx') plot_data(Eypml[:,:,2], pml = True, title = 'Eyy in PML', name = 'Eyy') # zero plot_data(Ezpml[:,:,0], pml = True, title = 'Ezx in PML', name = 'Ezx') plot_data(Ezpml[:,:,1], pml = True, title = 'Ezy in PML', name = 'Ezy') # zero plot_data(Ezpml[:,:,2], pml = True, title = 'Ezz in PML', name = 'Ezz') # Plot B in PML plot_data(Bxpml[:,:,0], pml = True, title = 'Bxy in PML', name = 'Bxy') plot_data(Bxpml[:,:,1], pml = True, title = 'Bxz in PML', name = 'Bxz') plot_data(Bxpml[:,:,2], pml = True, title = 'Bxx in PML', name = 'Bxx') plot_data(Bypml[:,:,0], pml = True, title = 'Byz in PML', name = 'Byz') plot_data(Bypml[:,:,1], pml = True, title = 'Byx in PML', name = 'Byx') plot_data(Bypml[:,:,2], pml = True, title = 'Byy in PML', name = 'Byy') # zero plot_data(Bzpml[:,:,0], pml = True, title = 'Bzx in PML', name = 'Bzx') plot_data(Bzpml[:,:,1], pml = True, title = 'Bzy in PML', name = 'Bzy') # zero plot_data(Bzpml[:,:,2], pml = True, title = 'Bzz in PML', name = 'Bzz') # Plot F and G in PML plot_data(Fpml[:,:,0], pml = True, title = 'Fx in PML', name = 'Fx') plot_data(Fpml[:,:,1], pml = True, title = 'Fy in PML', name = 'Fy') plot_data(Fpml[:,:,2], pml = True, title = 'Fz in PML', name = 'Fz') plot_data(Gpml[:,:,0], pml = True, title = 'Gx in PML', name = 'Gx') plot_data(Gpml[:,:,1], pml = True, title = 'Gy in PML', name = 'Gy') plot_data(Gpml[:,:,2], pml = True, title = 'Gz in PML', name = 'Gz') # Check values with benchmarks (precomputed from the same Python arrays) def check_values(benchmark, data, rtol, atol): passed = np.allclose(benchmark, np.sum(np.abs(data[:,:])), rtol = rtol, atol = atol) assert(passed) rtol = 5e-08 atol = 1e-12 # E check_values(1013263608.6369569, Ex[:,:], rtol, atol) check_values(717278256.7957529 , Ey[:,:], rtol, atol) check_values(717866566.5718911 , Ez[:,:], rtol, atol) # B check_values(3.0214509313437636, Bx[:,:], rtol, atol) check_values(3.0242765102729985, By[:,:], rtol, atol) check_values(3.0214509326970465, Bz[:,:], rtol, atol) # F and G check_values(3.0188584528062377, F[:,:], rtol, atol) check_values(1013672631.8764204, G[:,:], rtol, atol) # E in PML check_values(364287936.1526477 , Expml[:,:,0], rtol, atol) check_values(183582352.20753333, Expml[:,:,1], rtol, atol) check_values(190065766.41491824, Expml[:,:,2], rtol, atol) check_values(440581907.0828975 , Eypml[:,:,0], rtol, atol) check_values(178117294.05871135, Eypml[:,:,1], rtol, atol) check_values(0.0 , Eypml[:,:,2], rtol, atol) check_values(430277101.26568377, Ezpml[:,:,0], rtol, atol) check_values(0.0 , Ezpml[:,:,1], rtol, atol) check_values(190919663.2167449 , Ezpml[:,:,2], rtol, atol) # B in PML check_values(1.0565189315366146 , Bxpml[:,:,0], rtol, atol) check_values(0.46181913800643065, Bxpml[:,:,1], rtol, atol) check_values(0.6849858305343736 , Bxpml[:,:,2], rtol, atol) check_values(1.7228584190213505 , Bypml[:,:,0], rtol, atol) check_values(0.47697332248020935, Bypml[:,:,1], rtol, atol) check_values(0.0 , Bypml[:,:,2], rtol, atol) check_values(1.518338068658267 , Bzpml[:,:,0], rtol, atol) check_values(0.0 , Bzpml[:,:,1], rtol, atol) check_values(0.6849858291863835 , Bzpml[:,:,2], rtol, atol) # F and G in PML check_values(1.7808748509425263, Fpml[:,:,0], rtol, atol) check_values(0.0 , Fpml[:,:,1], rtol, atol) check_values(0.4307845604625681, Fpml[:,:,2], rtol, atol) check_values(536552745.42701197, Gpml[:,:,0], rtol, atol) check_values(0.0 , Gpml[:,:,1], rtol, atol) check_values(196016270.97767758, Gpml[:,:,2], rtol, atol)