#include #include #include using namespace amrex; PsatdAlgorithm::PsatdAlgorithm(const SpectralKSpace& spectral_kspace, const DistributionMapping& dm, const int norder_x, const int norder_y, const int norder_z, const Real dt) { const BoxArray& ba = spectral_kspace.spectralspace_ba; // Allocate the 1D vectors modified_kx_vec = spectral_kspace.AllocateAndFillModifiedKComponent( dm, 0, norder_x ); #if (AMREX_SPACEDIM==3) modified_ky_vec = spectral_kspace.AllocateAndFillModifiedKComponent( dm, 1, norder_y ); modified_kz_vec = spectral_kspace.AllocateAndFillModifiedKComponent( dm, 2, norder_z ); #else modified_kz_vec = spectral_kspace.AllocateAndFillModifiedKComponent( dm, 1, norder_z ); #endif // Allocate the arrays of coefficients C_coef = SpectralCoefficients( ba, dm, 1, 0 ); S_ck_coef = SpectralCoefficients( ba, dm, 1, 0 ); X1_coef = SpectralCoefficients( ba, dm, 1, 0 ); X2_coef = SpectralCoefficients( ba, dm, 1, 0 ); X3_coef = SpectralCoefficients( ba, dm, 1, 0 ); // Fill them with the right values: // Loop over boxes for ( MFIter mfi(ba, dm); mfi.isValid(); ++mfi ){ const Box& bx = ba[mfi]; // Extract pointers for the k vectors const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); #endif const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); // Extract arrays for the coefficients Array4 C = C_coef[mfi].array(); Array4 S_ck = S_ck_coef[mfi].array(); Array4 X1 = X1_coef[mfi].array(); Array4 X2 = X2_coef[mfi].array(); Array4 X3 = X3_coef[mfi].array(); // Loop over indices within one box ParallelFor( bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Calculate norm of vector const Real k_norm = std::sqrt( std::pow( modified_kx[i], 2 ) + #if (AMREX_SPACEDIM==3) std::pow( modified_ky[j], 2 ) + #endif std::pow( modified_kz[k], 2 ) ); // Calculate coefficients constexpr Real c = PhysConst::c; constexpr Real ep0 = PhysConst::ep0; if ( k_norm != 0 ){ C(i,j,k) = std::cos( c*k_norm*dt ); S_ck(i,j,k) = std::sin( c*k_norm*dt )/( c*k_norm ); X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); X2(i,j,k) = (1. - S_ck(i,j,k)/dt )/(ep0 * k_norm*k_norm); X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt )/(ep0 * k_norm*k_norm); } else { // Handle k_norm = 0, by using the analytical limit C(i,j,k) = 1.; S_ck(i,j,k) = dt; X1(i,j,k) = 0.5 * dt*dt / ep0; X2(i,j,k) = c*c * dt*dt / (6.*ep0); X3(i,j,k) = - c*c * dt*dt / (3.*ep0); } }); } }; void PsatdAlgorithm::pushSpectralFields( SpectralFieldData& f ) const{ // Loop over boxes for ( MFIter mfi(f.Ex); mfi.isValid(); ++mfi ){ const Box& bx = f.Ex[mfi].box(); // Extract arrays for the fields to be updated Array4 Ex_arr = f.Ex[mfi].array(); Array4 Ey_arr = f.Ey[mfi].array(); Array4 Ez_arr = f.Ez[mfi].array(); Array4 Bx_arr = f.Bx[mfi].array(); Array4 By_arr = f.By[mfi].array(); Array4 Bz_arr = f.Bz[mfi].array(); // Extract arrays for J and rho Array4 Jx_arr = f.Jx[mfi].array(); Array4 Jy_arr = f.Jy[mfi].array(); Array4 Jz_arr = f.Jz[mfi].array(); Array4 rho_old_arr = f.rho_old[mfi].array(); Array4 rho_new_arr = f.rho_new[mfi].array(); // Extract arrays for the coefficients Array4 C_arr = C_coef[mfi].array(); Array4 S_ck_arr = S_ck_coef[mfi].array(); Array4 X1_arr = X1_coef[mfi].array(); Array4 X2_arr = X2_coef[mfi].array(); Array4 X3_arr = X3_coef[mfi].array(); // Extract pointers for the k vectors const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); #endif const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); // Loop over indices within one box ParallelFor( bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Record old values of the fields to be updated const Complex Ex_old = Ex_arr(i,j,k); const Complex Ey_old = Ey_arr(i,j,k); const Complex Ez_old = Ez_arr(i,j,k); const Complex Bx_old = Bx_arr(i,j,k); const Complex By_old = By_arr(i,j,k); const Complex Bz_old = Bz_arr(i,j,k); // Shortcut for the values of J and rho const Complex Jx = Jx_arr(i,j,k); const Complex Jy = Jy_arr(i,j,k); const Complex Jz = Jz_arr(i,j,k); const Complex rho_old = rho_old_arr(i,j,k); const Complex rho_new = rho_new_arr(i,j,k); // k vector values, and coefficients const Real kx = modified_kx_arr[i]; #if (AMREX_SPACEDIM==3) const Real ky = modified_ky_arr[j]; #else constexpr Real ky = 0; #endif const Real kz = modified_kz_arr[k]; constexpr Real c2 = PhysConst::c*PhysConst::c; constexpr Real inv_ep0 = 1./PhysConst::ep0; constexpr Complex I = Complex{0,1}; const Real C = C_arr(i,j,k); const Real S_ck = S_ck_arr(i,j,k); const Real X1 = X1_arr(i,j,k); const Real X2 = X2_arr(i,j,k); const Real X3 = X3_arr(i,j,k); // Update E (see WarpX online documentation: theory section) Ex_arr(i,j,k) = C*Ex_old + S_ck*( c2*I*(ky*Bz_old - kz*By_old) - inv_ep0*Jx ) - I*( X2*rho_new - X3*rho_old )*kx; Ey_arr(i,j,k) = C*Ey_old + S_ck*( c2*I*(kz*Bx_old - kx*Bz_old) - inv_ep0*Jy ) - I*( X2*rho_new - X3*rho_old )*ky; Ez_arr(i,j,k) = C*Ez_old + S_ck*( c2*I*(kx*By_old - ky*Bx_old) - inv_ep0*Jz ) - I*( X2*rho_new - X3*rho_old )*kz; // Update B (see WarpX online documentation: theory section) Bx_arr(i,j,k) = C*Bx_old - S_ck*I*(ky*Ez_old - kz*Ey_old) + X1*I*(ky*Jz - kz*Jy ); By_arr(i,j,k) = C*By_old - S_ck*I*(kz*Ex_old - kx*Ez_old) + X1*I*(kz*Jx - kx*Jz ); Bz_arr(i,j,k) = C*Bz_old - S_ck*I*(kx*Ey_old - ky*Ex_old) + X1*I*(kx*Jy - ky*Jx ); }); } };