#include "ComovingPsatdAlgorithm.H" #include "Utils/WarpXConst.H" #include "Utils/WarpX_Complex.H" #include #include #include #include #include #include #include #include #include #include #include #if WARPX_USE_PSATD using namespace amrex; ComovingPsatdAlgorithm::ComovingPsatdAlgorithm (const SpectralKSpace& spectral_kspace, const DistributionMapping& dm, const int norder_x, const int norder_y, const int norder_z, const bool nodal, const amrex::Array& v_comoving, const amrex::Real dt, const bool update_with_rho) // Members initialization : SpectralBaseAlgorithm(spectral_kspace, dm, norder_x, norder_y, norder_z, nodal), // Initialize the infinite-order k vectors (the argument n_order = -1 selects // the infinite order option, the argument nodal = false is then irrelevant) kx_vec(spectral_kspace.getModifiedKComponent(dm, 0, -1, false)), #if (AMREX_SPACEDIM==3) ky_vec(spectral_kspace.getModifiedKComponent(dm, 1, -1, false)), kz_vec(spectral_kspace.getModifiedKComponent(dm, 2, -1, false)), #else kz_vec(spectral_kspace.getModifiedKComponent(dm, 1, -1, false)), #endif m_v_comoving(v_comoving), m_dt(dt) { amrex::ignore_unused(update_with_rho); const BoxArray& ba = spectral_kspace.spectralspace_ba; // Allocate arrays of real spectral coefficients C_coef = SpectralRealCoefficients(ba, dm, 1, 0); S_ck_coef = SpectralRealCoefficients(ba, dm, 1, 0); // Allocate arrays of complex spectral coefficients X1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); X2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); X3_coef = SpectralComplexCoefficients(ba, dm, 1, 0); X4_coef = SpectralComplexCoefficients(ba, dm, 1, 0); Theta2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); // Initialize real and complex spectral coefficients InitializeSpectralCoefficients(spectral_kspace, dm, dt); } void ComovingPsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const { // Loop over boxes for (amrex::MFIter mfi(f.fields); mfi.isValid(); ++mfi){ const amrex::Box& bx = f.fields[mfi].box(); // Extract arrays for the fields to be updated amrex::Array4 fields = f.fields[mfi].array(); // Extract arrays for the coefficients amrex::Array4 C_arr = C_coef [mfi].array(); amrex::Array4 S_ck_arr = S_ck_coef[mfi].array(); amrex::Array4 X1_arr = X1_coef [mfi].array(); amrex::Array4 X2_arr = X2_coef [mfi].array(); amrex::Array4 X3_arr = X3_coef [mfi].array(); amrex::Array4 X4_arr = X4_coef [mfi].array(); // Extract pointers for the k vectors const amrex::Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const amrex::Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); #endif const amrex::Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); // Loop over indices within one box amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Record old values of the fields to be updated using Idx = SpectralFieldIndex; const Complex Ex_old = fields(i,j,k,Idx::Ex); const Complex Ey_old = fields(i,j,k,Idx::Ey); const Complex Ez_old = fields(i,j,k,Idx::Ez); const Complex Bx_old = fields(i,j,k,Idx::Bx); const Complex By_old = fields(i,j,k,Idx::By); const Complex Bz_old = fields(i,j,k,Idx::Bz); // Shortcuts for the values of J and rho const Complex Jx = fields(i,j,k,Idx::Jx); const Complex Jy = fields(i,j,k,Idx::Jy); const Complex Jz = fields(i,j,k,Idx::Jz); const Complex rho_old = fields(i,j,k,Idx::rho_old); const Complex rho_new = fields(i,j,k,Idx::rho_new); // k vector values const amrex::Real kx_mod = modified_kx_arr[i]; #if (AMREX_SPACEDIM==3) const amrex::Real ky_mod = modified_ky_arr[j]; const amrex::Real kz_mod = modified_kz_arr[k]; #else constexpr amrex::Real ky_mod = 0._rt; const amrex::Real kz_mod = modified_kz_arr[j]; #endif // Physical constant c**2 and imaginary unit constexpr amrex::Real c2 = PhysConst::c*PhysConst::c; constexpr Complex I = Complex{0._rt,1._rt}; // The definition of these coefficients is explained in more detail // in the function InitializeSpectralCoefficients below const amrex::Real C = C_arr(i,j,k); const amrex::Real S_ck = S_ck_arr(i,j,k); const Complex X1 = X1_arr(i,j,k); const Complex X2 = X2_arr(i,j,k); const Complex X3 = X3_arr(i,j,k); const Complex X4 = X4_arr(i,j,k); // Update E fields(i,j,k,Idx::Ex) = C*Ex_old + S_ck*c2*I*(ky_mod*Bz_old - kz_mod*By_old) + X4*Jx - I*(X2*rho_new - X3*rho_old)*kx_mod; fields(i,j,k,Idx::Ey) = C*Ey_old + S_ck*c2*I*(kz_mod*Bx_old - kx_mod*Bz_old) + X4*Jy - I*(X2*rho_new - X3*rho_old)*ky_mod; fields(i,j,k,Idx::Ez) = C*Ez_old + S_ck*c2*I*(kx_mod*By_old - ky_mod*Bx_old) + X4*Jz - I*(X2*rho_new - X3*rho_old)*kz_mod; // Update B fields(i,j,k,Idx::Bx) = C*Bx_old - S_ck*I*(ky_mod*Ez_old - kz_mod*Ey_old) + X1*I*(ky_mod*Jz - kz_mod*Jy); fields(i,j,k,Idx::By) = C*By_old - S_ck*I*(kz_mod*Ex_old - kx_mod*Ez_old) + X1*I*(kz_mod*Jx - kx_mod*Jz); fields(i,j,k,Idx::Bz) = C*Bz_old - S_ck*I*(kx_mod*Ey_old - ky_mod*Ex_old) + X1*I*(kx_mod*Jy - ky_mod*Jx); }); } } void ComovingPsatdAlgorithm::InitializeSpectralCoefficients (const SpectralKSpace& spectral_kspace, const amrex::DistributionMapping& dm, const amrex::Real dt) { const amrex::BoxArray& ba = spectral_kspace.spectralspace_ba; // Loop over boxes and allocate the corresponding coefficients for each box for (amrex::MFIter mfi(ba, dm); mfi.isValid(); ++mfi) { const amrex::Box& bx = ba[mfi]; // Extract pointers for the k vectors const amrex::Real* kx_mod = modified_kx_vec[mfi].dataPtr(); const amrex::Real* kx = kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const amrex::Real* ky_mod = modified_ky_vec[mfi].dataPtr(); const amrex::Real* ky = ky_vec[mfi].dataPtr(); #endif const amrex::Real* kz_mod = modified_kz_vec[mfi].dataPtr(); const amrex::Real* kz = kz_vec[mfi].dataPtr(); // Extract arrays for the coefficients amrex::Array4 C = C_coef [mfi].array(); amrex::Array4 S_ck = S_ck_coef [mfi].array(); amrex::Array4 X1 = X1_coef [mfi].array(); amrex::Array4 X2 = X2_coef [mfi].array(); amrex::Array4 X3 = X3_coef [mfi].array(); amrex::Array4 X4 = X4_coef [mfi].array(); amrex::Array4 T2 = Theta2_coef[mfi].array(); // Store comoving velocity const amrex::Real vx = m_v_comoving[0]; #if (AMREX_SPACEDIM==3) const amrex::Real vy = m_v_comoving[1]; #endif const amrex::Real vz = m_v_comoving[2]; // Loop over indices within one box amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Calculate norm of finite-order k vector const amrex::Real knorm_mod = std::sqrt( std::pow(kx_mod[i], 2) + #if (AMREX_SPACEDIM==3) std::pow(ky_mod[j], 2) + std::pow(kz_mod[k], 2)); #else std::pow(kz_mod[j], 2)); #endif // Calculate norm of infinite-order k vector const amrex::Real knorm = std::sqrt( std::pow(kx[i], 2) + #if (AMREX_SPACEDIM==3) std::pow(ky[j], 2) + std::pow(kz[k], 2)); #else std::pow(kz[j], 2)); #endif // Physical constants c, c**2, and epsilon_0, and imaginary unit constexpr amrex::Real c = PhysConst::c; constexpr amrex::Real c2 = c*c; constexpr amrex::Real ep0 = PhysConst::ep0; constexpr Complex I = Complex{0._rt, 1._rt}; // Auxiliary coefficients used when update_with_rho=false const amrex::Real dt2 = dt * dt; // Calculate dot product of k vector with comoving velocity const amrex::Real kv = kx[i]*vx + #if (AMREX_SPACEDIM==3) ky[j]*vy + kz[k]*vz; #else kz[j]*vz; #endif if (knorm_mod != 0. && knorm != 0.) { // Auxiliary coefficients const amrex::Real om_mod = c * knorm_mod; const amrex::Real om2_mod = om_mod * om_mod; const amrex::Real om = c * knorm; const amrex::Real om2 = om * om; const Complex tmp1 = amrex::exp( I * om_mod * dt); const Complex tmp2 = amrex::exp(- I * om_mod * dt); const Complex tmp1_sqrt = amrex::exp( I * om_mod * dt * 0.5_rt); const Complex tmp2_sqrt = amrex::exp(- I * om_mod * dt * 0.5_rt); C (i,j,k) = std::cos(om_mod * dt); S_ck(i,j,k) = std::sin(om_mod * dt) / om_mod; const amrex::Real nu = - kv / om; const Complex theta = amrex::exp( I * nu * om * dt * 0.5_rt); const Complex theta_star = amrex::exp(- I * nu * om * dt * 0.5_rt); T2(i,j,k) = theta * theta; if ( (nu != om_mod/om) && (nu != -om_mod/om) && (nu != 0.) ) { Complex x1 = om2 / (om2_mod - nu * nu * om2) * (theta_star - theta * C(i,j,k) + I * nu * om * theta * S_ck(i,j,k)); // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = x1 / (ep0 * om2); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (x1 * om2_mod - theta * (1._rt - C(i,j,k)) * om2) / (theta_star - theta) / (ep0 * om2 * om2_mod); X3(i,j,k) = c2 * (x1 * om2_mod - theta_star * (1._rt - C(i,j,k)) * om2) / (theta_star - theta) / (ep0 * om2 * om2_mod); // X4 multiplies J in the update equation for E X4(i,j,k) = I * nu * om * X1(i,j,k) - theta * S_ck(i,j,k) / ep0; } // Limits for nu = 0 if (nu == 0.) { // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2_mod); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2_mod); X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2_mod); // Coefficient multiplying J in update equation for E X4(i,j,k) = - S_ck(i,j,k) / ep0; } // Limits for nu = omega_mod/omega if (nu == om_mod/om) { // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = tmp1_sqrt * (1._rt - tmp2 * tmp2 - 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (- 4._rt + 3._rt * tmp1 + tmp2 - 2._rt * I * om_mod * dt * tmp1) / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); X3(i,j,k) = c2 * (2._rt - tmp2 - 3._rt * tmp1 + 2._rt * tmp1 * tmp1 - 2._rt * I * om_mod * dt * tmp1) / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); // Coefficient multiplying J in update equation for E X4(i,j,k) = tmp1_sqrt * (I - I * tmp2 * tmp2 - 2._rt * om_mod * dt) / (4._rt * ep0 * om_mod); } // Limits for nu = -omega_mod/omega if (nu == -om_mod/om) { // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = tmp2_sqrt * (1._rt - tmp1 * tmp1 + 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (- 3._rt + 4._rt * tmp1 - tmp1 * tmp1 - 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); X3(i,j,k) = c2 * (3._rt - 2._rt * tmp2 - 2._rt * tmp1 + tmp1 * tmp1 - 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); // Coefficient multiplying J in update equation for E X4(i,j,k) = tmp2_sqrt * (- I + I * tmp1 * tmp1 - 2._rt * om_mod * dt) / (4._rt * ep0 * om_mod); } } // Limits for omega = 0 only else if (knorm_mod != 0. && knorm == 0.) { const amrex::Real om_mod = c * knorm_mod; const amrex::Real om2_mod = om_mod * om_mod; C (i,j,k) = std::cos(om_mod * dt); S_ck(i,j,k) = std::sin(om_mod * dt) / om_mod; T2(i,j,k) = 1._rt; // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2_mod); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2_mod); X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2_mod); // Coefficient multiplying J in update equation for E X4(i,j,k) = - S_ck(i,j,k) / ep0; } // Limits for omega_mod = 0 only else if (knorm_mod == 0. && knorm != 0.) { const amrex::Real om = c * knorm; const amrex::Real om2 = om * om; const amrex::Real nu = - kv / om; const Complex theta = amrex::exp(I * nu * om * dt * 0.5_rt); const Complex theta_star = amrex::exp(- I * nu * om * dt * 0.5_rt); C(i,j,k) = 1._rt; S_ck(i,j,k) = dt; T2(i,j,k) = theta * theta; if (nu != 0.) { // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = (-theta_star + theta - I * nu * om * dt * theta) / (ep0 * nu * nu * om2); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om * dt * T2(i,j,k) + 0.5_rt * nu * nu * om2 * dt * dt * T2(i,j,k)) / (ep0 * nu * nu * om2 * (T2(i,j,k) - 1._rt)); X3(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om * dt * T2(i,j,k) + 0.5_rt * nu * nu * om2 * dt * dt) / (ep0 * nu * nu * om2 * (T2(i,j,k) - 1._rt)); // Coefficient multiplying J in update equation for E X4(i,j,k) = I * (theta - theta_star) / (ep0 * nu * om); } else { // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = dt2 / (2._rt * ep0); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * dt2 / (6._rt * ep0); X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); // Coefficient multiplying J in update equation for E X4(i,j,k) = -dt / ep0; } } // Limits for omega_mod = 0 and omega = 0 else if (knorm_mod == 0. && knorm == 0.) { C(i,j,k) = 1._rt; S_ck(i,j,k) = dt; T2(i,j,k) = 1._rt; // X1 multiplies i*(k \times J) in the update equation for B X1(i,j,k) = dt2 / (2._rt * ep0); // X2 multiplies rho_new in the update equation for E // X3 multiplies rho_old in the update equation for E X2(i,j,k) = c2 * dt2 / (6._rt * ep0); X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); // Coefficient multiplying J in update equation for E X4(i,j,k) = -dt / ep0; } }); } } void ComovingPsatdAlgorithm::CurrentCorrection (const int lev, SpectralFieldData& field_data, std::array,3>& current, const std::unique_ptr& rho) { // Profiling BL_PROFILE("ComovingAlgorithm::CurrentCorrection"); using Idx = SpectralFieldIndex; // Forward Fourier transform of J and rho field_data.ForwardTransform(lev, *current[0], Idx::Jx, 0); field_data.ForwardTransform(lev, *current[1], Idx::Jy, 0); field_data.ForwardTransform(lev, *current[2], Idx::Jz, 0); field_data.ForwardTransform(lev, *rho, Idx::rho_old, 0); field_data.ForwardTransform(lev, *rho, Idx::rho_new, 1); // Loop over boxes for (amrex::MFIter mfi(field_data.fields); mfi.isValid(); ++mfi){ const amrex::Box& bx = field_data.fields[mfi].box(); // Extract arrays for the fields to be updated amrex::Array4 fields = field_data.fields[mfi].array(); // Extract pointers for the k vectors const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr(); const amrex::Real* const kx_arr = kx_vec[mfi].dataPtr(); #if (AMREX_SPACEDIM==3) const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr(); const amrex::Real* const ky_arr = ky_vec[mfi].dataPtr(); #endif const amrex::Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr(); const amrex::Real* const kz_arr = kz_vec[mfi].dataPtr(); // Local copy of member variables before GPU loop const amrex::Real dt = m_dt; // Comoving velocity const amrex::Real vx = m_v_comoving[0]; const amrex::Real vy = m_v_comoving[1]; const amrex::Real vz = m_v_comoving[2]; // Loop over indices within one box amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Shortcuts for the values of J and rho const Complex Jx = fields(i,j,k,Idx::Jx); const Complex Jy = fields(i,j,k,Idx::Jy); const Complex Jz = fields(i,j,k,Idx::Jz); const Complex rho_old = fields(i,j,k,Idx::rho_old); const Complex rho_new = fields(i,j,k,Idx::rho_new); // k vector values, and coefficients const amrex::Real kx_mod = modified_kx_arr[i]; const amrex::Real kx = kx_arr[i]; #if (AMREX_SPACEDIM==3) const amrex::Real ky_mod = modified_ky_arr[j]; const amrex::Real kz_mod = modified_kz_arr[k]; const amrex::Real ky = ky_arr[j]; const amrex::Real kz = kz_arr[k]; #else constexpr amrex::Real ky_mod = 0._rt; const amrex::Real kz_mod = modified_kz_arr[j]; constexpr amrex::Real ky = 0._rt; const amrex::Real kz = kz_arr[j]; #endif constexpr Complex I = Complex{0._rt,1._rt}; const amrex::Real knorm_mod = std::sqrt(kx_mod * kx_mod + ky_mod * ky_mod + kz_mod * kz_mod); // Correct J if (knorm_mod != 0._rt) { const Complex kmod_dot_J = kx_mod * Jx + ky_mod * Jy + kz_mod * Jz; const amrex::Real k_dot_v = kx * vx + ky * vy + kz * vz; if ( k_dot_v != 0._rt ) { const Complex theta = amrex::exp(- I * k_dot_v * dt * 0.5_rt); const Complex den = 1._rt - theta * theta; fields(i,j,k,Idx::Jx) = Jx - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * kx_mod / (knorm_mod * knorm_mod); fields(i,j,k,Idx::Jy) = Jy - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * ky_mod / (knorm_mod * knorm_mod); fields(i,j,k,Idx::Jz) = Jz - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * kz_mod / (knorm_mod * knorm_mod); } else { fields(i,j,k,Idx::Jx) = Jx - (kmod_dot_J - I * (rho_new - rho_old) / dt) * kx_mod / (knorm_mod * knorm_mod); fields(i,j,k,Idx::Jy) = Jy - (kmod_dot_J - I * (rho_new - rho_old) / dt) * ky_mod / (knorm_mod * knorm_mod); fields(i,j,k,Idx::Jz) = Jz - (kmod_dot_J - I * (rho_new - rho_old) / dt) * kz_mod / (knorm_mod * knorm_mod); } } }); } // Backward Fourier transform of J field_data.BackwardTransform(lev, *current[0], Idx::Jx, 0); field_data.BackwardTransform(lev, *current[1], Idx::Jy, 0); field_data.BackwardTransform(lev, *current[2], Idx::Jz, 0); } void ComovingPsatdAlgorithm::VayDeposition (const int /*lev*/, SpectralFieldData& /*field_data*/, std::array,3>& /*current*/) { amrex::Abort("Vay deposition not implemented for comoving PSATD"); } #endif // WARPX_USE_PSATD