#include "FiniteDifferenceSolver.H" #ifdef WARPX_DIM_RZ // currently works only for 3D #else # include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H" # include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H" # include "FiniteDifferenceAlgorithms/FieldAccessorFunctors.H" #endif #include "MacroscopicProperties/MacroscopicProperties.H" #include "Utils/CoarsenIO.H" #include "Utils/WarpXAlgorithmSelection.H" #include "Utils/WarpXUtil.H" #include "WarpX.H" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace amrex; void FiniteDifferenceSolver::MacroscopicEvolveE ( std::array< std::unique_ptr, 3 >& Efield, std::array< std::unique_ptr, 3 > const& Bfield, std::array< std::unique_ptr, 3 > const& Jfield, amrex::Real const dt, std::unique_ptr const& macroscopic_properties) { // Select algorithm (The choice of algorithm is a runtime option, // but we compile code for each algorithm, using templates) #ifdef WARPX_DIM_RZ amrex::ignore_unused(Efield, Bfield, Jfield, dt, macroscopic_properties); amrex::Abort("currently macro E-push does not work for RZ"); #else if (m_do_nodal) { amrex::Abort(" macro E-push does not work for nodal "); } else if (m_fdtd_algo == MaxwellSolverAlgo::Yee) { if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties); } if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties); } } else if (m_fdtd_algo == MaxwellSolverAlgo::CKC) { // Note : EvolveE is the same for CKC and Yee. // In the templated Yee and CKC calls, the core operations for EvolveE is the same. if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::LaxWendroff) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties); } else if (WarpX::macroscopic_solver_algo == MacroscopicSolverAlgo::BackwardEuler) { MacroscopicEvolveECartesian ( Efield, Bfield, Jfield, dt, macroscopic_properties); } } else { amrex::Abort("MacroscopicEvolveE: Unknown algorithm"); } #endif } #ifndef WARPX_DIM_RZ template void FiniteDifferenceSolver::MacroscopicEvolveECartesian ( std::array< std::unique_ptr, 3 >& Efield, std::array< std::unique_ptr, 3 > const& Bfield, std::array< std::unique_ptr, 3 > const& Jfield, amrex::Real const dt, std::unique_ptr const& macroscopic_properties) { amrex::MultiFab& sigma_mf = macroscopic_properties->getsigma_mf(); amrex::MultiFab& epsilon_mf = macroscopic_properties->getepsilon_mf(); amrex::MultiFab& mu_mf = macroscopic_properties->getmu_mf(); // Index type required for calling CoarsenIO::Interp to interpolate macroscopic // properties from their respective staggering to the Ex, Ey, Ez locations amrex::GpuArray const& sigma_stag = macroscopic_properties->sigma_IndexType; amrex::GpuArray const& epsilon_stag = macroscopic_properties->epsilon_IndexType; amrex::GpuArray const& macro_cr = macroscopic_properties->macro_cr_ratio; amrex::GpuArray const& Ex_stag = macroscopic_properties->Ex_IndexType; amrex::GpuArray const& Ey_stag = macroscopic_properties->Ey_IndexType; amrex::GpuArray const& Ez_stag = macroscopic_properties->Ez_IndexType; // Loop through the grids, and over the tiles within each grid #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( MFIter mfi(*Efield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) { // Extract field data for this grid/tile Array4 const& Ex = Efield[0]->array(mfi); Array4 const& Ey = Efield[1]->array(mfi); Array4 const& Ez = Efield[2]->array(mfi); Array4 const& Bx = Bfield[0]->array(mfi); Array4 const& By = Bfield[1]->array(mfi); Array4 const& Bz = Bfield[2]->array(mfi); Array4 const& jx = Jfield[0]->array(mfi); Array4 const& jy = Jfield[1]->array(mfi); Array4 const& jz = Jfield[2]->array(mfi); // material prop // amrex::Array4 const& sigma_arr = sigma_mf.array(mfi); amrex::Array4 const& eps_arr = epsilon_mf.array(mfi); amrex::Array4 const& mu_arr = mu_mf.array(mfi); // Extract stencil coefficients Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr(); int const n_coefs_x = m_stencil_coefs_x.size(); Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr(); int const n_coefs_y = m_stencil_coefs_y.size(); Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr(); int const n_coefs_z = m_stencil_coefs_z.size(); // This functor computes Hx = Bx/mu // Note that mu is cell-centered here and will be interpolated/averaged // to the location where the B-field and H-field are defined FieldAccessorMacroscopic const Hx(Bx, mu_arr); FieldAccessorMacroscopic const Hy(By, mu_arr); FieldAccessorMacroscopic const Hz(Bz, mu_arr); // Extract tileboxes for which to loop Box const& tex = mfi.tilebox(Efield[0]->ixType().toIntVect()); Box const& tey = mfi.tilebox(Efield[1]->ixType().toIntVect()); Box const& tez = mfi.tilebox(Efield[2]->ixType().toIntVect()); // starting component to interpolate macro properties to Ex, Ey, Ez locations const int scomp = 0; // Loop over the cells and update the fields amrex::ParallelFor(tex, tey, tez, [=] AMREX_GPU_DEVICE (int i, int j, int k){ // Interpolate conductivity, sigma, to Ex position on the grid amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag, Ex_stag, macro_cr, i, j, k, scomp); // Interpolated permittivity, epsilon, to Ex position on the grid amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag, Ex_stag, macro_cr, i, j, k, scomp); amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt); amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt); Ex(i, j, k) = alpha * Ex(i, j, k) + beta * ( - T_Algo::DownwardDz(Hy, coefs_z, n_coefs_z, i, j, k,0) + T_Algo::DownwardDy(Hz, coefs_y, n_coefs_y, i, j, k,0) ) - beta * jx(i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ // Interpolate conductivity, sigma, to Ey position on the grid amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag, Ey_stag, macro_cr, i, j, k, scomp); // Interpolated permittivity, epsilon, to Ey position on the grid amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag, Ey_stag, macro_cr, i, j, k, scomp); amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt); amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt); Ey(i, j, k) = alpha * Ey(i, j, k) + beta * ( - T_Algo::DownwardDx(Hz, coefs_x, n_coefs_x, i, j, k,0) + T_Algo::DownwardDz(Hx, coefs_z, n_coefs_z, i, j, k,0) ) - beta * jy(i, j, k); }, [=] AMREX_GPU_DEVICE (int i, int j, int k){ // Interpolate conductivity, sigma, to Ez position on the grid amrex::Real const sigma_interp = CoarsenIO::Interp( sigma_arr, sigma_stag, Ez_stag, macro_cr, i, j, k, scomp); // Interpolated permittivity, epsilon, to Ez position on the grid amrex::Real const epsilon_interp = CoarsenIO::Interp( eps_arr, epsilon_stag, Ez_stag, macro_cr, i, j, k, scomp); amrex::Real alpha = T_MacroAlgo::alpha( sigma_interp, epsilon_interp, dt); amrex::Real beta = T_MacroAlgo::beta( sigma_interp, epsilon_interp, dt); Ez(i, j, k) = alpha * Ez(i, j, k) + beta * ( - T_Algo::DownwardDy(Hx, coefs_y, n_coefs_y, i, j, k,0) + T_Algo::DownwardDx(Hy, coefs_x, n_coefs_x, i, j, k,0) ) - beta * jz(i, j, k); } ); } } #endif // corresponds to ifndef WARPX_DIM_RZ