/* Copyright 2020 Remi Lehe * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #ifndef WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_YEE_H_ #define WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_YEE_H_ #include "Utils/WarpXConst.H" #include #include #include #include #include /** * This struct contains only static functions to initialize the stencil coefficients * and to compute finite-difference derivatives for the Cartesian Yee algorithm. */ struct CartesianYeeAlgorithm { static void InitializeStencilCoefficients ( std::array& cell_size, amrex::Gpu::ManagedVector& stencil_coefs_x, amrex::Gpu::ManagedVector& stencil_coefs_y, amrex::Gpu::ManagedVector& stencil_coefs_z ) { using namespace amrex; // Store the inverse cell size along each direction in the coefficients stencil_coefs_x.resize(1); stencil_coefs_x[0] = 1._rt/cell_size[0]; stencil_coefs_y.resize(1); stencil_coefs_y[0] = 1._rt/cell_size[1]; stencil_coefs_z.resize(1); stencil_coefs_z[0] = 1._rt/cell_size[2]; } /** * Compute the maximum timestep, for which the scheme remains stable * (Courant-Friedrichs-Levy limit) */ static amrex::Real ComputeMaxDt ( amrex::Real const * const dx ) { using namespace amrex::literals; amrex::Real const delta_t = 1._rt / ( std::sqrt( AMREX_D_TERM( 1._rt / (dx[0]*dx[0]), + 1._rt / (dx[1]*dx[1]), + 1._rt / (dx[2]*dx[2]) ) ) * PhysConst::c ); return delta_t; } /** * Perform derivative along x on a cell-centered grid, from a nodal field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real UpwardDx ( amrex::Array4 const& F, amrex::Real const * const coefs_x, int const n_coefs_x, int const i, int const j, int const k, int const ncomp=0 ) { amrex::Real const inv_dx = coefs_x[0]; return inv_dx*( F(i+1,j,k,ncomp) - F(i,j,k,ncomp) ); } /** * Perform derivative along x on a nodal grid, from a cell-centered field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real DownwardDx ( amrex::Array4 const& F, amrex::Real const * const coefs_x, int const n_coefs_x, int const i, int const j, int const k, int const ncomp=0 ) { amrex::Real const inv_dx = coefs_x[0]; return inv_dx*( F(i,j,k,ncomp) - F(i-1,j,k,ncomp) ); } /** * Perform derivative along y on a cell-centered grid, from a nodal field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real UpwardDy ( amrex::Array4 const& F, amrex::Real const * const coefs_y, int const n_coefs_y, int const i, int const j, int const k, int const ncomp=0 ) { using namespace amrex; #if defined WARPX_DIM_3D Real const inv_dy = coefs_y[0]; return inv_dy*( F(i,j+1,k,ncomp) - F(i,j,k,ncomp) ); #elif (defined WARPX_DIM_XZ) return 0._rt; // 2D Cartesian: derivative along y is 0 #endif } /** * Perform derivative along y on a nodal grid, from a cell-centered field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real DownwardDy ( amrex::Array4 const& F, amrex::Real const * const coefs_y, int const n_coefs_y, int const i, int const j, int const k, int const ncomp=0 ) { using namespace amrex; #if defined WARPX_DIM_3D Real const inv_dy = coefs_y[0]; return inv_dy*( F(i,j,k,ncomp) - F(i,j-1,k,ncomp) ); #elif (defined WARPX_DIM_XZ) return 0._rt; // 2D Cartesian: derivative along y is 0 #endif } /** * Perform derivative along z on a cell-centered grid, from a nodal field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real UpwardDz ( amrex::Array4 const& F, amrex::Real const * const coefs_z, int const n_coefs_z, int const i, int const j, int const k, int const ncomp=0 ) { using namespace amrex; Real const inv_dz = coefs_z[0]; #if defined WARPX_DIM_3D return inv_dz*( F(i,j,k+1,ncomp) - F(i,j,k,ncomp) ); #elif (defined WARPX_DIM_XZ) return inv_dz*( F(i,j+1,k,ncomp) - F(i,j,k,ncomp) ); #endif } /** * Perform derivative along z on a nodal grid, from a cell-centered field `F`*/ AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE static amrex::Real DownwardDz ( amrex::Array4 const& F, amrex::Real const * const coefs_z, int const n_coefs_z, int const i, int const j, int const k, int const ncomp=0 ) { using namespace amrex; Real const inv_dz = coefs_z[0]; #if defined WARPX_DIM_3D return inv_dz*( F(i,j,k,ncomp) - F(i,j,k-1,ncomp) ); #elif (defined WARPX_DIM_XZ) return inv_dz*( F(i,j,k,ncomp) - F(i,j-1,k,ncomp) ); #endif } }; #endif // WARPX_FINITE_DIFFERENCE_ALGORITHM_CARTESIAN_YEE_H_