/* Copyright 2020 Remi Lehe * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #include "FiniteDifferenceSolver.H" #include "Utils/WarpXAlgorithmSelection.H" #ifndef WARPX_DIM_RZ # include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianNodalAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H" #else # include "FiniteDifferenceAlgorithms/CylindricalYeeAlgorithm.H" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace amrex; /** * \brief Update the F field, over one timestep */ void FiniteDifferenceSolver::ComputeDivE ( const std::array,3>& Efield, amrex::MultiFab& divEfield ) { // Select algorithm (The choice of algorithm is a runtime option, // but we compile code for each algorithm, using templates) #ifdef WARPX_DIM_RZ if (m_fdtd_algo == MaxwellSolverAlgo::Yee){ ComputeDivECylindrical ( Efield, divEfield ); #else if (m_do_nodal) { ComputeDivECartesian ( Efield, divEfield ); } else if (m_fdtd_algo == MaxwellSolverAlgo::Yee) { ComputeDivECartesian ( Efield, divEfield ); } else if (m_fdtd_algo == MaxwellSolverAlgo::CKC) { ComputeDivECartesian ( Efield, divEfield ); #endif } else { amrex::Abort("ComputeDivE: Unknown algorithm"); } } #ifndef WARPX_DIM_RZ template void FiniteDifferenceSolver::ComputeDivECartesian ( const std::array,3>& Efield, amrex::MultiFab& divEfield ) { // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(divEfield, TilingIfNotGPU()); mfi.isValid(); ++mfi ) { // Extract field data for this grid/tile Array4 const& divE = divEfield.array(mfi); Array4 const& Ex = Efield[0]->array(mfi); Array4 const& Ey = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr(); int const n_coefs_x = m_stencil_coefs_x.size(); Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr(); int const n_coefs_y = m_stencil_coefs_y.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); // Extract tileboxes for which to loop Box const& tdive = mfi.tilebox(divEfield.ixType().toIntVect()); // Loop over the cells and update the fields amrex::ParallelFor(tdive, [=] AMREX_GPU_DEVICE (int i, int j, int k){ divE(i, j, k) = T_Algo::DownwardDx(Ex, coefs_x, n_coefs_x, i, j, k) + T_Algo::DownwardDy(Ey, coefs_y, n_coefs_y, i, j, k) + T_Algo::DownwardDz(Ez, coefs_z, n_coefs_z, i, j, k); } ); } } #else // corresponds to ifndef WARPX_DIM_RZ template void FiniteDifferenceSolver::ComputeDivECylindrical ( const std::array,3>& Efield, amrex::MultiFab& divEfield ) { // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(divEfield, TilingIfNotGPU()); mfi.isValid(); ++mfi ) { // Extract field data for this grid/tile Array4 divE = divEfield.array(mfi); Array4 const& Er = Efield[0]->array(mfi); Array4 const& Et = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_r = m_stencil_coefs_r.dataPtr(); int const n_coefs_r = m_stencil_coefs_r.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); // Extract cylindrical specific parameters Real const dr = m_dr; int const nmodes = m_nmodes; Real const rmin = m_rmin; // Extract tileboxes for which to loop Box const& tdive = mfi.tilebox(divEfield.ixType().toIntVect()); // Loop over the cells and update the fields amrex::ParallelFor(tdive, [=] AMREX_GPU_DEVICE (int i, int j, int /*k*/){ Real const r = rmin + i*dr; // r on a nodal grid (F is nodal in r) if (r != 0) { // Off-axis, regular equations divE(i, j, 0, 0) = T_Algo::DownwardDrr_over_r(Er, r, dr, coefs_r, n_coefs_r, i, j, 0, 0) + T_Algo::DownwardDz(Ez, coefs_z, n_coefs_z, i, j, 0, 0); for (int m=1 ; m