#include "FiniteDifferenceSolver.H" #ifdef WARPX_DIM_RZ // currently works only for 3D #else # include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H" # include "FiniteDifferenceAlgorithms/FieldAccessorFunctors.H" #endif #include "MacroscopicProperties/MacroscopicProperties.H" #include "Utils/CoarsenIO.H" #include "Utils/WarpXAlgorithmSelection.H" #include "Utils/WarpXUtil.H" #include "WarpX.H" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace amrex; void FiniteDifferenceSolver::MacroscopicEvolveE ( std::array< std::unique_ptr, 3 >& Efield, std::array< std::unique_ptr, 3 > const& Bfield, std::array< std::unique_ptr, 3 > const& Jfield, amrex::Real const dt, std::unique_ptr const& macroscopic_properties, int const lev) { // Select algorithm (The choice of algorithm is a runtime option, // but we compile code for each algorithm, using templates) #ifdef WARPX_DIM_RZ amrex::ignore_unused(Efield, Bfield, Jfield, dt, macroscopic_properties, lev); amrex::Abort("currently macro E-push does not work for RZ"); #else if (m_do_nodal) { amrex::Abort(" macro E-push does not work for nodal "); } else if (m_fdtd_algo == MaxwellSolverAlgo::Yee) { if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties, lev ); } if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties, lev ); } } else if (m_fdtd_algo == MaxwellSolverAlgo::CKC) { // Note : EvolveE is the same for CKC and Yee. // In the templated Yee and CKC calls, the core operations for EvolveE is the same. if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties, lev ); } else if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties, lev ); } } else { amrex::Abort("MacroscopicEvolveE: Unknown algorithm"); } #endif } #ifndef WARPX_DIM_RZ template void FiniteDifferenceSolver::MacroscopicEvolveECartesian ( std::array< std::unique_ptr, 3 >& Efield, std::array< std::unique_ptr, 3 > const& Bfield, std::array< std::unique_ptr, 3 > const& Jfield, amrex::Real const dt, std::unique_ptr const& macroscopic_properties, int const lev) { amrex::GpuArray const& Ex_stag = macroscopic_properties->Ex_IndexType; amrex::GpuArray const& Ey_stag = macroscopic_properties->Ey_IndexType; amrex::GpuArray const& Ez_stag = macroscopic_properties->Ez_IndexType; amrex::GpuArray const& Bx_stag = macroscopic_properties->Bx_IndexType; amrex::GpuArray const& By_stag = macroscopic_properties->By_IndexType; amrex::GpuArray const& Bz_stag = macroscopic_properties->Bz_IndexType; const auto getSigma = GetSigmaMacroparameter(); const auto getEpsilon = GetEpsilonMacroparameter(); const auto getMu = GetMuMacroparameter(); auto &warpx = WarpX::GetInstance(); const auto problo = warpx.Geom(lev).ProbLoArray(); const auto dx = warpx.Geom(lev).CellSizeArray(); // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(*Efield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) { // Extract field data for this grid/tile Array4 const& Ex = Efield[0]->array(mfi); Array4 const& Ey = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); Array4 const& Bx = Bfield[0]->array(mfi); Array4 const& By = Bfield[1]->array(mfi); Array4 const& Bz = Bfield[2]->array(mfi); Array4 const& jx = Jfield[0]->array(mfi); Array4 const& jy = Jfield[1]->array(mfi); Array4 const& jz = Jfield[2]->array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr(); int const n_coefs_x = m_stencil_coefs_x.size(); Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr(); int const n_coefs_y = m_stencil_coefs_y.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); FieldAccessorMacroscopic const Hx(Bx, getMu, Bx_stag, problo, dx); FieldAccessorMacroscopic const Hy(By, getMu, By_stag, problo, dx); FieldAccessorMacroscopic const Hz(Bz, getMu, Bz_stag, problo, dx); // Extract tileboxes for which to loop Box const& tex = mfi.tilebox(Efield[0]->ixType().toIntVect()); Box const& tey = mfi.tilebox(Efield[1]->ixType().toIntVect()); Box const& tez = mfi.tilebox(Efield[2]->ixType().toIntVect()); // Loop over the cells and update the fields amrex::ParallelFor(tex, tey, tez, [=] AMREX_GPU_DEVICE (int i, int j, int k){ amrex::Real x, y, z; WarpXUtilAlgo::getCellCoordinates (i, j, k, Ex_stag, problo, dx, x, y, z ); amrex::Real const sigma = getSigma(x, y, z); amrex::Real const epsilon = getEpsilon(x, y, z); amrex::Real alpha = T_MacroAlgo::alpha( sigma, epsilon, dt); amrex::Real beta = T_MacroAlgo::beta( sigma, epsilon, dt); Ex(i, j, k) = alpha * Ex(i, j, k) + beta * ( - T_Algo::DownwardDz(Hy, coefs_z, n_coefs_z, i, j, k,0) + T_Algo::DownwardDy(Hz, coefs_y, n_coefs_y, i, j, k,0) ) - beta * jx(i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ amrex::Real x, y, z; WarpXUtilAlgo::getCellCoordinates (i, j, k, Ey_stag, problo, dx, x, y, z ); amrex::Real const sigma = getSigma(x, y, z); amrex::Real const epsilon = getEpsilon(x, y, z); amrex::Real alpha = T_MacroAlgo::alpha( sigma, epsilon, dt); amrex::Real beta = T_MacroAlgo::beta( sigma, epsilon, dt); Ey(i, j, k) = alpha * Ey(i, j, k) + beta * ( - T_Algo::DownwardDx(Hz, coefs_x, n_coefs_x, i, j, k,0) + T_Algo::DownwardDz(Hx, coefs_z, n_coefs_z, i, j, k,0) ) - beta * jy(i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ amrex::Real x, y, z; WarpXUtilAlgo::getCellCoordinates (i, j, k, Ez_stag, problo, dx, x, y, z ); amrex::Real const sigma = getSigma(x, y, z); amrex::Real const epsilon = getEpsilon(x, y, z); amrex::Real alpha = T_MacroAlgo::alpha( sigma, epsilon, dt); amrex::Real beta = T_MacroAlgo::beta( sigma, epsilon, dt); Ez(i, j, k) = alpha * Ez(i, j, k) + beta * ( - T_Algo::DownwardDy(Hx, coefs_y, n_coefs_y, i, j, k,0) + T_Algo::DownwardDx(Hy, coefs_x, n_coefs_x, i, j, k,0) ) - beta * jz(i, j, k); } ); } } #endif // corresponds to ifndef WARPX_DIM_RZ