/* Copyright 2021 Modern Electron * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #include "BackgroundMCCCollision.H" #include "MCCScattering.H" #include "Particles/ParticleCreation/FilterCopyTransform.H" #include "Particles/ParticleCreation/SmartCopy.H" #include "Utils/ParticleUtils.H" #include "Utils/WarpXUtil.H" #include "Utils/WarpXProfilerWrapper.H" #include "WarpX.H" #include #include #include #include BackgroundMCCCollision::BackgroundMCCCollision (std::string const collision_name) : CollisionBase(collision_name) { AMREX_ALWAYS_ASSERT_WITH_MESSAGE(m_species_names.size() == 1, "Background MCC must have exactly one species."); amrex::ParmParse pp_collision_name(collision_name); queryWithParser(pp_collision_name, "background_density", m_background_density); queryWithParser(pp_collision_name, "background_temperature", m_background_temperature); // if the neutral mass is specified use it, but if ionization is // included the mass of the secondary species of that interaction // will be used. If no neutral mass is specified and ionization is not // included the mass of the colliding species will be used m_background_mass = -1; queryWithParser(pp_collision_name, "background_mass", m_background_mass); // query for a list of collision processes // these could be elastic, excitation, charge_exchange, back, etc. amrex::Vector scattering_process_names; pp_collision_name.queryarr("scattering_processes", scattering_process_names); // create a vector of MCCProcess objects from each scattering // process name for (auto scattering_process : scattering_process_names) { std::string kw_cross_section = scattering_process + "_cross_section"; std::string cross_section_file; pp_collision_name.query(kw_cross_section.c_str(), cross_section_file); amrex::Real energy = 0.0; // if the scattering process is excitation or ionization get the // energy associated with that process if (scattering_process.find("excitation") != std::string::npos || scattering_process.find("ionization") != std::string::npos) { std::string kw_energy = scattering_process + "_energy"; getWithParser(pp_collision_name, kw_energy.c_str(), energy); } MCCProcess process(scattering_process, cross_section_file, energy); AMREX_ALWAYS_ASSERT_WITH_MESSAGE(process.type() != MCCProcessType::INVALID, "Cannot add an unknown MCC process type"); // if the scattering process is ionization get the secondary species // only one ionization process is supported, the vector // m_ionization_processes is only used to make it simple to calculate // the maximum collision frequency with the same function used for // particle conserving processes if (process.type() == MCCProcessType::IONIZATION) { AMREX_ALWAYS_ASSERT_WITH_MESSAGE(!ionization_flag, "Background MCC only supports a single ionization process"); ionization_flag = true; std::string secondary_species; pp_collision_name.get("ionization_species", secondary_species); m_species_names.push_back(secondary_species); m_ionization_processes.push_back(std::move(process)); } else { m_scattering_processes.push_back(std::move(process)); } } #ifdef AMREX_USE_GPU amrex::Gpu::HostVector h_scattering_processes_exe; amrex::Gpu::HostVector h_ionization_processes_exe; for (auto const& p : m_scattering_processes) { h_scattering_processes_exe.push_back(p.executor()); } for (auto const& p : m_ionization_processes) { h_ionization_processes_exe.push_back(p.executor()); } m_scattering_processes_exe.resize(h_scattering_processes_exe.size()); m_ionization_processes_exe.resize(h_ionization_processes_exe.size()); amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, h_scattering_processes_exe.begin(), h_scattering_processes_exe.end(), m_scattering_processes_exe.begin()); amrex::Gpu::copyAsync(amrex::Gpu::hostToDevice, h_ionization_processes_exe.begin(), h_ionization_processes_exe.end(), m_ionization_processes_exe.begin()); amrex::Gpu::streamSynchronize(); #else for (auto const& p : m_scattering_processes) { m_scattering_processes_exe.push_back(p.executor()); } for (auto const& p : m_ionization_processes) { m_ionization_processes_exe.push_back(p.executor()); } #endif } /** Calculate the maximum collision frequency using a fixed energy grid that * ranges from 1e-4 to 5000 eV in 0.2 eV increments */ amrex::Real BackgroundMCCCollision::get_nu_max(amrex::Vector const& mcc_processes) { using namespace amrex::literals; amrex::Real nu, nu_max = 0.0; for (double E = 1e-4; E < 5000; E+=0.2) { amrex::Real sigma_E = 0.0; // loop through all collision pathways for (const auto &scattering_process : mcc_processes) { // get collision cross-section sigma_E += scattering_process.getCrossSection(E); } // calculate collision frequency nu = ( m_background_density * std::sqrt(2.0_rt / m_mass1 * PhysConst::q_e) * sigma_E * std::sqrt(E) ); if (nu > nu_max) { nu_max = nu; } } return nu_max; } void BackgroundMCCCollision::doCollisions (amrex::Real cur_time, MultiParticleContainer* mypc) { WARPX_PROFILE("BackgroundMCCCollision::doCollisions()"); using namespace amrex::literals; const amrex::Real dt = WarpX::GetInstance().getdt(0); if ( int(std::floor(cur_time/dt)) % m_ndt != 0 ) return; auto& species1 = mypc->GetParticleContainerFromName(m_species_names[0]); // this is a very ugly hack to have species2 be a reference and be // defined in the scope of doCollisions auto& species2 = ( (m_species_names.size() == 2) ? mypc->GetParticleContainerFromName(m_species_names[1]) : mypc->GetParticleContainerFromName(m_species_names[0]) ); if (!init_flag) { m_mass1 = species1.getMass(); // calculate maximum collision frequency without ionization m_nu_max = get_nu_max(m_scattering_processes); // calculate total collision probability auto coll_n = m_nu_max * dt; m_total_collision_prob = 1.0_rt - std::exp(-coll_n); // dt has to be small enough that a linear expansion of the collision // probability is sufficiently accurately, otherwise the MCC results // will be very heavily affected by small changes in the timestep AMREX_ALWAYS_ASSERT_WITH_MESSAGE(coll_n < 0.1_rt, "dt is too large to ensure accurate MCC results" ); if (ionization_flag) { // calculate maximum collision frequency for ionization m_nu_max_ioniz = get_nu_max(m_ionization_processes); // calculate total ionization probability auto coll_n_ioniz = m_nu_max_ioniz * dt; m_total_collision_prob_ioniz = 1.0_rt - std::exp(-coll_n_ioniz); AMREX_ALWAYS_ASSERT_WITH_MESSAGE(coll_n_ioniz < 0.1_rt, "dt is too large to ensure accurate MCC results" ); // if an ionization process is included the secondary species mass // is taken as the background mass m_background_mass = species2.getMass(); } // if no neutral species mass was specified and ionization is not // included assume that the collisions will be with neutrals of the // same mass as the colliding species (like with ion-neutral collisions) else if (m_background_mass == -1) { m_background_mass = species1.getMass(); } amrex::Print() << "Setting up collisions for " << m_species_names[0] << " with total " "collision probability: " << m_total_collision_prob + m_total_collision_prob_ioniz << "\n"; init_flag = true; } // Loop over refinement levels auto const flvl = species1.finestLevel(); for (int lev = 0; lev <= flvl; ++lev) { // firstly loop over particles box by box and do all particle conserving // scattering #ifdef _OPENMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for (WarpXParIter pti(species1, lev); pti.isValid(); ++pti) { doBackgroundCollisionsWithinTile(pti); } // secondly perform ionization through the SmartCopyFactory if needed if (ionization_flag) { doBackgroundIonization(lev, species1, species2); } } } /** Perform all particle conserving MCC collisions within a tile * * @param pti particle iterator * */ void BackgroundMCCCollision::doBackgroundCollisionsWithinTile ( WarpXParIter& pti ) { using namespace amrex::literals; // So that CUDA code gets its intrinsic, not the host-only C++ library version using std::sqrt; // get particle count const long np = pti.numParticles(); // get collider properties amrex::Real mass1 = m_mass1; // get neutral properties amrex::Real n_a = m_background_density; amrex::Real T_a = m_background_temperature; amrex::Real mass_a = m_background_mass; amrex::Real vel_std = sqrt(PhysConst::kb * T_a / mass_a); // get collision parameters auto scattering_processes = m_scattering_processes_exe.data(); int const process_count = m_scattering_processes_exe.size(); amrex::Real total_collision_prob = m_total_collision_prob; amrex::Real nu_max = m_nu_max; // get Struct-Of-Array particle data, also called attribs auto& attribs = pti.GetAttribs(); amrex::ParticleReal* const AMREX_RESTRICT ux = attribs[PIdx::ux].dataPtr(); amrex::ParticleReal* const AMREX_RESTRICT uy = attribs[PIdx::uy].dataPtr(); amrex::ParticleReal* const AMREX_RESTRICT uz = attribs[PIdx::uz].dataPtr(); amrex::ParallelForRNG(np, [=] AMREX_GPU_HOST_DEVICE (long ip, amrex::RandomEngine const& engine) { // determine if this particle should collide if (amrex::Random(engine) > total_collision_prob) return; amrex::Real v_coll, v_coll2, E_coll, sigma_E, nu_i = 0; amrex::Real col_select = amrex::Random(engine); amrex::ParticleReal ua_x, ua_y, ua_z; amrex::ParticleReal uCOM_x, uCOM_y, uCOM_z; // get velocities of gas particles from a Maxwellian distribution ua_x = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); ua_y = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); ua_z = vel_std * amrex::RandomNormal(0_rt, 1.0_rt, engine); // calculate the center of momentum velocity uCOM_x = (mass1 * ux[ip] + mass_a * ua_x) / (mass1 + mass_a); uCOM_y = (mass1 * uy[ip] + mass_a * ua_y) / (mass1 + mass_a); uCOM_z = (mass1 * uz[ip] + mass_a * ua_z) / (mass1 + mass_a); // calculate relative velocity of collision and collision energy if // the colliding particle is an ion. For electron collisions we // cannot use the relative velocity since that allows the // possibility where the electron kinetic energy in the lab frame // is insufficient to cause excitation but not in the COM frame - // for energy to balance this situation requires the neutral to // lose energy during the collision which we don't currently // account for. if (mass_a / mass1 > 1e3) { v_coll2 = ux[ip]*ux[ip] + uy[ip]*uy[ip] + uz[ip]*uz[ip]; E_coll = 0.5_rt * mass1 * v_coll2 / PhysConst::q_e; } else { v_coll2 = ( (ux[ip] - ua_x)*(ux[ip] - ua_x) + (uy[ip] - ua_y)*(uy[ip] - ua_y) + (uz[ip] - ua_z)*(uz[ip] - ua_z) ); E_coll = ( 0.5_rt * mass1 * mass_a / (mass1 + mass_a) * v_coll2 / PhysConst::q_e ); } v_coll = sqrt(v_coll2); // loop through all collision pathways for (int i = 0; i < process_count; i++) { auto const& scattering_process = *(scattering_processes + i); // get collision cross-section sigma_E = scattering_process.getCrossSection(E_coll); // calculate normalized collision frequency nu_i += n_a * sigma_E * v_coll / nu_max; // check if this collision should be performed and call // the appropriate scattering function if (col_select > nu_i) continue; if (scattering_process.m_type == MCCProcessType::ELASTIC) { ElasticScattering( ux[ip], uy[ip], uz[ip], uCOM_x, uCOM_y, uCOM_z, engine ); } else if (scattering_process.m_type == MCCProcessType::BACK) { BackScattering( ux[ip], uy[ip], uz[ip], uCOM_x, uCOM_y, uCOM_z ); } else if (scattering_process.m_type == MCCProcessType::CHARGE_EXCHANGE) { ChargeExchange(ux[ip], uy[ip], uz[ip], ua_x, ua_y, ua_z); } else if (scattering_process.m_type == MCCProcessType::EXCITATION) { // get the new velocity magnitude amrex::Real vp = sqrt( 2.0_rt / mass1 * PhysConst::q_e * (E_coll - scattering_process.m_energy_penalty) ); ParticleUtils::RandomizeVelocity(ux[ip], uy[ip], uz[ip], vp, engine); } break; } } ); } /** Perform MCC ionization interactions * * @param pti particle iterator * @param species1/2 reference to species container used to inject new particles from ionization events * */ void BackgroundMCCCollision::doBackgroundIonization ( int lev, WarpXParticleContainer& species1, WarpXParticleContainer& species2) { WARPX_PROFILE("BackgroundMCCCollision::doBackgroundIonization()"); SmartCopyFactory copy_factory_elec(species1, species1); SmartCopyFactory copy_factory_ion(species1, species2); const auto CopyElec = copy_factory_elec.getSmartCopy(); const auto CopyIon = copy_factory_ion.getSmartCopy(); const auto Filter = ImpactIonizationFilterFunc( m_ionization_processes[0], m_mass1, m_total_collision_prob_ioniz, m_nu_max_ioniz / m_background_density ); amrex::Real vel_std = std::sqrt( PhysConst::kb * m_background_temperature / m_background_mass ); #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for (WarpXParIter pti(species1, lev); pti.isValid(); ++pti) { auto& elec_tile = species1.ParticlesAt(lev, pti); auto& ion_tile = species2.ParticlesAt(lev, pti); const auto np_elec = elec_tile.numParticles(); const auto np_ion = ion_tile.numParticles(); auto Transform = ImpactIonizationTransformFunc( m_ionization_processes[0].getEnergyPenalty(), m_mass1, vel_std ); const auto num_added = filterCopyTransformParticles<1>( elec_tile, ion_tile, elec_tile, np_elec, np_ion, Filter, CopyElec, CopyIon, Transform ); setNewParticleIDs(elec_tile, np_elec, num_added); setNewParticleIDs(ion_tile, np_ion, num_added); } }