"""Classes following the PICMI standard """ from PICMI_Base import * import numpy as np from pywarpx import * codename = 'WarpX' def _args_to_string(*args): # --- Converts of sequence of number to a string that is appropriate for input. return ' '.join(map(repr, args)) class Grid(PICMI_Grid): def init(self, **kw): amr.n_cell = _args_to_string(self.nx, self.ny, self.nz) # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. amr.max_grid_size = kw.get('max_grid_size', 32) # Maximum level in hierarchy (for now must be 0, i.e., one level in total) amr.max_level = kw.get('max_level', 0) # Geometry geometry.coord_sys = kw.get('coord_sys', 0) # 0: Cartesian geometry.is_periodic = '%d %d %d'%(self.bcxmin=='periodic', self.bcymin=='periodic', self.bczmin=='periodic') # Is periodic? geometry.prob_lo = _args_to_string(self.xmin, self.ymin, self.zmin) # physical domain geometry.prob_hi = _args_to_string(self.xmax, self.ymax, self.zmax) if self.moving_window_velocity is not None and np.any(self.moving_window_velocity != 0): warpx.do_moving_window = 1 if self.moving_window_velocity[0] != 0.: warpx.moving_window_dir = 'x' warpx.moving_window_v = self.moving_window_velocity[0]/clight # in units of the speed of light if self.moving_window_velocity[1] != 0.: warpx.moving_window_dir = 'y' warpx.moving_window_v = self.moving_window_velocity[1]/clight # in units of the speed of light if self.moving_window_velocity[2] != 0.: warpx.moving_window_dir = 'z' warpx.moving_window_v = self.moving_window_velocity[2]/clight # in units of the speed of light def getmins(self, **kw): return np.array([warpx.getProbLo(0), warpx.getProbLo(1), warpx.getProbLo(2)]) def getmaxs(self, **kw): return np.array([warpx.getProbHi(0), warpx.getProbHi(1), warpx.getProbHi(2)]) def getxmin(self): return warpx.getProbLo(0) def getxmax(self): return warpx.getProbHi(0) def getymin(self): return warpx.getProbLo(1) def getymax(self): return warpx.getProbHi(1) def getzmin(self): return warpx.getProbLo(2) def getzmax(self): return warpx.getProbHi(2) class EM_solver(PICMI_EM_solver): def init(self, **kw): if self.current_deposition_algo is not None: algo.current_deposition = self.current_deposition_algo if self.charge_deposition_algo is not None: algo.charge_deposition = self.charge_deposition_algo if self.field_gathering_algo is not None: algo.field_gathering = self.field_gathering_algo if self.particle_pusher_algo is not None: algo.particle_pusher = self.particle_pusher_algo class Gaussian_laser(PICMI_Gaussian_laser): def init(self, **kw): warpx.use_laser = 1 laser.profile = "Gaussian" laser.position = _args_to_string(self.antenna_x0, self.antenna_y0, self.antenna_z0) # This point is on the laser plane laser.direction = _args_to_string(self.antenna_xvec, self.antenna_yvec, self.antenna_zvec) # The plane normal direction laser.polarization = _args_to_string(np.cos(self.pol_angle), np.sin(self.pol_angle), 0.) # The main polarization vector laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m) laser.profile_waist = self.waist # The waist of the laser (in meters) laser.profile_duration = self.duration # The duration of the laser (in seconds) laser.profile_t_peak = self.t_peak # The time at which the laser reaches its peak (in seconds) laser.profile_focal_distance = self.focal_position - self.antenna_z0 # Focal distance from the antenna (in meters) laser.wavelength = self.wavelength # The wavelength of the laser (in meters) class Species(PICMI_Species): def init(self, **kw): self.species_number = particles.nspecies particles.nspecies = particles.nspecies + 1 particles.species_names = particles.species_names + ' ' + self.name self.bucket = Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python') Particles.particles_list.append(self.bucket) def add_particles(self, n=None, x=None, y=None, z=None, ux=None, uy=None, uz=None, w=None, unique_particles=None, **kw): pid = np.array([w]).T add_particles(self.species_number, x, y, z, ux, uy, uz, pid, unique_particles) class Simulation(PICMI_Simulation): def set_warpx_attr(self, warpx_obj, attr, kw): value = kw.get(attr, None) if value is not None: setattr(warpx_obj, attr, value) setattr(self, attr, value) def init(self, **kw): warpx.verbose = self.verbose warpx.cfl = self.cfl amr.plot_int = self.plot_int self.amrex = AMReX() self.amrex.init() warpx.init() def step(self, nsteps=-1): warpx.evolve(nsteps) def finalize(self): warpx.finalize() self.amrex.finalize()