#include #include #include using namespace amrex; /* \brief Initialize coefficients for the update equation */ PsatdAlgorithm::PsatdAlgorithm(const SpectralKSpace& spectral_kspace, const DistributionMapping& dm, const int norder_x, const int norder_y, const int norder_z, const bool nodal, const Real dt) // Compute and assign the modified k vectors : modified_kx_vec(spectral_kspace.getModifiedKComponent(dm,0,norder_x,nodal)), #if (AMREX_SPACEDIM==3) modified_ky_vec(spectral_kspace.getModifiedKComponent(dm,1,norder_y,nodal)), modified_kz_vec(spectral_kspace.getModifiedKComponent(dm,2,norder_z,nodal)) #else modified_kz_vec(spectral_kspace.getModifiedKComponent(dm,1,norder_z,nodal)) #endif { const BoxArray& ba = spectral_kspace.spectralspace_ba; // Allocate the arrays of coefficients C_coef = SpectralCoefficients(ba, dm, 1, 0); S_ck_coef = SpectralCoefficients(ba, dm, 1, 0); X1_coef = SpectralCoefficients(ba, dm, 1, 0); X2_coef = SpectralCoefficients(ba, dm, 1, 0); X3_coef = SpectralCoefficients(ba, dm, 1, 0); InitializeCoefficience(spectral_kspace, dm, dt); // // Fill them with the right values: // // Loop over boxes and allocate the corresponding coefficients // // for each box owned by the local MPI proc // for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){ // // //const Box& bx = ba[mfi]; // const Box bx = ba[mfi]; // // // Extract pointers for the k vectors // const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); //#if (AMREX_SPACEDIM==3) // const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); //#endif // const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); // // Extract arrays for the coefficients // Array4 C = C_coef[mfi].array(); // Array4 S_ck = S_ck_coef[mfi].array(); // Array4 X1 = X1_coef[mfi].array(); // Array4 X2 = X2_coef[mfi].array(); // Array4 X3 = X3_coef[mfi].array(); // // // Loop over indices within one box // ParallelFor(bx, // [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept // { // // Calculate norm of vector // const Real k_norm = std::sqrt( // std::pow(modified_kx[i], 2) + //#if (AMREX_SPACEDIM==3) // std::pow(modified_ky[j], 2) + // std::pow(modified_kz[k], 2)); //#else // std::pow(modified_kz[j], 2)); //#endif // // // Calculate coefficients // constexpr Real c = PhysConst::c; // constexpr Real ep0 = PhysConst::ep0; // if (k_norm != 0){ // C(i,j,k) = std::cos(c*k_norm*dt); // S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm); // X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); // X2(i,j,k) = (1. - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); // X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); // } else { // Handle k_norm = 0, by using the analytical limit // C(i,j,k) = 1.; // S_ck(i,j,k) = dt; // X1(i,j,k) = 0.5 * dt*dt / ep0; // X2(i,j,k) = c*c * dt*dt / (6.*ep0); // X3(i,j,k) = - c*c * dt*dt / (3.*ep0); // } // }); // } }; /* Advance the E and B field in spectral space (stored in `f`) * over one time step */ void PsatdAlgorithm::pushSpectralFields(SpectralFieldData& f) const{ // Loop over boxes for (MFIter mfi(f.fields); mfi.isValid(); ++mfi){ const Box& bx = f.fields[mfi].box(); // Extract arrays for the fields to be updated Array4 fields = f.fields[mfi].array(); // Extract arrays for the coefficients Array4 C_arr = C_coef[mfi].array(); Array4 S_ck_arr = S_ck_coef[mfi].array(); Array4 X1_arr = X1_coef[mfi].array(); Array4 X2_arr = X2_coef[mfi].array(); Array4 X3_arr = X3_coef[mfi].array(); // Extract pointers for the k vectors const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); #endif const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); // Loop over indices within one box ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Record old values of the fields to be updated using Idx = SpectralFieldIndex; const Complex Ex_old = fields(i,j,k,Idx::Ex); const Complex Ey_old = fields(i,j,k,Idx::Ey); const Complex Ez_old = fields(i,j,k,Idx::Ez); const Complex Bx_old = fields(i,j,k,Idx::Bx); const Complex By_old = fields(i,j,k,Idx::By); const Complex Bz_old = fields(i,j,k,Idx::Bz); // Shortcut for the values of J and rho const Complex Jx = fields(i,j,k,Idx::Jx); const Complex Jy = fields(i,j,k,Idx::Jy); const Complex Jz = fields(i,j,k,Idx::Jz); const Complex rho_old = fields(i,j,k,Idx::rho_old); const Complex rho_new = fields(i,j,k,Idx::rho_new); // k vector values, and coefficients const Real kx = modified_kx_arr[i]; #if (AMREX_SPACEDIM==3) const Real ky = modified_ky_arr[j]; const Real kz = modified_kz_arr[k]; #else constexpr Real ky = 0; const Real kz = modified_kz_arr[j]; #endif constexpr Real c2 = PhysConst::c*PhysConst::c; constexpr Real inv_ep0 = 1./PhysConst::ep0; const Complex I = Complex{0,1}; const Real C = C_arr(i,j,k); const Real S_ck = S_ck_arr(i,j,k); const Real X1 = X1_arr(i,j,k); const Real X2 = X2_arr(i,j,k); const Real X3 = X3_arr(i,j,k); // Update E (see WarpX online documentation: theory section) fields(i,j,k,Idx::Ex) = C*Ex_old + S_ck*(c2*I*(ky*Bz_old - kz*By_old) - inv_ep0*Jx) - I*(X2*rho_new - X3*rho_old)*kx; fields(i,j,k,Idx::Ey) = C*Ey_old + S_ck*(c2*I*(kz*Bx_old - kx*Bz_old) - inv_ep0*Jy) - I*(X2*rho_new - X3*rho_old)*ky; fields(i,j,k,Idx::Ez) = C*Ez_old + S_ck*(c2*I*(kx*By_old - ky*Bx_old) - inv_ep0*Jz) - I*(X2*rho_new - X3*rho_old)*kz; // Update B (see WarpX online documentation: theory section) fields(i,j,k,Idx::Bx) = C*Bx_old - S_ck*I*(ky*Ez_old - kz*Ey_old) + X1*I*(ky*Jz - kz*Jy); fields(i,j,k,Idx::By) = C*By_old - S_ck*I*(kz*Ex_old - kx*Ez_old) + X1*I*(kz*Jx - kx*Jz); fields(i,j,k,Idx::Bz) = C*Bz_old - S_ck*I*(kx*Ey_old - ky*Ex_old) + X1*I*(kx*Jy - ky*Jx); }); } }; void PsatdAlgorithm::InitializeCoefficience(const SpectralKSpace& spectral_kspace, const amrex::DistributionMapping& dm, const amrex::Real dt) { const BoxArray& ba = spectral_kspace.spectralspace_ba; // Fill them with the right values: // Loop over boxes and allocate the corresponding coefficients // for each box owned by the local MPI proc for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){ //const Box& bx = ba[mfi]; const Box bx = ba[mfi]; // Extract pointers for the k vectors const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); #endif const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); // Extract arrays for the coefficients Array4 C = C_coef[mfi].array(); Array4 S_ck = S_ck_coef[mfi].array(); Array4 X1 = X1_coef[mfi].array(); Array4 X2 = X2_coef[mfi].array(); Array4 X3 = X3_coef[mfi].array(); // Loop over indices within one box ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Calculate norm of vector const Real k_norm = std::sqrt( std::pow(modified_kx[i], 2) + #if (AMREX_SPACEDIM==3) std::pow(modified_ky[j], 2) + std::pow(modified_kz[k], 2)); #else std::pow(modified_kz[j], 2)); #endif // Calculate coefficients constexpr Real c = PhysConst::c; constexpr Real ep0 = PhysConst::ep0; if (k_norm != 0){ C(i,j,k) = std::cos(c*k_norm*dt); S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm); X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); X2(i,j,k) = (1. - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); } else { // Handle k_norm = 0, by using the analytical limit C(i,j,k) = 1.; S_ck(i,j,k) = dt; X1(i,j,k) = 0.5 * dt*dt / ep0; X2(i,j,k) = c*c * dt*dt / (6.*ep0); X3(i,j,k) = - c*c * dt*dt / (3.*ep0); } }); } }