# Copyright 2018-2022 Andrew Myers, David Grote, Ligia Diana Amorim # Maxence Thevenet, Remi Lehe, Revathi Jambunathan, Lorenzo Giacomel # # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL """Classes following the PICMI standard """ import os import re import numpy as np import periodictable import picmistandard import pywarpx codename = 'warpx' picmistandard.register_codename(codename) # dictionary to map field boundary conditions from picmistandard to WarpX BC_map = { 'open':'pml', 'dirichlet':'pec', 'periodic':'periodic', 'damped':'damped', 'none':'none', None:'none' } class constants: # --- Put the constants in their own namespace # --- Values from WarpXConst.H c = 299792458. ep0 = 8.8541878128e-12 mu0 = 1.25663706212e-06 q_e = 1.602176634e-19 m_e = 9.1093837015e-31 m_p = 1.67262192369e-27 hbar = 1.054571817e-34 kb = 1.380649e-23 picmistandard.register_constants(constants) class Species(picmistandard.PICMI_Species): def init(self, kw): if self.particle_type == 'electron': if self.charge is None: self.charge = '-q_e' if self.mass is None: self.mass = 'm_e' elif self.particle_type == 'positron': if self.charge is None: self.charge = 'q_e' if self.mass is None: self.mass = 'm_e' elif self.particle_type == 'proton': if self.charge is None: self.charge = 'q_e' if self.mass is None: self.mass = 'm_p' elif self.particle_type == 'anti-proton': if self.charge is None: self.charge = '-q_e' if self.mass is None: self.mass = 'm_p' else: if self.charge is None and self.charge_state is not None: if self.charge_state == +1.: self.charge = 'q_e' elif self.charge_state == -1.: self.charge = '-q_e' else: self.charge = self.charge_state*constants.q_e # Match a string of the format '#nXx', with the '#n' optional isotope number. m = re.match(r'(?P#[\d+])*(?P[A-Za-z]+)', self.particle_type) if m is not None: element = periodictable.elements.symbol(m['sym']) if m['iso'] is not None: element = element[m['iso'][1:]] if self.charge_state is not None: assert self.charge_state <= element.number, Exception('%s charge state not valid'%self.particle_type) try: element = element.ion[self.charge_state] except ValueError: # Note that not all valid charge states are defined in elements, # so this value error can be ignored. pass self.element = element if self.mass is None: self.mass = element.mass*periodictable.constants.atomic_mass_constant self.boost_adjust_transverse_positions = kw.pop('warpx_boost_adjust_transverse_positions', None) # For the relativistic electrostatic solver self.self_fields_required_precision = kw.pop('warpx_self_fields_required_precision', None) self.self_fields_absolute_tolerance = kw.pop('warpx_self_fields_absolute_tolerance', None) self.self_fields_max_iters = kw.pop('warpx_self_fields_max_iters', None) self.self_fields_verbosity = kw.pop('warpx_self_fields_verbosity', None) self.save_previous_position = kw.pop('warpx_save_previous_position', None) self.do_not_deposit = kw.pop('warpx_do_not_deposit', None) # For particle reflection self.reflection_model_xlo = kw.pop('warpx_reflection_model_xlo', None) self.reflection_model_xhi = kw.pop('warpx_reflection_model_xhi', None) self.reflection_model_ylo = kw.pop('warpx_reflection_model_ylo', None) self.reflection_model_yhi = kw.pop('warpx_reflection_model_yhi', None) self.reflection_model_zlo = kw.pop('warpx_reflection_model_zlo', None) self.reflection_model_zhi = kw.pop('warpx_reflection_model_zhi', None) # self.reflection_model_eb = kw.pop('warpx_reflection_model_eb', None) # For the scraper buffer self.save_particles_at_xlo = kw.pop('warpx_save_particles_at_xlo', None) self.save_particles_at_xhi = kw.pop('warpx_save_particles_at_xhi', None) self.save_particles_at_ylo = kw.pop('warpx_save_particles_at_ylo', None) self.save_particles_at_yhi = kw.pop('warpx_save_particles_at_yhi', None) self.save_particles_at_zlo = kw.pop('warpx_save_particles_at_zlo', None) self.save_particles_at_zhi = kw.pop('warpx_save_particles_at_zhi', None) self.save_particles_at_eb = kw.pop('warpx_save_particles_at_eb', None) def initialize_inputs(self, layout, initialize_self_fields = False, injection_plane_position = None, injection_plane_normal_vector = None): self.species_number = len(pywarpx.particles.species_names) if self.name is None: self.name = 'species{}'.format(self.species_number) pywarpx.particles.species_names.append(self.name) if initialize_self_fields is None: initialize_self_fields = False self.species = pywarpx.Bucket.Bucket(self.name, mass = self.mass, charge = self.charge, injection_style = None, initialize_self_fields = int(initialize_self_fields), boost_adjust_transverse_positions = self.boost_adjust_transverse_positions, self_fields_required_precision = self.self_fields_required_precision, self_fields_absolute_tolerance = self.self_fields_absolute_tolerance, self_fields_max_iters = self.self_fields_max_iters, self_fields_verbosity = self.self_fields_verbosity, save_particles_at_xlo = self.save_particles_at_xlo, save_particles_at_xhi = self.save_particles_at_xhi, save_particles_at_ylo = self.save_particles_at_ylo, save_particles_at_yhi = self.save_particles_at_yhi, save_particles_at_zlo = self.save_particles_at_zlo, save_particles_at_zhi = self.save_particles_at_zhi, save_particles_at_eb = self.save_particles_at_eb, save_previous_position = self.save_previous_position, do_not_deposit = self.do_not_deposit) # add reflection models self.species.add_new_attr("reflection_model_xlo(E)", self.reflection_model_xlo) self.species.add_new_attr("reflection_model_xhi(E)", self.reflection_model_xhi) self.species.add_new_attr("reflection_model_ylo(E)", self.reflection_model_ylo) self.species.add_new_attr("reflection_model_yhi(E)", self.reflection_model_yhi) self.species.add_new_attr("reflection_model_zlo(E)", self.reflection_model_zlo) self.species.add_new_attr("reflection_model_zhi(E)", self.reflection_model_zhi) # self.species.add_new_attr("reflection_model_eb(E)", self.reflection_model_eb) pywarpx.Particles.particles_list.append(self.species) if self.initial_distribution is not None: self.initial_distribution.initialize_inputs(self.species_number, layout, self.species, self.density_scale) if injection_plane_position is not None: if injection_plane_normal_vector is not None: assert injection_plane_normal_vector[0] == 0. and injection_plane_normal_vector[1] == 0.,\ Exception('Rigid injection can only be done along z') pywarpx.particles.rigid_injected_species.append(self.name) self.species.rigid_advance = 1 self.species.zinject_plane = injection_plane_position for interaction in self.interactions: assert interaction[0] == 'ionization' assert interaction[1] == 'ADK', 'WarpX only has ADK ionization model implemented' self.species.do_field_ionization=1 self.species.physical_element=self.particle_type self.species.ionization_product_species = interaction[2].name self.species.ionization_initial_level = self.charge_state self.species.charge = 'q_e' picmistandard.PICMI_MultiSpecies.Species_class = Species class MultiSpecies(picmistandard.PICMI_MultiSpecies): def initialize_inputs(self, layout, initialize_self_fields = False, injection_plane_position = None, injection_plane_normal_vector = None): for species in self.species_instances_list: species.initialize_inputs(layout, initialize_self_fields, injection_plane_position, injection_plane_normal_vector) class GaussianBunchDistribution(picmistandard.PICMI_GaussianBunchDistribution): def initialize_inputs(self, species_number, layout, species, density_scale): species.injection_style = "gaussian_beam" species.x_m = self.centroid_position[0] species.y_m = self.centroid_position[1] species.z_m = self.centroid_position[2] species.x_rms = self.rms_bunch_size[0] species.y_rms = self.rms_bunch_size[1] species.z_rms = self.rms_bunch_size[2] # --- Only PseudoRandomLayout is supported species.npart = layout.n_macroparticles # --- Calculate the total charge. Note that charge might be a string instead of a number. charge = species.charge if charge == 'q_e' or charge == '+q_e': charge = constants.q_e elif charge == '-q_e': charge = -constants.q_e species.q_tot = self.n_physical_particles*charge if density_scale is not None: species.q_tot *= density_scale # --- The PICMI standard doesn't yet have a way of specifying these values. # --- They should default to the size of the domain. They are not typically # --- necessary though since any particles outside the domain are rejected. #species.xmin #species.xmax #species.ymin #species.ymax #species.zmin #species.zmax # --- Note that WarpX takes gamma*beta as input if np.any(np.not_equal(self.velocity_divergence, 0.)): species.momentum_distribution_type = "radial_expansion" species.u_over_r = self.velocity_divergence[0]/constants.c #species.u_over_y = self.velocity_divergence[1]/constants.c #species.u_over_z = self.velocity_divergence[2]/constants.c elif np.any(np.not_equal(self.rms_velocity, 0.)): species.momentum_distribution_type = "gaussian" species.ux_m = self.centroid_velocity[0]/constants.c species.uy_m = self.centroid_velocity[1]/constants.c species.uz_m = self.centroid_velocity[2]/constants.c species.ux_th = self.rms_velocity[0]/constants.c species.uy_th = self.rms_velocity[1]/constants.c species.uz_th = self.rms_velocity[2]/constants.c else: species.momentum_distribution_type = "constant" species.ux = self.centroid_velocity[0]/constants.c species.uy = self.centroid_velocity[1]/constants.c species.uz = self.centroid_velocity[2]/constants.c class UniformDistribution(picmistandard.PICMI_UniformDistribution): def initialize_inputs(self, species_number, layout, species, density_scale): if isinstance(layout, GriddedLayout): # --- Note that the grid attribute of GriddedLayout is ignored species.injection_style = "nuniformpercell" species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell elif isinstance(layout, PseudoRandomLayout): assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the PseudoRandomLayout with UniformDistribution') species.injection_style = "nrandompercell" species.num_particles_per_cell = layout.n_macroparticles_per_cell else: raise Exception('WarpX does not support the specified layout for UniformDistribution') species.xmin = self.lower_bound[0] species.xmax = self.upper_bound[0] species.ymin = self.lower_bound[1] species.ymax = self.upper_bound[1] species.zmin = self.lower_bound[2] species.zmax = self.upper_bound[2] # --- Only constant density is supported at this time species.profile = "constant" species.density = self.density if density_scale is not None: species.density *= density_scale # --- Note that WarpX takes gamma*beta as input if np.any(np.not_equal(self.rms_velocity, 0.)): species.momentum_distribution_type = "gaussian" species.ux_m = self.directed_velocity[0]/constants.c species.uy_m = self.directed_velocity[1]/constants.c species.uz_m = self.directed_velocity[2]/constants.c species.ux_th = self.rms_velocity[0]/constants.c species.uy_th = self.rms_velocity[1]/constants.c species.uz_th = self.rms_velocity[2]/constants.c else: species.momentum_distribution_type = "constant" species.ux = self.directed_velocity[0]/constants.c species.uy = self.directed_velocity[1]/constants.c species.uz = self.directed_velocity[2]/constants.c if self.fill_in: species.do_continuous_injection = 1 class AnalyticDistribution(picmistandard.PICMI_AnalyticDistribution): def init(self, kw): self.mangle_dict = None def initialize_inputs(self, species_number, layout, species, density_scale): if isinstance(layout, GriddedLayout): # --- Note that the grid attribute of GriddedLayout is ignored species.injection_style = "nuniformpercell" species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell elif isinstance(layout, PseudoRandomLayout): assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the PseudoRandomLayout with UniformDistribution') species.injection_style = "nrandompercell" species.num_particles_per_cell = layout.n_macroparticles_per_cell else: raise Exception('WarpX does not support the specified layout for UniformDistribution') species.xmin = self.lower_bound[0] species.xmax = self.upper_bound[0] species.ymin = self.lower_bound[1] species.ymax = self.upper_bound[1] species.zmin = self.lower_bound[2] species.zmax = self.upper_bound[2] if self.mangle_dict is None: # Only do this once so that the same variables are used in this distribution # is used multiple times self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw) expression = pywarpx.my_constants.mangle_expression(self.density_expression, self.mangle_dict) species.profile = "parse_density_function" if density_scale is None: species.__setattr__('density_function(x,y,z)', expression) else: species.__setattr__('density_function(x,y,z)', "{}*({})".format(density_scale, expression)) # --- Note that WarpX takes gamma*beta as input if np.any(np.not_equal(self.momentum_expressions, None)): species.momentum_distribution_type = 'parse_momentum_function' self.setup_parse_momentum_functions(species) elif np.any(np.not_equal(self.rms_velocity, 0.)): species.momentum_distribution_type = "gaussian" species.ux_m = self.directed_velocity[0]/constants.c species.uy_m = self.directed_velocity[1]/constants.c species.uz_m = self.directed_velocity[2]/constants.c species.ux_th = self.rms_velocity[0]/constants.c species.uy_th = self.rms_velocity[1]/constants.c species.uz_th = self.rms_velocity[2]/constants.c else: species.momentum_distribution_type = "constant" species.ux = self.directed_velocity[0]/constants.c species.uy = self.directed_velocity[1]/constants.c species.uz = self.directed_velocity[2]/constants.c if self.fill_in: species.do_continuous_injection = 1 def setup_parse_momentum_functions(self, species): for sdir, idir in zip(['x', 'y', 'z'], [0, 1, 2]): if self.momentum_expressions[idir] is not None: expression = pywarpx.my_constants.mangle_expression(self.momentum_expressions[idir], self.mangle_dict) else: expression = f'{self.directed_velocity[idir]}' species.__setattr__(f'momentum_function_u{sdir}(x,y,z)', f'({expression})/{constants.c}') class ParticleListDistribution(picmistandard.PICMI_ParticleListDistribution): def init(self, kw): pass def initialize_inputs(self, species_number, layout, species, density_scale): species.injection_style = "multipleparticles" species.multiple_particles_pos_x = self.x species.multiple_particles_pos_y = self.y species.multiple_particles_pos_z = self.z species.multiple_particles_vel_x = np.array(self.ux)/constants.c species.multiple_particles_vel_y = np.array(self.uy)/constants.c species.multiple_particles_vel_z = np.array(self.uz)/constants.c species.multiple_particles_weight = self.weight if density_scale is not None: species.multiple_particles_weight = self.weight*density_scale class ParticleDistributionPlanarInjector(picmistandard.PICMI_ParticleDistributionPlanarInjector): pass class GriddedLayout(picmistandard.PICMI_GriddedLayout): pass class PseudoRandomLayout(picmistandard.PICMI_PseudoRandomLayout): def init(self, kw): if self.seed is not None: print('Warning: WarpX does not support specifying the random number seed in PseudoRandomLayout') class BinomialSmoother(picmistandard.PICMI_BinomialSmoother): def initialize_inputs(self, solver): pywarpx.warpx.use_filter = 1 pywarpx.warpx.use_filter_compensation = bool(np.all(self.compensation)) if self.n_pass is None: # If not specified, do at least one pass in each direction. self.n_pass = 1 try: # Check if n_pass is a vector len(self.n_pass) except TypeError: # If not, make it a vector self.n_pass = solver.grid.number_of_dimensions*[self.n_pass] pywarpx.warpx.filter_npass_each_dir = self.n_pass class CylindricalGrid(picmistandard.PICMI_CylindricalGrid): """This assumes that WarpX was compiled with USE_RZ = TRUE """ def init(self, kw): self.max_grid_size = kw.pop('warpx_max_grid_size', 32) self.max_grid_size_x = kw.pop('warpx_max_grid_size_x', None) self.max_grid_size_y = kw.pop('warpx_max_grid_size_y', None) self.blocking_factor = kw.pop('warpx_blocking_factor', None) self.blocking_factor_x = kw.pop('warpx_blocking_factor_x', None) self.blocking_factor_y = kw.pop('warpx_blocking_factor_y', None) self.potential_xmin = kw.pop('warpx_potential_lo_r', None) self.potential_xmax = kw.pop('warpx_potential_hi_r', None) self.potential_ymin = None self.potential_ymax = None self.potential_zmin = kw.pop('warpx_potential_lo_z', None) self.potential_zmax = kw.pop('warpx_potential_hi_z', None) # Geometry # Set these as soon as the information is available # (since these are needed to determine which shared object to load) pywarpx.geometry.dims = 'RZ' pywarpx.geometry.prob_lo = self.lower_bound # physical domain pywarpx.geometry.prob_hi = self.upper_bound def initialize_inputs(self): pywarpx.amr.n_cell = self.number_of_cells # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. pywarpx.amr.max_grid_size = self.max_grid_size pywarpx.amr.max_grid_size_x = self.max_grid_size_x pywarpx.amr.max_grid_size_y = self.max_grid_size_y pywarpx.amr.blocking_factor = self.blocking_factor pywarpx.amr.blocking_factor_x = self.blocking_factor_x pywarpx.amr.blocking_factor_y = self.blocking_factor_y assert self.lower_bound[0] >= 0., Exception('Lower radial boundary must be >= 0.') assert self.lower_boundary_conditions[0] != 'periodic' and self.upper_boundary_conditions[0] != 'periodic', Exception('Radial boundaries can not be periodic') pywarpx.warpx.n_rz_azimuthal_modes = self.n_azimuthal_modes # Boundary conditions pywarpx.boundary.field_lo = [BC_map[bc] for bc in self.lower_boundary_conditions] pywarpx.boundary.field_hi = [BC_map[bc] for bc in self.upper_boundary_conditions] pywarpx.boundary.particle_lo = self.lower_boundary_conditions_particles pywarpx.boundary.particle_hi = self.upper_boundary_conditions_particles if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): pywarpx.warpx.do_moving_window = 1 if self.moving_window_velocity[0] != 0.: pywarpx.warpx.moving_window_dir = 'r' pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light if self.moving_window_velocity[1] != 0.: pywarpx.warpx.moving_window_dir = 'z' pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/constants.c # in units of the speed of light if self.refined_regions: assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.') assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1') pywarpx.amr.max_level = 1 pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1] pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2] # The refinement_factor is ignored (assumed to be [2,2]) else: pywarpx.amr.max_level = 0 class Cartesian1DGrid(picmistandard.PICMI_Cartesian1DGrid): def init(self, kw): self.max_grid_size = kw.pop('warpx_max_grid_size', 32) self.max_grid_size_x = kw.pop('warpx_max_grid_size_x', None) self.blocking_factor = kw.pop('warpx_blocking_factor', None) self.blocking_factor_x = kw.pop('warpx_blocking_factor_x', None) self.potential_xmin = None self.potential_xmax = None self.potential_ymin = None self.potential_ymax = None self.potential_zmin = kw.pop('warpx_potential_lo_z', None) self.potential_zmax = kw.pop('warpx_potential_hi_z', None) # Geometry # Set these as soon as the information is available # (since these are needed to determine which shared object to load) pywarpx.geometry.dims = '1' pywarpx.geometry.prob_lo = self.lower_bound # physical domain pywarpx.geometry.prob_hi = self.upper_bound def initialize_inputs(self): pywarpx.amr.n_cell = self.number_of_cells # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. pywarpx.amr.max_grid_size = self.max_grid_size pywarpx.amr.max_grid_size_x = self.max_grid_size_x pywarpx.amr.blocking_factor = self.blocking_factor pywarpx.amr.blocking_factor_x = self.blocking_factor_x # Boundary conditions pywarpx.boundary.field_lo = [BC_map[bc] for bc in self.lower_boundary_conditions] pywarpx.boundary.field_hi = [BC_map[bc] for bc in self.upper_boundary_conditions] pywarpx.boundary.particle_lo = self.lower_boundary_conditions_particles pywarpx.boundary.particle_hi = self.upper_boundary_conditions_particles if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): pywarpx.warpx.do_moving_window = 1 if self.moving_window_velocity[0] != 0.: pywarpx.warpx.moving_window_dir = 'z' pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light if self.refined_regions: assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.') assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1') pywarpx.amr.max_level = 1 pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1] pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2] # The refinement_factor is ignored (assumed to be [2,2]) else: pywarpx.amr.max_level = 0 class Cartesian2DGrid(picmistandard.PICMI_Cartesian2DGrid): def init(self, kw): self.max_grid_size = kw.pop('warpx_max_grid_size', 32) self.max_grid_size_x = kw.pop('warpx_max_grid_size_x', None) self.max_grid_size_y = kw.pop('warpx_max_grid_size_y', None) self.blocking_factor = kw.pop('warpx_blocking_factor', None) self.blocking_factor_x = kw.pop('warpx_blocking_factor_x', None) self.blocking_factor_y = kw.pop('warpx_blocking_factor_y', None) self.potential_xmin = kw.pop('warpx_potential_lo_x', None) self.potential_xmax = kw.pop('warpx_potential_hi_x', None) self.potential_ymin = None self.potential_ymax = None self.potential_zmin = kw.pop('warpx_potential_lo_z', None) self.potential_zmax = kw.pop('warpx_potential_hi_z', None) # Geometry # Set these as soon as the information is available # (since these are needed to determine which shared object to load) pywarpx.geometry.dims = '2' pywarpx.geometry.prob_lo = self.lower_bound # physical domain pywarpx.geometry.prob_hi = self.upper_bound def initialize_inputs(self): pywarpx.amr.n_cell = self.number_of_cells # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. pywarpx.amr.max_grid_size = self.max_grid_size pywarpx.amr.max_grid_size_x = self.max_grid_size_x pywarpx.amr.max_grid_size_y = self.max_grid_size_y pywarpx.amr.blocking_factor = self.blocking_factor pywarpx.amr.blocking_factor_x = self.blocking_factor_x pywarpx.amr.blocking_factor_y = self.blocking_factor_y # Boundary conditions pywarpx.boundary.field_lo = [BC_map[bc] for bc in self.lower_boundary_conditions] pywarpx.boundary.field_hi = [BC_map[bc] for bc in self.upper_boundary_conditions] pywarpx.boundary.particle_lo = self.lower_boundary_conditions_particles pywarpx.boundary.particle_hi = self.upper_boundary_conditions_particles if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): pywarpx.warpx.do_moving_window = 1 if self.moving_window_velocity[0] != 0.: pywarpx.warpx.moving_window_dir = 'x' pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light if self.moving_window_velocity[1] != 0.: pywarpx.warpx.moving_window_dir = 'z' pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/constants.c # in units of the speed of light if self.refined_regions: assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.') assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1') pywarpx.amr.max_level = 1 pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1] pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2] # The refinement_factor is ignored (assumed to be [2,2]) else: pywarpx.amr.max_level = 0 class Cartesian3DGrid(picmistandard.PICMI_Cartesian3DGrid): def init(self, kw): self.max_grid_size = kw.pop('warpx_max_grid_size', 32) self.max_grid_size_x = kw.pop('warpx_max_grid_size_x', None) self.max_grid_size_y = kw.pop('warpx_max_grid_size_y', None) self.max_grid_size_z = kw.pop('warpx_max_grid_size_z', None) self.blocking_factor = kw.pop('warpx_blocking_factor', None) self.blocking_factor_x = kw.pop('warpx_blocking_factor_x', None) self.blocking_factor_y = kw.pop('warpx_blocking_factor_y', None) self.blocking_factor_z = kw.pop('warpx_blocking_factor_z', None) self.potential_xmin = kw.pop('warpx_potential_lo_x', None) self.potential_xmax = kw.pop('warpx_potential_hi_x', None) self.potential_ymin = kw.pop('warpx_potential_lo_y', None) self.potential_ymax = kw.pop('warpx_potential_hi_y', None) self.potential_zmin = kw.pop('warpx_potential_lo_z', None) self.potential_zmax = kw.pop('warpx_potential_hi_z', None) # Geometry # Set these as soon as the information is available # (since these are needed to determine which shared object to load) pywarpx.geometry.dims = '3' pywarpx.geometry.prob_lo = self.lower_bound # physical domain pywarpx.geometry.prob_hi = self.upper_bound def initialize_inputs(self): pywarpx.amr.n_cell = self.number_of_cells # Maximum allowable size of each subdomain in the problem domain; # this is used to decompose the domain for parallel calculations. pywarpx.amr.max_grid_size = self.max_grid_size pywarpx.amr.max_grid_size_x = self.max_grid_size_x pywarpx.amr.max_grid_size_y = self.max_grid_size_y pywarpx.amr.max_grid_size_z = self.max_grid_size_z pywarpx.amr.blocking_factor = self.blocking_factor pywarpx.amr.blocking_factor_x = self.blocking_factor_x pywarpx.amr.blocking_factor_y = self.blocking_factor_y pywarpx.amr.blocking_factor_z = self.blocking_factor_z # Boundary conditions pywarpx.boundary.field_lo = [BC_map[bc] for bc in self.lower_boundary_conditions] pywarpx.boundary.field_hi = [BC_map[bc] for bc in self.upper_boundary_conditions] pywarpx.boundary.particle_lo = self.lower_boundary_conditions_particles pywarpx.boundary.particle_hi = self.upper_boundary_conditions_particles if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)): pywarpx.warpx.do_moving_window = 1 if self.moving_window_velocity[0] != 0.: pywarpx.warpx.moving_window_dir = 'x' pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light if self.moving_window_velocity[1] != 0.: pywarpx.warpx.moving_window_dir = 'y' pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/constants.c # in units of the speed of light if self.moving_window_velocity[2] != 0.: pywarpx.warpx.moving_window_dir = 'z' pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/constants.c # in units of the speed of light if self.refined_regions: assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.') assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1') pywarpx.amr.max_level = 1 pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1] pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2] # The refinement_factor is ignored (assumed to be [2,2,2]) else: pywarpx.amr.max_level = 0 class ElectromagneticSolver(picmistandard.PICMI_ElectromagneticSolver): def init(self, kw): assert self.method is None or self.method in ['Yee', 'CKC', 'PSATD', 'ECT'], Exception("Only 'Yee', 'CKC', 'PSATD', and 'ECT' are supported") self.pml_ncell = kw.pop('warpx_pml_ncell', None) if self.method == 'PSATD': self.psatd_periodic_single_box_fft = kw.pop('warpx_periodic_single_box_fft', None) self.psatd_current_correction = kw.pop('warpx_current_correction', None) self.psatd_update_with_rho = kw.pop('warpx_psatd_update_with_rho', None) self.psatd_do_time_averaging = kw.pop('warpx_psatd_do_time_averaging', None) self.do_pml_in_domain = kw.pop('warpx_do_pml_in_domain', None) self.pml_has_particles = kw.pop('warpx_pml_has_particles', None) self.do_pml_j_damping = kw.pop('warpx_do_pml_j_damping', None) def initialize_inputs(self): self.grid.initialize_inputs() pywarpx.warpx.pml_ncell = self.pml_ncell pywarpx.warpx.do_nodal = self.l_nodal if self.method == 'PSATD': pywarpx.psatd.periodic_single_box_fft = self.psatd_periodic_single_box_fft pywarpx.psatd.current_correction = self.psatd_current_correction pywarpx.psatd.update_with_rho = self.psatd_update_with_rho pywarpx.psatd.do_time_averaging = self.psatd_do_time_averaging if self.grid.guard_cells is not None: pywarpx.psatd.nx_guard = self.grid.guard_cells[0] if self.grid.number_of_dimensions == 3: pywarpx.psatd.ny_guard = self.grid.guard_cells[1] pywarpx.psatd.nz_guard = self.grid.guard_cells[-1] if self.stencil_order is not None: pywarpx.psatd.nox = self.stencil_order[0] if self.grid.number_of_dimensions == 3: pywarpx.psatd.noy = self.stencil_order[1] pywarpx.psatd.noz = self.stencil_order[-1] if self.galilean_velocity is not None: if self.grid.number_of_dimensions == 2: self.galilean_velocity = [self.galilean_velocity[0], 0., self.galilean_velocity[1]] pywarpx.psatd.v_galilean = np.array(self.galilean_velocity)/constants.c # --- Same method names are used, though mapped to lower case. pywarpx.algo.maxwell_solver = self.method if self.cfl is not None: pywarpx.warpx.cfl = self.cfl if self.source_smoother is not None: self.source_smoother.initialize_inputs(self) pywarpx.warpx.do_dive_cleaning = self.divE_cleaning pywarpx.warpx.do_divb_cleaning = self.divB_cleaning pywarpx.warpx.do_pml_dive_cleaning = self.pml_divE_cleaning pywarpx.warpx.do_pml_divb_cleaning = self.pml_divB_cleaning pywarpx.warpx.do_pml_in_domain = self.do_pml_in_domain pywarpx.warpx.pml_has_particles = self.pml_has_particles pywarpx.warpx.do_pml_j_damping = self.do_pml_j_damping class ElectrostaticSolver(picmistandard.PICMI_ElectrostaticSolver): def init(self, kw): self.relativistic = kw.pop('warpx_relativistic', False) self.absolute_tolerance = kw.pop('warpx_absolute_tolerance', None) self.self_fields_verbosity = kw.pop('warpx_self_fields_verbosity', None) def initialize_inputs(self): self.grid.initialize_inputs() if self.relativistic: pywarpx.warpx.do_electrostatic = 'relativistic' else: pywarpx.warpx.do_electrostatic = 'labframe' pywarpx.warpx.self_fields_required_precision = self.required_precision pywarpx.warpx.self_fields_absolute_tolerance = self.absolute_tolerance pywarpx.warpx.self_fields_max_iters = self.maximum_iterations pywarpx.warpx.self_fields_verbosity = self.self_fields_verbosity pywarpx.boundary.potential_lo_x = self.grid.potential_xmin pywarpx.boundary.potential_lo_y = self.grid.potential_ymin pywarpx.boundary.potential_lo_z = self.grid.potential_zmin pywarpx.boundary.potential_hi_x = self.grid.potential_xmax pywarpx.boundary.potential_hi_y = self.grid.potential_ymax pywarpx.boundary.potential_hi_z = self.grid.potential_zmax class GaussianLaser(picmistandard.PICMI_GaussianLaser): def initialize_inputs(self): self.laser_number = len(pywarpx.lasers.names) + 1 if self.name is None: self.name = 'laser{}'.format(self.laser_number) self.laser = pywarpx.Lasers.newlaser(self.name) self.laser.profile = "Gaussian" self.laser.wavelength = self.wavelength # The wavelength of the laser (in meters) self.laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m) self.laser.polarization = self.polarization_direction # The main polarization vector self.laser.profile_waist = self.waist # The waist of the laser (in meters) self.laser.profile_duration = self.duration # The duration of the laser (in seconds) self.laser.direction = self.propagation_direction self.laser.zeta = self.zeta self.laser.beta = self.beta self.laser.phi2 = self.phi2 self.laser.phi0 = self.phi0 self.laser.do_continuous_injection = self.fill_in class AnalyticLaser(picmistandard.PICMI_AnalyticLaser): def init(self, kw): self.mangle_dict = None def initialize_inputs(self): self.laser_number = len(pywarpx.lasers.names) + 1 if self.name is None: self.name = 'laser{}'.format(self.laser_number) self.laser = pywarpx.Lasers.newlaser(self.name) self.laser.profile = "parse_field_function" self.laser.wavelength = self.wavelength # The wavelength of the laser (in meters) self.laser.e_max = self.Emax # Maximum amplitude of the laser field (in V/m) self.laser.polarization = self.polarization_direction # The main polarization vector self.laser.direction = self.propagation_direction self.laser.do_continuous_injection = self.fill_in if self.mangle_dict is None: # Only do this once so that the same variables are used in this distribution # is used multiple times self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw) expression = pywarpx.my_constants.mangle_expression(self.field_expression, self.mangle_dict) self.laser.__setattr__('field_function(X,Y,t)', expression) class LaserAntenna(picmistandard.PICMI_LaserAntenna): def initialize_inputs(self, laser): laser.laser.position = self.position # This point is on the laser plane laser.laser.direction = self.normal_vector # The plane normal direction if isinstance(laser, GaussianLaser): laser.laser.profile_focal_distance = laser.focal_position[2] - self.position[2] # Focal distance from the antenna (in meters) laser.laser.profile_t_peak = (self.position[2] - laser.centroid_position[2])/constants.c # The time at which the laser reaches its peak (in seconds) class ConstantAppliedField(picmistandard.PICMI_ConstantAppliedField): def initialize_inputs(self): # Note that lower and upper_bound are not used by WarpX if (self.Ex is not None or self.Ey is not None or self.Ez is not None): pywarpx.particles.E_ext_particle_init_style = 'constant' pywarpx.particles.E_external_particle = [self.Ex or 0., self.Ey or 0., self.Ez or 0.] if (self.Bx is not None or self.By is not None or self.Bz is not None): pywarpx.particles.B_ext_particle_init_style = 'constant' pywarpx.particles.B_external_particle = [self.Bx or 0., self.By or 0., self.Bz or 0.] class AnalyticAppliedField(picmistandard.PICMI_AnalyticAppliedField): def init(self, kw): self.mangle_dict = None def initialize_inputs(self): # Note that lower and upper_bound are not used by WarpX if self.mangle_dict is None: # Only do this once so that the same variables are used in this distribution # is used multiple times self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw) if (self.Ex_expression is not None or self.Ey_expression is not None or self.Ez_expression is not None): pywarpx.particles.E_ext_particle_init_style = 'parse_e_ext_particle_function' for sdir, expression in zip(['x', 'y', 'z'], [self.Ex_expression, self.Ey_expression, self.Ez_expression]): expression = pywarpx.my_constants.mangle_expression(expression, self.mangle_dict) pywarpx.particles.__setattr__(f'E{sdir}_external_particle_function(x,y,z,t)', expression) if (self.Bx_expression is not None or self.By_expression is not None or self.Bz_expression is not None): pywarpx.particles.B_ext_particle_init_style = 'parse_b_ext_particle_function' for sdir, expression in zip(['x', 'y', 'z'], [self.Bx_expression, self.By_expression, self.Bz_expression]): expression = pywarpx.my_constants.mangle_expression(expression, self.mangle_dict) pywarpx.particles.__setattr__(f'B{sdir}_external_particle_function(x,y,z,t)', expression) class Mirror(picmistandard.PICMI_Mirror): def initialize_inputs(self): try: pywarpx.warpx.num_mirrors except AttributeError: pywarpx.warpx.num_mirrors = 0 pywarpx.warpx.mirror_z = [] pywarpx.warpx.mirror_z_width = [] pywarpx.warpx.mirror_z_npoints = [] pywarpx.warpx.num_mirrors += 1 pywarpx.warpx.mirror_z.append(self.z_front_location) pywarpx.warpx.mirror_z_width.append(self.depth) pywarpx.warpx.mirror_z_npoints.append(self.number_of_cells) class CoulombCollisions(picmistandard.base._ClassWithInit): """Custom class to handle setup of binary Coulmb collisions in WarpX. If collision initialization is added to picmistandard this can be changed to inherit that functionality.""" def __init__(self, name, species, CoulombLog=None, ndt=None, **kw): self.name = name self.species = species self.CoulombLog = CoulombLog self.ndt = ndt self.handle_init(kw) def initialize_inputs(self): collision = pywarpx.Collisions.newcollision(self.name) collision.type = 'pairwisecoulomb' collision.species = [species.name for species in self.species] collision.CoulombLog = self.CoulombLog collision.ndt = self.ndt class MCCCollisions(picmistandard.base._ClassWithInit): """Custom class to handle setup of MCC collisions in WarpX. If collision initialization is added to picmistandard this can be changed to inherit that functionality.""" def __init__(self, name, species, background_density, background_temperature, scattering_processes, background_mass=None, ndt=None, **kw): self.name = name self.species = species self.background_density = background_density self.background_temperature = background_temperature self.background_mass = background_mass self.scattering_processes = scattering_processes self.ndt = ndt self.handle_init(kw) def initialize_inputs(self): collision = pywarpx.Collisions.newcollision(self.name) collision.type = 'background_mcc' collision.species = self.species.name collision.background_density = self.background_density collision.background_temperature = self.background_temperature collision.background_mass = self.background_mass collision.ndt = self.ndt collision.scattering_processes = self.scattering_processes.keys() for process, kw in self.scattering_processes.items(): for key, val in kw.items(): if key == 'species': val = val.name collision.add_new_attr(process+'_'+key, val) class EmbeddedBoundary(picmistandard.base._ClassWithInit): """ Custom class to handle set up of embedded boundaries specific to WarpX. If embedded boundary initialization is added to picmistandard this can be changed to inherit that functionality. The geometry can be specified either as an implicit function or as an STL file (ASCII or binary). In the latter case the geometry specified in the STL file can be scaled, translated and inverted. - implicit_function: Analytic expression describing the embedded boundary - stl_file: STL file path (string), file contains the embedded boundary geometry - stl_scale: factor by which the STL geometry is scaled (pure number) - stl_center: vector by which the STL geometry is translated (in meters) - stl_reverse_normal: if True inverts the orientation of the STL geometry - potential: Analytic expression defining the potential. Can only be specified when the solver is electrostatic. Optional, defaults to 0. Parameters used in the expressions should be given as additional keyword arguments. """ def __init__(self, implicit_function=None, stl_file=None, stl_scale=None, stl_center=None, stl_reverse_normal=False, potential=None, **kw): assert stl_file is None or implicit_function is None, Exception('Only one between implicit_function and ' 'stl_file can be specified') self.implicit_function = implicit_function self.stl_file = stl_file if stl_file is None: assert stl_scale is None, Exception('EB can only be scaled only when using an stl file') assert stl_center is None, Exception('EB can only be translated only when using an stl file') assert stl_reverse_normal is False, Exception('EB can only be reversed only when using an stl file') self.stl_scale = stl_scale self.stl_center = stl_center self.stl_reverse_normal = stl_reverse_normal self.potential = potential # Handle keyword arguments used in expressions self.user_defined_kw = {} for k in list(kw.keys()): if (implicit_function is not None and re.search(r'\b%s\b'%k, implicit_function) or (potential is not None and re.search(r'\b%s\b'%k, potential))): self.user_defined_kw[k] = kw[k] del kw[k] self.handle_init(kw) def initialize_inputs(self, solver): # Add the user defined keywords to my_constants # The keywords are mangled if there is a conflicting variable already # defined in my_constants with the same name but different value. self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw) if self.implicit_function is not None: expression = pywarpx.my_constants.mangle_expression(self.implicit_function, self.mangle_dict) pywarpx.warpx.eb_implicit_function = expression if self.stl_file is not None: pywarpx.eb2.geom_type = "stl" pywarpx.eb2.stl_file = self.stl_file pywarpx.eb2.stl_scale = self.stl_scale pywarpx.eb2.stl_center = self.stl_center pywarpx.eb2.stl_reverse_normal = self.stl_reverse_normal if self.potential is not None: assert isinstance(solver, ElectrostaticSolver), Exception('The potential is only supported with the ElectrostaticSolver') expression = pywarpx.my_constants.mangle_expression(self.potential, self.mangle_dict) pywarpx.warpx.__setattr__('eb_potential(x,y,z,t)', expression) class PlasmaLens(picmistandard.base._ClassWithInit): """ Custom class to setup a plasma lens lattice. The applied fields are dependent on the transverse position - Ex = x*stengths_E - Ey = y*stengths_E - Bx = +y*stengths_B - By = -x*stengths_B """ def __init__(self, period, starts, lengths, strengths_E=None, strengths_B=None, **kw): self.period = period self.starts = starts self.lengths = lengths self.strengths_E = strengths_E self.strengths_B = strengths_B assert (self.strengths_E is not None) or (self.strengths_B is not None),\ Exception('One of strengths_E or strengths_B must be supplied') self.handle_init(kw) def initialize_inputs(self): pywarpx.particles.E_ext_particle_init_style = 'repeated_plasma_lens' pywarpx.particles.B_ext_particle_init_style = 'repeated_plasma_lens' pywarpx.particles.repeated_plasma_lens_period = self.period pywarpx.particles.repeated_plasma_lens_starts = self.starts pywarpx.particles.repeated_plasma_lens_lengths = self.lengths pywarpx.particles.repeated_plasma_lens_strengths_E = self.strengths_E pywarpx.particles.repeated_plasma_lens_strengths_B = self.strengths_B class Simulation(picmistandard.PICMI_Simulation): # Set the C++ WarpX interface (see _libwarpx.LibWarpX) as an extension to # Simulation objects. In the future, LibWarpX objects may actually be owned # by Simulation objects to permit multiple WarpX runs simultaneously. extension = pywarpx.libwarpx def init(self, kw): self.current_deposition_algo = kw.pop('warpx_current_deposition_algo', None) self.charge_deposition_algo = kw.pop('warpx_charge_deposition_algo', None) self.field_gathering_algo = kw.pop('warpx_field_gathering_algo', None) self.particle_pusher_algo = kw.pop('warpx_particle_pusher_algo', None) self.use_filter = kw.pop('warpx_use_filter', None) self.serialize_initial_conditions = kw.pop('warpx_serialize_initial_conditions', None) self.do_dynamic_scheduling = kw.pop('warpx_do_dynamic_scheduling', None) self.load_balance_intervals = kw.pop('warpx_load_balance_intervals', None) self.load_balance_efficiency_ratio_threshold = kw.pop('warpx_load_balance_efficiency_ratio_threshold', None) self.load_balance_with_sfc = kw.pop('warpx_load_balance_with_sfc', None) self.load_balance_knapsack_factor = kw.pop('warpx_load_balance_knapsack_factor', None) self.load_balance_costs_update = kw.pop('warpx_load_balance_costs_update', None) self.costs_heuristic_particles_wt = kw.pop('warpx_costs_heuristic_particles_wt', None) self.costs_heuristic_cells_wt = kw.pop('warpx_costs_heuristic_cells_wt', None) self.use_fdtd_nci_corr = kw.pop('warpx_use_fdtd_nci_corr', None) self.amr_check_input = kw.pop('warpx_amr_check_input', None) self.amr_restart = kw.pop('warpx_amr_restart', None) self.collisions = kw.pop('warpx_collisions', None) self.embedded_boundary = kw.pop('warpx_embedded_boundary', None) self.break_signals = kw.pop('warpx_break_signals', None) self.checkpoint_signals = kw.pop('warpx_checkpoint_signals', None) self.inputs_initialized = False self.warpx_initialized = False def initialize_inputs(self): if self.inputs_initialized: return self.inputs_initialized = True pywarpx.warpx.verbose = self.verbose if self.time_step_size is not None: pywarpx.warpx.const_dt = self.time_step_size if self.gamma_boost is not None: pywarpx.warpx.gamma_boost = self.gamma_boost pywarpx.warpx.boost_direction = 'z' pywarpx.algo.current_deposition = self.current_deposition_algo pywarpx.algo.charge_deposition = self.charge_deposition_algo pywarpx.algo.field_gathering = self.field_gathering_algo pywarpx.algo.particle_pusher = self.particle_pusher_algo pywarpx.algo.load_balance_intervals = self.load_balance_intervals pywarpx.algo.load_balance_efficiency_ratio_threshold = self.load_balance_efficiency_ratio_threshold pywarpx.algo.load_balance_with_sfc = self.load_balance_with_sfc pywarpx.algo.load_balance_knapsack_factor = self.load_balance_knapsack_factor pywarpx.algo.load_balance_costs_update = self.load_balance_costs_update pywarpx.algo.costs_heuristic_particles_wt = self.costs_heuristic_particles_wt pywarpx.algo.costs_heuristic_cells_wt = self.costs_heuristic_cells_wt pywarpx.warpx.use_filter = self.use_filter pywarpx.warpx.serialize_initial_conditions = self.serialize_initial_conditions pywarpx.warpx.do_dynamic_scheduling = self.do_dynamic_scheduling pywarpx.particles.use_fdtd_nci_corr = self.use_fdtd_nci_corr pywarpx.amr.check_input = self.amr_check_input pywarpx.warpx.break_signals = self.break_signals pywarpx.warpx.checkpoint_signals = self.checkpoint_signals particle_shape = self.particle_shape for s in self.species: if s.particle_shape is not None: assert particle_shape is None or particle_shape == s.particle_shape, Exception('WarpX only supports one particle shape for all species') # --- If this was set for any species, use that value. particle_shape = s.particle_shape if particle_shape is not None and (len(self.species) > 0 or len(self.lasers) > 0): if isinstance(particle_shape, str): interpolation_order = {'NGP':0, 'linear':1, 'quadratic':2, 'cubic':3}[particle_shape] else: interpolation_order = particle_shape pywarpx.algo.particle_shape = interpolation_order self.solver.initialize_inputs() for i in range(len(self.species)): self.species[i].initialize_inputs(self.layouts[i], self.initialize_self_fields[i], self.injection_plane_positions[i], self.injection_plane_normal_vectors[i]) if self.collisions is not None: pywarpx.collisions.collision_names = [] for collision in self.collisions: pywarpx.collisions.collision_names.append(collision.name) collision.initialize_inputs() if self.embedded_boundary is not None: self.embedded_boundary.initialize_inputs(self.solver) for i in range(len(self.lasers)): self.lasers[i].initialize_inputs() self.laser_injection_methods[i].initialize_inputs(self.lasers[i]) for applied_field in self.applied_fields: applied_field.initialize_inputs() for diagnostic in self.diagnostics: diagnostic.initialize_inputs() if self.amr_restart: pywarpx.amr.restart = self.amr_restart def initialize_warpx(self, mpi_comm=None): if self.warpx_initialized: return self.warpx_initialized = True pywarpx.warpx.init(mpi_comm) def write_input_file(self, file_name='inputs'): self.initialize_inputs() kw = {} if self.max_steps is not None: kw['max_step'] = self.max_steps if self.max_time is not None: kw['stop_time'] = self.max_time pywarpx.warpx.write_inputs(file_name, **kw) def step(self, nsteps=None, mpi_comm=None): self.initialize_inputs() self.initialize_warpx(mpi_comm) if nsteps is None: if self.max_steps is not None: nsteps = self.max_steps else: nsteps = -1 pywarpx.warpx.evolve(nsteps) def finalize(self): if self.warpx_initialized: self.warpx_initialized = False pywarpx.warpx.finalize() # ---------------------------- # Simulation frame diagnostics # ---------------------------- class FieldDiagnostic(picmistandard.PICMI_FieldDiagnostic): def init(self, kw): self.plot_raw_fields = kw.pop('warpx_plot_raw_fields', None) self.plot_raw_fields_guards = kw.pop('warpx_plot_raw_fields_guards', None) self.plot_finepatch = kw.pop('warpx_plot_finepatch', None) self.plot_crsepatch = kw.pop('warpx_plot_crsepatch', None) self.format = kw.pop('warpx_format', 'plotfile') self.openpmd_backend = kw.pop('warpx_openpmd_backend', None) self.file_prefix = kw.pop('warpx_file_prefix', None) self.file_min_digits = kw.pop('warpx_file_min_digits', None) self.dump_rz_modes = kw.pop('warpx_dump_rz_modes', None) def initialize_inputs(self): name = getattr(self, 'name', None) if name is None: diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1 self.name = 'diag{}'.format(diagnostics_number) try: self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name] except KeyError: self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={}) pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic self.diagnostic.diag_type = 'Full' self.diagnostic.format = self.format self.diagnostic.openpmd_backend = self.openpmd_backend self.diagnostic.file_min_digits = self.file_min_digits self.diagnostic.dump_rz_modes = self.dump_rz_modes self.diagnostic.intervals = self.period self.diagnostic.diag_lo = self.lower_bound self.diagnostic.diag_hi = self.upper_bound if self.number_of_cells is not None: self.diagnostic.coarsening_ratio = (np.array(self.grid.number_of_cells)/np.array(self.number_of_cells)).astype(int) # --- Use a set to ensure that fields don't get repeated. fields_to_plot = set() if self.data_list is not None: for dataname in self.data_list: if dataname == 'E': fields_to_plot.add('Ex') fields_to_plot.add('Ey') fields_to_plot.add('Ez') elif dataname == 'B': fields_to_plot.add('Bx') fields_to_plot.add('By') fields_to_plot.add('Bz') elif dataname == 'J': fields_to_plot.add('jx') fields_to_plot.add('jy') fields_to_plot.add('jz') elif dataname in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz', 'rho', 'phi', 'F', 'proc_number', 'part_per_cell']: fields_to_plot.add(dataname) elif dataname in ['Jx', 'Jy', 'Jz']: fields_to_plot.add(dataname.lower()) elif dataname.startswith('rho_'): # Adds rho_species diagnostic fields_to_plot.add(dataname) elif dataname == 'dive': fields_to_plot.add('divE') elif dataname == 'divb': fields_to_plot.add('divB') elif dataname == 'raw_fields': self.plot_raw_fields = 1 elif dataname == 'raw_fields_guards': self.plot_raw_fields_guards = 1 elif dataname == 'finepatch': self.plot_finepatch = 1 elif dataname == 'crsepatch': self.plot_crsepatch = 1 elif dataname == 'none': fields_to_plot = set(('none',)) # --- Convert the set to a sorted list so that the order # --- is the same on all processors. fields_to_plot = list(fields_to_plot) fields_to_plot.sort() self.diagnostic.fields_to_plot = fields_to_plot self.diagnostic.plot_raw_fields = self.plot_raw_fields self.diagnostic.plot_raw_fields_guards = self.plot_raw_fields_guards self.diagnostic.plot_finepatch = self.plot_finepatch self.diagnostic.plot_crsepatch = self.plot_crsepatch if self.write_dir is not None or self.file_prefix is not None: write_dir = (self.write_dir or 'diags') file_prefix = (self.file_prefix or self.name) self.diagnostic.file_prefix = os.path.join(write_dir, file_prefix) ElectrostaticFieldDiagnostic = FieldDiagnostic class Checkpoint(picmistandard.base._ClassWithInit): def __init__(self, period = 1, write_dir = None, name = None, **kw): self.period = period self.write_dir = write_dir self.file_prefix = kw.pop('warpx_file_prefix', None) self.file_min_digits = kw.pop('warpx_file_min_digits', None) self.name = name if self.name is None: self.name = 'chkpoint' self.handle_init(kw) def initialize_inputs(self): try: self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name] except KeyError: self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={}) pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic self.diagnostic.intervals = self.period self.diagnostic.diag_type = 'Full' self.diagnostic.format = 'checkpoint' self.diagnostic.file_min_digits = self.file_min_digits if self.write_dir is not None or self.file_prefix is not None: write_dir = (self.write_dir or 'diags') file_prefix = (self.file_prefix or self.name) self.diagnostic.file_prefix = os.path.join(write_dir, file_prefix) class ParticleDiagnostic(picmistandard.PICMI_ParticleDiagnostic): def init(self, kw): self.format = kw.pop('warpx_format', 'plotfile') self.openpmd_backend = kw.pop('warpx_openpmd_backend', None) self.file_prefix = kw.pop('warpx_file_prefix', None) self.file_min_digits = kw.pop('warpx_file_min_digits', None) self.random_fraction = kw.pop('warpx_random_fraction', None) self.uniform_stride = kw.pop('warpx_uniform_stride', None) self.plot_filter_function = kw.pop('warpx_plot_filter_function', None) self.user_defined_kw = {} if self.plot_filter_function is not None: # This allows variables to be used in the plot_filter_function, but # in order not to break other codes, the variables must begin with "warpx_" for k in list(kw.keys()): if k.startswith('warpx_') and re.search(r'\b%s\b'%k, self.plot_filter_function): self.user_defined_kw[k] = kw[k] del kw[k] self.mangle_dict = None def initialize_inputs(self): name = getattr(self, 'name', None) if name is None: diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1 self.name = 'diag{}'.format(diagnostics_number) try: self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name] except KeyError: self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={}) pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic self.diagnostic.diag_type = 'Full' self.diagnostic.format = self.format self.diagnostic.openpmd_backend = self.openpmd_backend self.diagnostic.file_min_digits = self.file_min_digits self.diagnostic.intervals = self.period if self.write_dir is not None or self.file_prefix is not None: write_dir = (self.write_dir or 'diags') file_prefix = (self.file_prefix or self.name) self.diagnostic.file_prefix = os.path.join(write_dir, file_prefix) # --- Use a set to ensure that fields don't get repeated. variables = set() if self.data_list is not None: for dataname in self.data_list: if dataname == 'position': # --- The positions are alway written out anyway pass elif dataname == 'momentum': variables.add('ux') variables.add('uy') variables.add('uz') elif dataname == 'weighting': variables.add('w') elif dataname == 'fields': variables.add('Ex') variables.add('Ey') variables.add('Ez') variables.add('Bx') variables.add('By') variables.add('Bz') elif dataname in ['ux', 'uy', 'uz', 'Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz']: variables.add(dataname) # --- Convert the set to a sorted list so that the order # --- is the same on all processors. variables = list(variables) variables.sort() if np.iterable(self.species): species_list = self.species else: species_list = [self.species] if self.mangle_dict is None: # Only do this once so that the same variables are used in this distribution # is used multiple times self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw) for specie in species_list: diag = pywarpx.Bucket.Bucket(self.name + '.' + specie.name, variables = variables, random_fraction = self.random_fraction, uniform_stride = self.uniform_stride) expression = pywarpx.my_constants.mangle_expression(self.plot_filter_function, self.mangle_dict) diag.__setattr__('plot_filter_function(t,x,y,z,ux,uy,uz)', expression) self.diagnostic._species_dict[specie.name] = diag # ---------------------------- # Lab frame diagnostics # ---------------------------- class LabFrameFieldDiagnostic(picmistandard.PICMI_LabFrameFieldDiagnostic): """ Warp specific arguments: - warpx_new_BTD: Use the new BTD diagnostics - warpx_format: Passed to .format - warpx_openpmd_backend: Passed to .openpmd_backend - warpx_file_prefix: Passed to .file_prefix - warpx_file_min_digits: Passed to .file_min_digits - warpx_buffer_size: Passed to .buffer_size - warpx_lower_bound: Passed to .lower_bound - warpx_upper_bound: Passed to .upper_bound """ __doc__ = picmistandard.PICMI_LabFrameFieldDiagnostic.__doc__ + __doc__ def init(self, kw): self.use_new_BTD = kw.pop('warpx_new_BTD', False) if self.use_new_BTD: # The user is using the new BTD self.format = kw.pop('warpx_format', None) self.openpmd_backend = kw.pop('warpx_openpmd_backend', None) self.file_prefix = kw.pop('warpx_file_prefix', None) self.file_min_digits = kw.pop('warpx_file_min_digits', None) self.buffer_size = kw.pop('warpx_buffer_size', None) self.lower_bound = kw.pop('warpx_lower_bound', None) self.upper_bound = kw.pop('warpx_upper_bound', None) def initialize_inputs(self): if self.use_new_BTD: self.initialize_inputs_new() else: self.initialize_inputs_old() def initialize_inputs_old(self): pywarpx.warpx.check_consistency('num_snapshots_lab', self.num_snapshots, 'The number of snapshots must be the same in all lab frame diagnostics') pywarpx.warpx.check_consistency('dt_snapshots_lab', self.dt_snapshots, 'The time between snapshots must be the same in all lab frame diagnostics') pywarpx.warpx.check_consistency('lab_data_directory', self.write_dir, 'The write directory must be the same in all lab frame diagnostics') pywarpx.warpx.do_back_transformed_diagnostics = 1 pywarpx.warpx.num_snapshots_lab = self.num_snapshots pywarpx.warpx.dt_snapshots_lab = self.dt_snapshots pywarpx.warpx.do_back_transformed_fields = 1 pywarpx.warpx.lab_data_directory = self.write_dir def initialize_inputs_new(self): name = getattr(self, 'name', None) if name is None: diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1 self.name = 'diag{}'.format(diagnostics_number) try: self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name] except KeyError: self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={}) pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic self.diagnostic.diag_type = 'BackTransformed' self.diagnostic.format = self.format self.diagnostic.openpmd_backend = self.openpmd_backend self.diagnostic.file_min_digits = self.file_min_digits self.diagnostic.diag_lo = self.lower_bound self.diagnostic.diag_hi = self.upper_bound self.diagnostic.do_back_transformed_fields = 1 self.diagnostic.num_snapshots_lab = self.num_snapshots self.diagnostic.dt_snapshots_lab = self.dt_snapshots self.diagnostic.buffer_size = self.buffer_size # --- Use a set to ensure that fields don't get repeated. fields_to_plot = set() if self.data_list is not None: for dataname in self.data_list: if dataname == 'E': fields_to_plot.add('Ex') fields_to_plot.add('Ey') fields_to_plot.add('Ez') elif dataname == 'B': fields_to_plot.add('Bx') fields_to_plot.add('By') fields_to_plot.add('Bz') elif dataname == 'J': fields_to_plot.add('jx') fields_to_plot.add('jy') fields_to_plot.add('jz') elif dataname in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz', 'rho']: fields_to_plot.add(dataname) elif dataname in ['Jx', 'Jy', 'Jz']: fields_to_plot.add(dataname.lower()) elif dataname.startswith('rho_'): # Adds rho_species diagnostic fields_to_plot.add(dataname) # --- Convert the set to a sorted list so that the order # --- is the same on all processors. fields_to_plot = list(fields_to_plot) fields_to_plot.sort() self.diagnostic.fields_to_plot = fields_to_plot if self.write_dir is not None or self.file_prefix is not None: write_dir = (self.write_dir or 'diags') file_prefix = (self.file_prefix or self.name) self.diagnostic.file_prefix = os.path.join(write_dir, file_prefix) class LabFrameParticleDiagnostic(picmistandard.PICMI_LabFrameParticleDiagnostic): def initialize_inputs(self): pywarpx.warpx.check_consistency('num_snapshots_lab', self.num_snapshots, 'The number of snapshots must be the same in all lab frame diagnostics') pywarpx.warpx.check_consistency('dt_snapshots_lab', self.dt_snapshots, 'The time between snapshots must be the same in all lab frame diagnostics') pywarpx.warpx.check_consistency('lab_data_directory', self.write_dir, 'The write directory must be the same in all lab frame diagnostics') pywarpx.warpx.do_back_transformed_diagnostics = 1 if isinstance(self.species, Species): self.species.do_back_transformed_diagnostics = 1 else: try: for specie in self.species: specie.do_back_transformed_diagnostics = 1 except TypeError: pass pywarpx.warpx.num_snapshots_lab = self.num_snapshots pywarpx.warpx.dt_snapshots_lab = self.dt_snapshots pywarpx.warpx.lab_data_directory = self.write_dir