/* Copyright 2020 Remi Lehe * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #include "FiniteDifferenceSolver.H" #include "EmbeddedBoundary/WarpXFaceInfoBox.H" #ifndef WARPX_DIM_RZ # include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianNodalAlgorithm.H" #else # include "FiniteDifferenceAlgorithms/CylindricalYeeAlgorithm.H" #endif #include "Utils/TextMsg.H" #include "Utils/WarpXAlgorithmSelection.H" #include "Utils/WarpXConst.H" #include "WarpX.H" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace amrex; /** * \brief Update the B field, over one timestep */ void FiniteDifferenceSolver::EvolveB ( std::array< std::unique_ptr, 3 >& Bfield, std::array< std::unique_ptr, 3 > const& Efield, std::unique_ptr const& Gfield, std::array< std::unique_ptr, 3 > const& face_areas, std::array< std::unique_ptr, 3 > const& area_mod, std::array< std::unique_ptr, 3 >& ECTRhofield, std::array< std::unique_ptr, 3 >& Venl, std::array< std::unique_ptr, 3 >& flag_info_cell, std::array< std::unique_ptr >, 3 >& borrowing, int lev, amrex::Real const dt ) { #ifndef AMREX_USE_EB amrex::ignore_unused(area_mod, ECTRhofield, Venl, flag_info_cell, borrowing); #endif // Select algorithm (The choice of algorithm is a runtime option, // but we compile code for each algorithm, using templates) #ifdef WARPX_DIM_RZ if (m_fdtd_algo == ElectromagneticSolverAlgo::Yee){ ignore_unused(Gfield, face_areas); EvolveBCylindrical ( Bfield, Efield, lev, dt ); #else if(m_grid_type == GridType::Collocated || m_fdtd_algo != ElectromagneticSolverAlgo::ECT){ amrex::ignore_unused(face_areas); } if (m_grid_type == GridType::Collocated) { EvolveBCartesian ( Bfield, Efield, Gfield, lev, dt ); } else if (m_fdtd_algo == ElectromagneticSolverAlgo::Yee) { EvolveBCartesian ( Bfield, Efield, Gfield, lev, dt ); } else if (m_fdtd_algo == ElectromagneticSolverAlgo::CKC) { EvolveBCartesian ( Bfield, Efield, Gfield, lev, dt ); #ifdef AMREX_USE_EB } else if (m_fdtd_algo == ElectromagneticSolverAlgo::ECT) { EvolveBCartesianECT(Bfield, face_areas, area_mod, ECTRhofield, Venl, flag_info_cell, borrowing, lev, dt); #endif #endif } else { WARPX_ABORT_WITH_MESSAGE("EvolveB: Unknown algorithm"); } } #ifndef WARPX_DIM_RZ template void FiniteDifferenceSolver::EvolveBCartesian ( std::array< std::unique_ptr, 3 >& Bfield, std::array< std::unique_ptr, 3 > const& Efield, std::unique_ptr const& Gfield, int lev, amrex::Real const dt ) { amrex::LayoutData* cost = WarpX::getCosts(lev); // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(*Bfield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) { if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); } Real wt = amrex::second(); // Extract field data for this grid/tile Array4 const& Bx = Bfield[0]->array(mfi); Array4 const& By = Bfield[1]->array(mfi); Array4 const& Bz = Bfield[2]->array(mfi); Array4 const& Ex = Efield[0]->array(mfi); Array4 const& Ey = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr(); int const n_coefs_x = m_stencil_coefs_x.size(); Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr(); int const n_coefs_y = m_stencil_coefs_y.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); // Extract tileboxes for which to loop Box const& tbx = mfi.tilebox(Bfield[0]->ixType().toIntVect()); Box const& tby = mfi.tilebox(Bfield[1]->ixType().toIntVect()); Box const& tbz = mfi.tilebox(Bfield[2]->ixType().toIntVect()); // Loop over the cells and update the fields amrex::ParallelFor(tbx, tby, tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k){ Bx(i, j, k) += dt * T_Algo::UpwardDz(Ey, coefs_z, n_coefs_z, i, j, k) - dt * T_Algo::UpwardDy(Ez, coefs_y, n_coefs_y, i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ By(i, j, k) += dt * T_Algo::UpwardDx(Ez, coefs_x, n_coefs_x, i, j, k) - dt * T_Algo::UpwardDz(Ex, coefs_z, n_coefs_z, i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ Bz(i, j, k) += dt * T_Algo::UpwardDy(Ex, coefs_y, n_coefs_y, i, j, k) - dt * T_Algo::UpwardDx(Ey, coefs_x, n_coefs_x, i, j, k); } ); // div(B) cleaning correction for errors in magnetic Gauss law (div(B) = 0) if (Gfield) { // Extract field data for this grid/tile Array4 G = Gfield->array(mfi); // Loop over cells and update G amrex::ParallelFor(tbx, tby, tbz, [=] AMREX_GPU_DEVICE (int i, int j, int k) { Bx(i,j,k) += dt * T_Algo::DownwardDx(G, coefs_x, n_coefs_x, i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k) { By(i,j,k) += dt * T_Algo::DownwardDy(G, coefs_y, n_coefs_y, i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k) { Bz(i,j,k) += dt * T_Algo::DownwardDz(G, coefs_z, n_coefs_z, i, j, k); } ); } if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); wt = amrex::second() - wt; amrex::HostDevice::Atomic::Add( &(*cost)[mfi.index()], wt); } } } void FiniteDifferenceSolver::EvolveBCartesianECT ( std::array< std::unique_ptr, 3 >& Bfield, std::array< std::unique_ptr, 3 > const& face_areas, std::array< std::unique_ptr, 3 > const& area_mod, std::array< std::unique_ptr, 3 >& ECTRhofield, std::array< std::unique_ptr, 3 >& Venl, std::array< std::unique_ptr, 3 >& flag_info_cell, std::array< std::unique_ptr >, 3 >& borrowing, const int lev, amrex::Real const dt ) { #ifdef AMREX_USE_EB #if !(defined(WARPX_DIM_3D) || defined(WARPX_DIM_XZ)) WARPX_ABORT_WITH_MESSAGE( "EvolveBCartesianECT: Embedded Boundaries are only implemented in 2D3V and 3D3V"); #endif amrex::LayoutData *cost = WarpX::getCosts(lev); Venl[0]->setVal(0.); Venl[1]->setVal(0.); Venl[2]->setVal(0.); // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for (MFIter mfi(*Bfield[0]); mfi.isValid(); ++mfi) { if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); } Real wt = amrex::second(); for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) { // Extract field data for this grid/tile Array4 const &B = Bfield[idim]->array(mfi); Array4 const &Rho = ECTRhofield[idim]->array(mfi); Array4 const &Venl_dim = Venl[idim]->array(mfi); amrex::Array4 const &flag_info_cell_dim = flag_info_cell[idim]->array(mfi); amrex::Array4 const &S = face_areas[idim]->array(mfi); amrex::Array4 const &S_mod = area_mod[idim]->array(mfi); auto &borrowing_dim = (*borrowing[idim])[mfi]; auto borrowing_dim_neigh_faces = borrowing_dim.neigh_faces.data(); auto borrowing_dim_area = borrowing_dim.area.data(); auto const &borrowing_inds = (*borrowing[idim])[mfi].inds.data(); auto const &borrowing_size = (*borrowing[idim])[mfi].size.array(); auto const &borrowing_inds_pointer = (*borrowing[idim])[mfi].inds_pointer.array(); // Extract tileboxes for which to loop Box const &tb = mfi.tilebox(Bfield[idim]->ixType().toIntVect()); //Take care of the unstable cells amrex::ParallelFor(tb, [=] AMREX_GPU_DEVICE(int i, int j, int k) { if (S(i, j, k) <= 0) return; if (!(flag_info_cell_dim(i, j, k) == 0)) return; Venl_dim(i, j, k) = Rho(i, j, k) * S(i, j, k); amrex::Real rho_enl; // First we compute the rho of the enlarged face for (int offset = 0; offset void FiniteDifferenceSolver::EvolveBCylindrical ( std::array< std::unique_ptr, 3 >& Bfield, std::array< std::unique_ptr, 3 > const& Efield, int lev, amrex::Real const dt ) { amrex::LayoutData* cost = WarpX::getCosts(lev); // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(*Bfield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) { if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); } Real wt = amrex::second(); // Extract field data for this grid/tile Array4 const& Br = Bfield[0]->array(mfi); Array4 const& Bt = Bfield[1]->array(mfi); Array4 const& Bz = Bfield[2]->array(mfi); Array4 const& Er = Efield[0]->array(mfi); Array4 const& Et = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_r = m_stencil_coefs_r.dataPtr(); int const n_coefs_r = m_stencil_coefs_r.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); // Extract cylindrical specific parameters Real const dr = m_dr; int const nmodes = m_nmodes; Real const rmin = m_rmin; // Extract tileboxes for which to loop Box const& tbr = mfi.tilebox(Bfield[0]->ixType().toIntVect()); Box const& tbt = mfi.tilebox(Bfield[1]->ixType().toIntVect()); Box const& tbz = mfi.tilebox(Bfield[2]->ixType().toIntVect()); // Loop over the cells and update the fields amrex::ParallelFor(tbr, tbt, tbz, [=] AMREX_GPU_DEVICE (int i, int j, int /*k*/){ Real const r = rmin + i*dr; // r on nodal point (Br is nodal in r) if (r != 0) { // Off-axis, regular Maxwell equations Br(i, j, 0, 0) += dt * T_Algo::UpwardDz(Et, coefs_z, n_coefs_z, i, j, 0, 0); // Mode m=0 for (int m=1; m