/* Copyright 2019-2020 Andrew Myers, Axel Huebl, David Grote * Jean-Luc Vay, Luca Fedeli, Maxence Thevenet * Michael Rowan, Remi Lehe, Revathi Jambunathan * Weiqun Zhang, Yinjian Zhao, levinem * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #include "MultiParticleContainer.H" #include "WarpXParticleContainer.H" #include "WarpX.H" #include "Utils/WarpXAlgorithmSelection.H" #include "Utils/CoarsenMR.H" // Import low-level single-particle kernels #include "Pusher/GetAndSetPosition.H" #include "Pusher/UpdatePosition.H" #include "Deposition/CurrentDeposition.H" #include "Deposition/ChargeDeposition.H" #include #include #include using namespace amrex; WarpXParIter::WarpXParIter (ContainerType& pc, int level) : amrex::ParIter<0,0,PIdx::nattribs>(pc, level, MFItInfo().SetDynamic(WarpX::do_dynamic_scheduling)) { } WarpXParIter::WarpXParIter (ContainerType& pc, int level, MFItInfo& info) : amrex::ParIter<0,0,PIdx::nattribs>(pc, level, info.SetDynamic(WarpX::do_dynamic_scheduling)) { } WarpXParticleContainer::WarpXParticleContainer (AmrCore* amr_core, int ispecies) : ParticleContainer<0,0,PIdx::nattribs>(amr_core->GetParGDB()) , species_id(ispecies) { SetParticleSize(); ReadParameters(); // build up the map of string names to particle component numbers particle_comps["w"] = PIdx::w; particle_comps["ux"] = PIdx::ux; particle_comps["uy"] = PIdx::uy; particle_comps["uz"] = PIdx::uz; #ifdef WARPX_DIM_RZ particle_comps["theta"] = PIdx::theta; #endif // Initialize temporary local arrays for charge/current deposition int num_threads = 1; #ifdef _OPENMP #pragma omp parallel #pragma omp single num_threads = omp_get_num_threads(); #endif local_rho.resize(num_threads); local_jx.resize(num_threads); local_jy.resize(num_threads); local_jz.resize(num_threads); } void WarpXParticleContainer::ReadParameters () { static bool initialized = false; if (!initialized) { ParmParse pp("particles"); #ifdef AMREX_USE_GPU do_tiling = false; // By default, tiling is off on GPU #else do_tiling = true; #endif pp.query("do_tiling", do_tiling); initialized = true; } } void WarpXParticleContainer::AllocData () { // have to resize here, not in the constructor because grids have not // been built when constructor was called. reserveData(); resizeData(); } void WarpXParticleContainer::AddNParticles (int /*lev*/, int n, const ParticleReal* x, const ParticleReal* y, const ParticleReal* z, const ParticleReal* vx, const ParticleReal* vy, const ParticleReal* vz, int nattr, const ParticleReal* attr, int uniqueparticles, amrex::Long id) { // nattr is unused below but needed in the BL_ASSERT amrex::ignore_unused(nattr); BL_ASSERT(nattr == 1); const ParticleReal* weight = attr; int ibegin, iend; if (uniqueparticles) { ibegin = 0; iend = n; } else { int myproc = ParallelDescriptor::MyProc(); int nprocs = ParallelDescriptor::NProcs(); int navg = n/nprocs; int nleft = n - navg * nprocs; if (myproc < nleft) { ibegin = myproc*(navg+1); iend = ibegin + navg+1; } else { ibegin = myproc*navg + nleft; iend = ibegin + navg; } } // Add to grid 0 and tile 0 // Redistribute() will move them to proper places. auto& particle_tile = DefineAndReturnParticleTile(0, 0, 0); std::size_t np = iend-ibegin; #ifdef WARPX_DIM_RZ Vector theta(np); #endif for (int i = ibegin; i < iend; ++i) { ParticleType p; if (id==-1) { p.id() = ParticleType::NextID(); } else { p.id() = id; } p.cpu() = ParallelDescriptor::MyProc(); #if (AMREX_SPACEDIM == 3) p.pos(0) = x[i]; p.pos(1) = y[i]; p.pos(2) = z[i]; #elif (AMREX_SPACEDIM == 2) amrex::ignore_unused(y); #ifdef WARPX_DIM_RZ theta[i-ibegin] = std::atan2(y[i], x[i]); p.pos(0) = std::sqrt(x[i]*x[i] + y[i]*y[i]); #else p.pos(0) = x[i]; #endif p.pos(1) = z[i]; #endif if ( (NumRuntimeRealComps()>0) || (NumRuntimeIntComps()>0) ){ DefineAndReturnParticleTile(0, 0, 0); } particle_tile.push_back(p); } if (np > 0) { particle_tile.push_back_real(PIdx::w , weight + ibegin, weight + iend); particle_tile.push_back_real(PIdx::ux, vx + ibegin, vx + iend); particle_tile.push_back_real(PIdx::uy, vy + ibegin, vy + iend); particle_tile.push_back_real(PIdx::uz, vz + ibegin, vz + iend); if ( (NumRuntimeRealComps()>0) || (NumRuntimeIntComps()>0) ){ DefineAndReturnParticleTile(0, 0, 0); } for (int comp = PIdx::uz+1; comp < PIdx::nattribs; ++comp) { #ifdef WARPX_DIM_RZ if (comp == PIdx::theta) { particle_tile.push_back_real(comp, theta.data(), theta.data() + np); } else { particle_tile.push_back_real(comp, np, 0.0); } #else particle_tile.push_back_real(comp, np, 0.0); #endif } for (int i = PIdx::nattribs; i < NumRealComps(); ++i) { particle_tile.push_back_real(i, 0.0); } } Redistribute(); } /* \brief Current Deposition for thread thread_num * \param pti : Particle iterator * \param wp : Array of particle weights * \param uxp uyp uzp : Array of particle * \param ion_lev : Pointer to array of particle ionization level. This is required to have the charge of each macroparticle since q is a scalar. For non-ionizable species, ion_lev is a null pointer. * \param jx jy jz : Full array of current density * \param offset : Index of first particle for which current is deposited * \param np_to_depose: Number of particles for which current is deposited. Particles [offset,offset+np_tp_depose] deposit current * \param thread_num : Thread number (if tiling) * \param lev : Level of box that contains particles * \param depos_lev : Level on which particles deposit (if buffers are used) * \param dt : Time step for particle level */ void WarpXParticleContainer::DepositCurrent(WarpXParIter& pti, RealVector& wp, RealVector& uxp, RealVector& uyp, RealVector& uzp, const int * const ion_lev, MultiFab* jx, MultiFab* jy, MultiFab* jz, const long offset, const long np_to_depose, int thread_num, int lev, int depos_lev, Real dt) { AMREX_ALWAYS_ASSERT_WITH_MESSAGE((depos_lev==(lev-1)) || (depos_lev==(lev )), "Deposition buffers only work for lev-1"); // If no particles, do not do anything if (np_to_depose == 0) return; // If user decides not to deposit if (do_not_deposit) return; // Number of guard cells for local deposition of J WarpX& warpx = WarpX::GetInstance(); const int ng_J = warpx.get_ng_depos_J().max(); // Extract deposition order (same order along all directions) and check that // particles shape fits within the guard cells. // NOTE: In specific situations where the staggering of J and the current // deposition algorithm are not trivial, this check might be too relaxed // and we might include a particle that should deposit part of its current // in a neighboring box. However, this should catch particles traveling many // cells away, for example with algorithms that allow for large time steps. const int shape_extent = static_cast(WarpX::nox / 2); AMREX_ALWAYS_ASSERT_WITH_MESSAGE( amrex::numParticlesOutOfRange(pti, ng_J - shape_extent) == 0, "Particles shape does not fit within guard cells used for local current deposition"); const std::array& dx = WarpX::CellSize(std::max(depos_lev,0)); Real q = this->charge; WARPX_PROFILE_VAR_NS("WarpXParticleContainer::DepositCurrent::CurrentDeposition", blp_deposit); WARPX_PROFILE_VAR_NS("WarpXParticleContainer::DepositCurrent::Accumulate", blp_accumulate); // Get tile box where current is deposited. // The tile box is different when depositing in the buffers (depos_levixType().toIntVect() ); Box tby = convert( tilebox, jy->ixType().toIntVect() ); Box tbz = convert( tilebox, jz->ixType().toIntVect() ); #endif tilebox.grow(ng_J); #ifdef AMREX_USE_GPU amrex::ignore_unused(thread_num); // GPU, no tiling: j_arr point to the full j arrays auto & jx_fab = jx->get(pti); auto & jy_fab = jy->get(pti); auto & jz_fab = jz->get(pti); Array4 const& jx_arr = jx->array(pti); Array4 const& jy_arr = jy->array(pti); Array4 const& jz_arr = jz->array(pti); #else tbx.grow(ng_J); tby.grow(ng_J); tbz.grow(ng_J); // CPU, tiling: j_arr point to the local_j[thread_num] arrays local_jx[thread_num].resize(tbx, jx->nComp()); local_jy[thread_num].resize(tby, jy->nComp()); local_jz[thread_num].resize(tbz, jz->nComp()); // local_jx[thread_num] is set to zero local_jx[thread_num].setVal(0.0); local_jy[thread_num].setVal(0.0); local_jz[thread_num].setVal(0.0); auto & jx_fab = local_jx[thread_num]; auto & jy_fab = local_jy[thread_num]; auto & jz_fab = local_jz[thread_num]; Array4 const& jx_arr = local_jx[thread_num].array(); Array4 const& jy_arr = local_jy[thread_num].array(); Array4 const& jz_arr = local_jz[thread_num].array(); #endif const auto GetPosition = GetParticlePosition(pti, offset); // Lower corner of tile box physical domain // Note that this includes guard cells since it is after tilebox.ngrow const Dim3 lo = lbound(tilebox); // Take into account Galilean shift Real cur_time = warpx.gett_new(lev); const auto& time_of_last_gal_shift = warpx.time_of_last_gal_shift; Real time_shift = (cur_time + 0.5*dt - time_of_last_gal_shift); amrex::Array galilean_shift = { m_v_galilean[0]* time_shift, m_v_galilean[1]*time_shift, m_v_galilean[2]*time_shift }; const std::array& xyzmin = WarpX::LowerCorner(tilebox, galilean_shift, depos_lev); if (WarpX::current_deposition_algo == CurrentDepositionAlgo::Esirkepov) { if (WarpX::do_nodal==1) { amrex::Abort("The Esirkepov algorithm cannot be used with a nodal grid."); } if ( (m_v_galilean[0]!=0) or (m_v_galilean[1]!=0) or (m_v_galilean[2]!=0)){ amrex::Abort("The Esirkepov algorithm cannot be used with the Galilean algorithm."); } } WARPX_PROFILE_VAR_START(blp_deposit); if (WarpX::current_deposition_algo == CurrentDepositionAlgo::Esirkepov) { if (WarpX::nox == 1){ doEsirkepovDepositionShapeN<1>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_arr, jy_arr, jz_arr, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 2){ doEsirkepovDepositionShapeN<2>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_arr, jy_arr, jz_arr, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 3){ doEsirkepovDepositionShapeN<3>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_arr, jy_arr, jz_arr, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } } else if (WarpX::current_deposition_algo == CurrentDepositionAlgo::Vay) { if (WarpX::nox == 1){ doVayDepositionShapeN<1>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes ); } else if (WarpX::nox == 2){ doVayDepositionShapeN<2>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes ); } else if (WarpX::nox == 3){ doVayDepositionShapeN<3>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes ); } } else { if (WarpX::nox == 1){ doDepositionShapeN<1>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 2){ doDepositionShapeN<2>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 3){ doDepositionShapeN<3>( GetPosition, wp.dataPtr() + offset, uxp.dataPtr() + offset, uyp.dataPtr() + offset, uzp.dataPtr() + offset, ion_lev, jx_fab, jy_fab, jz_fab, np_to_depose, dt, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } } WARPX_PROFILE_VAR_STOP(blp_deposit); #ifndef AMREX_USE_GPU // CPU, tiling: atomicAdd local_j into j WARPX_PROFILE_VAR_START(blp_accumulate); (*jx)[pti].atomicAdd(local_jx[thread_num], tbx, tbx, 0, 0, jx->nComp()); (*jy)[pti].atomicAdd(local_jy[thread_num], tby, tby, 0, 0, jy->nComp()); (*jz)[pti].atomicAdd(local_jz[thread_num], tbz, tbz, 0, 0, jz->nComp()); WARPX_PROFILE_VAR_STOP(blp_accumulate); #endif } /* \brief Charge Deposition for thread thread_num * \param pti : Particle iterator * \param wp : Array of particle weights * \param ion_lev : Pointer to array of particle ionization level. This is required to have the charge of each macroparticle since q is a scalar. For non-ionizable species, ion_lev is a null pointer. * \param rho : Full array of charge density * \param icomp : Component of rho into which charge is deposited. 0: old value (before particle push). 1: new value (after particle push). * \param offset : Index of first particle for which charge is deposited * \param np_to_depose: Number of particles for which charge is deposited. Particles [offset,offset+np_tp_depose] deposit charge * \param thread_num : Thread number (if tiling) * \param lev : Level of box that contains particles * \param depos_lev : Level on which particles deposit (if buffers are used) */ void WarpXParticleContainer::DepositCharge (WarpXParIter& pti, RealVector& wp, const int * const ion_lev, amrex::MultiFab* rho, int icomp, const long offset, const long np_to_depose, int thread_num, int lev, int depos_lev) { AMREX_ALWAYS_ASSERT_WITH_MESSAGE((depos_lev==(lev-1)) || (depos_lev==(lev )), "Deposition buffers only work for lev-1"); // If no particles, do not do anything if (np_to_depose == 0) return; // If user decides not to deposit if (do_not_deposit) return; // Number of guard cells for local deposition of rho WarpX& warpx = WarpX::GetInstance(); const int ng_rho = warpx.get_ng_depos_rho().max(); // Extract deposition order (same order along all directions) and check that // particles shape fits within the guard cells. // NOTE: In specific situations where the staggering of rho and the charge // deposition algorithm are not trivial, this check might be too strict and // we might need to relax it, as currently done for the current deposition. const int shape_extent = static_cast(WarpX::nox / 2 + 1); AMREX_ALWAYS_ASSERT_WITH_MESSAGE( amrex::numParticlesOutOfRange(pti, ng_rho - shape_extent) == 0, "Particles shape does not fit within guard cells used for local charge deposition"); const std::array& dx = WarpX::CellSize(std::max(depos_lev,0)); const Real q = this->charge; WARPX_PROFILE_VAR_NS("WarpXParticleContainer::DepositCharge::ChargeDeposition", blp_ppc_chd); WARPX_PROFILE_VAR_NS("WarpXParticleContainer::DepositCharge::Accumulate", blp_accumulate); // Get tile box where charge is deposited. // The tile box is different when depositing in the buffers (depos_levixType().toIntVect() ); #endif tilebox.grow(ng_rho); const int nc = WarpX::ncomps; #ifdef AMREX_USE_GPU amrex::ignore_unused(thread_num); // GPU, no tiling: rho_fab points to the full rho array MultiFab rhoi(*rho, amrex::make_alias, icomp*nc, nc); auto & rho_fab = rhoi.get(pti); #else tb.grow(ng_rho); // CPU, tiling: rho_fab points to local_rho[thread_num] local_rho[thread_num].resize(tb, nc); // local_rho[thread_num] is set to zero local_rho[thread_num].setVal(0.0); auto & rho_fab = local_rho[thread_num]; #endif const auto GetPosition = GetParticlePosition(pti, offset); // Lower corner of tile box physical domain // Note that this includes guard cells since it is after tilebox.ngrow Real cur_time = warpx.gett_new(lev); Real dt = warpx.getdt(lev); const auto& time_of_last_gal_shift = warpx.time_of_last_gal_shift; // Take into account Galilean shift Real time_shift_rho_old = (cur_time - time_of_last_gal_shift); Real time_shift_rho_new = (cur_time + dt - time_of_last_gal_shift); amrex::Array galilean_shift; if (icomp==0){ galilean_shift = { m_v_galilean[0]*time_shift_rho_old, m_v_galilean[1]*time_shift_rho_old, m_v_galilean[2]*time_shift_rho_old }; } else{ galilean_shift = { m_v_galilean[0]*time_shift_rho_new, m_v_galilean[1]*time_shift_rho_new, m_v_galilean[2]*time_shift_rho_new }; } const std::array& xyzmin = WarpX::LowerCorner(tilebox, galilean_shift, depos_lev); // Indices of the lower bound const Dim3 lo = lbound(tilebox); WARPX_PROFILE_VAR_START(blp_ppc_chd); if (WarpX::nox == 1){ doChargeDepositionShapeN<1>(GetPosition, wp.dataPtr()+offset, ion_lev, rho_fab, np_to_depose, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 2){ doChargeDepositionShapeN<2>(GetPosition, wp.dataPtr()+offset, ion_lev, rho_fab, np_to_depose, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } else if (WarpX::nox == 3){ doChargeDepositionShapeN<3>(GetPosition, wp.dataPtr()+offset, ion_lev, rho_fab, np_to_depose, dx, xyzmin, lo, q, WarpX::n_rz_azimuthal_modes); } WARPX_PROFILE_VAR_STOP(blp_ppc_chd); #ifndef AMREX_USE_GPU // CPU, tiling: atomicAdd local_rho into rho WARPX_PROFILE_VAR_START(blp_accumulate); (*rho)[pti].atomicAdd(local_rho[thread_num], tb, tb, 0, icomp*nc, nc); WARPX_PROFILE_VAR_STOP(blp_accumulate); #endif } void WarpXParticleContainer::DepositCharge (amrex::Vector >& rho, bool local, bool reset, bool do_rz_volume_scaling) { #ifdef WARPX_DIM_RZ (void)do_rz_volume_scaling; #endif // Loop over the refinement levels int const finest_level = rho.size() - 1; for (int lev = 0; lev <= finest_level; ++lev) { // Reset the `rho` array if `reset` is True if (reset) rho[lev]->setVal(0.0, rho[lev]->nGrow()); // Loop over particle tiles and deposit charge on each level #ifdef _OPENMP #pragma omp parallel { int thread_num = omp_get_thread_num(); #else int thread_num = 0; #endif for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { const long np = pti.numParticles(); auto& wp = pti.GetAttribs(PIdx::w); int* AMREX_RESTRICT ion_lev; if (do_field_ionization){ ion_lev = pti.GetiAttribs(particle_icomps["ionization_level"]).dataPtr(); } else { ion_lev = nullptr; } DepositCharge(pti, wp, ion_lev, rho[lev].get(), 0, 0, np, thread_num, lev, lev); } #ifdef _OPENMP } #endif #ifdef WARPX_DIM_RZ if (do_rz_volume_scaling) { WarpX::GetInstance().ApplyInverseVolumeScalingToChargeDensity(rho[lev].get(), lev); } #else ignore_unused(do_rz_volume_scaling); #endif // Exchange guard cells if (!local) rho[lev]->SumBoundary( m_gdb->Geom(lev).periodicity() ); } // Now that the charge has been deposited at each level, // we average down from fine to crse for (int lev = finest_level - 1; lev >= 0; --lev) { const DistributionMapping& fine_dm = rho[lev+1]->DistributionMap(); BoxArray coarsened_fine_BA = rho[lev+1]->boxArray(); coarsened_fine_BA.coarsen(m_gdb->refRatio(lev)); MultiFab coarsened_fine_data(coarsened_fine_BA, fine_dm, rho[lev+1]->nComp(), 0); coarsened_fine_data.setVal(0.0); int const refinement_ratio = 2; CoarsenMR::Coarsen( coarsened_fine_data, *rho[lev+1], IntVect(refinement_ratio) ); rho[lev]->ParallelAdd( coarsened_fine_data, m_gdb->Geom(lev).periodicity() ); } } std::unique_ptr WarpXParticleContainer::GetChargeDensity (int lev, bool local) { const auto& gm = m_gdb->Geom(lev); const auto& ba = m_gdb->ParticleBoxArray(lev); const auto& dm = m_gdb->DistributionMap(lev); BoxArray nba = ba; bool is_PSATD_RZ = false; #ifdef WARPX_DIM_RZ if (WarpX::maxwell_solver_id == MaxwellSolverAlgo::PSATD) is_PSATD_RZ = true; #endif if( !is_PSATD_RZ ) nba.surroundingNodes(); // Number of guard cells for local deposition of rho WarpX& warpx = WarpX::GetInstance(); const int ng_rho = warpx.get_ng_depos_rho().max(); auto rho = std::make_unique(nba,dm,WarpX::ncomps,ng_rho); rho->setVal(0.0); #ifdef _OPENMP #pragma omp parallel { #endif #ifdef _OPENMP int thread_num = omp_get_thread_num(); #else int thread_num = 0; #endif for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { const long np = pti.numParticles(); auto& wp = pti.GetAttribs(PIdx::w); int* AMREX_RESTRICT ion_lev; if (do_field_ionization){ ion_lev = pti.GetiAttribs(particle_icomps["ionization_level"]).dataPtr(); } else { ion_lev = nullptr; } DepositCharge(pti, wp, ion_lev, rho.get(), 0, 0, np, thread_num, lev, lev); } #ifdef _OPENMP } #endif #ifdef WARPX_DIM_RZ WarpX::GetInstance().ApplyInverseVolumeScalingToChargeDensity(rho.get(), lev); #endif if (!local) rho->SumBoundary(gm.periodicity()); return rho; } Real WarpXParticleContainer::sumParticleCharge(bool local) { amrex::Real total_charge = 0.0; const int nLevels = finestLevel(); for (int lev = 0; lev < nLevels; ++lev) { #ifdef _OPENMP #pragma omp parallel reduction(+:total_charge) #endif for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { auto& wp = pti.GetAttribs(PIdx::w); for (unsigned long i = 0; i < wp.size(); i++) { total_charge += wp[i]; } } } if (!local) ParallelDescriptor::ReduceRealSum(total_charge); total_charge *= this->charge; return total_charge; } std::array WarpXParticleContainer::meanParticleVelocity(bool local) { amrex::Real vx_total = 0.0; amrex::Real vy_total = 0.0; amrex::Real vz_total = 0.0; amrex::Long np_total = 0; amrex::Real inv_clight_sq = 1.0/PhysConst::c/PhysConst::c; const int nLevels = finestLevel(); #ifdef AMREX_USE_GPU if (Gpu::inLaunchRegion()) { ReduceOps reduce_op; ReduceData reduce_data(reduce_op); using ReduceTuple = typename decltype(reduce_data)::Type; for (int lev = 0; lev <= nLevels; ++lev) { for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { const auto uxp = pti.GetAttribs(PIdx::ux).data(); const auto uyp = pti.GetAttribs(PIdx::uy).data(); const auto uzp = pti.GetAttribs(PIdx::uz).data(); const long np = pti.numParticles(); np_total += np; reduce_op.eval(np, reduce_data, [=] AMREX_GPU_DEVICE (int i) -> ReduceTuple { Real usq = (uxp[i]*uxp[i] + uyp[i]*uyp[i] + uzp[i]*uzp[i])*inv_clight_sq; Real gaminv = 1.0_rt/std::sqrt(1.0_rt + usq); return {uxp[i]*gaminv, uyp[i]*gaminv, uzp[i]*gaminv}; }); } } ReduceTuple hv = reduce_data.value(); vx_total = amrex::get<0>(hv); vy_total = amrex::get<1>(hv); vz_total = amrex::get<2>(hv); } else #endif { for (int lev = 0; lev <= nLevels; ++lev) { #ifdef _OPENMP #pragma omp parallel reduction(+:vx_total, vy_total, vz_total, np_total) #endif for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { auto& ux = pti.GetAttribs(PIdx::ux); auto& uy = pti.GetAttribs(PIdx::uy); auto& uz = pti.GetAttribs(PIdx::uz); np_total += pti.numParticles(); for (unsigned long i = 0; i < ux.size(); i++) { Real usq = (ux[i]*ux[i] + uy[i]*uy[i] + uz[i]*uz[i])*inv_clight_sq; Real gaminv = 1.0_rt/std::sqrt(1.0_rt + usq); vx_total += ux[i]*gaminv; vy_total += uy[i]*gaminv; vz_total += uz[i]*gaminv; } } } } if (!local) { ParallelDescriptor::ReduceRealSum(vx_total); ParallelDescriptor::ReduceRealSum(vy_total); ParallelDescriptor::ReduceRealSum(vz_total); ParallelDescriptor::ReduceLongSum(np_total); } std::array mean_v; if (np_total > 0) { mean_v[0] = vx_total / np_total; mean_v[1] = vy_total / np_total; mean_v[2] = vz_total / np_total; } return mean_v; } Real WarpXParticleContainer::maxParticleVelocity(bool local) { amrex::ParticleReal max_v = 0.0; const int nLevels = finestLevel(); for (int lev = 0; lev <= nLevels; ++lev) { #ifdef _OPENMP #pragma omp parallel reduction(max:max_v) #endif for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { auto& ux = pti.GetAttribs(PIdx::ux); auto& uy = pti.GetAttribs(PIdx::uy); auto& uz = pti.GetAttribs(PIdx::uz); for (unsigned long i = 0; i < ux.size(); i++) { max_v = std::max(max_v, std::sqrt(ux[i]*ux[i] + uy[i]*uy[i] + uz[i]*uz[i])); } } } if (!local) ParallelAllReduce::Max(max_v, ParallelDescriptor::Communicator()); return max_v; } void WarpXParticleContainer::PushX (amrex::Real dt) { const int nLevels = finestLevel(); for (int lev = 0; lev <= nLevels; ++lev) { PushX(lev, dt); } } void WarpXParticleContainer::PushX (int lev, amrex::Real dt) { WARPX_PROFILE("WarpXParticleContainer::PushX()"); if (do_not_push) return; amrex::LayoutData* cost = WarpX::getCosts(lev); #ifdef _OPENMP #pragma omp parallel #endif { for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); } Real wt = amrex::second(); // // Particle Push // const auto GetPosition = GetParticlePosition(pti); auto SetPosition = SetParticlePosition(pti); // - momenta are stored as a struct of array, in `attribs` auto& attribs = pti.GetAttribs(); ParticleReal* AMREX_RESTRICT ux = attribs[PIdx::ux].dataPtr(); ParticleReal* AMREX_RESTRICT uy = attribs[PIdx::uy].dataPtr(); ParticleReal* AMREX_RESTRICT uz = attribs[PIdx::uz].dataPtr(); // Loop over the particles and update their position amrex::ParallelFor( pti.numParticles(), [=] AMREX_GPU_DEVICE (long i) { ParticleReal x, y, z; GetPosition(i, x, y, z); UpdatePosition(x, y, z, ux[i], uy[i], uz[i], dt); SetPosition(i, x, y, z); } ); if (cost && WarpX::load_balance_costs_update_algo == LoadBalanceCostsUpdateAlgo::Timers) { amrex::Gpu::synchronize(); wt = amrex::second() - wt; amrex::HostDevice::Atomic::Add( &(*cost)[pti.index()], wt); } } } } // When using runtime components, AMReX requires to touch all tiles // in serial and create particles tiles with runtime components if // they do not exist (or if they were defined by default, i.e., // without runtime component). void WarpXParticleContainer::defineAllParticleTiles () noexcept { tmp_particle_data.resize(finestLevel()+1); for (int lev = 0; lev <= finestLevel(); ++lev) { for (auto mfi = MakeMFIter(lev); mfi.isValid(); ++mfi) { const int grid_id = mfi.index(); const int tile_id = mfi.LocalTileIndex(); tmp_particle_data[lev][std::make_pair(grid_id,tile_id)]; DefineAndReturnParticleTile(lev, grid_id, tile_id); } } } // This function is called in Redistribute, just after locate void WarpXParticleContainer::particlePostLocate(ParticleType& p, const ParticleLocData& pld, const int lev) { if (not do_splitting) return; // Tag particle if goes to higher level. // It will be split later in the loop if (pld.m_lev == lev+1 and p.id() != NoSplitParticleID and p.id() >= 0) { p.id() = DoSplitParticleID; } if (pld.m_lev == lev-1){ // For the moment, do not do anything if particles goes // to lower level. } } void WarpXParticleContainer::ApplyBoundaryConditions (ParticleBC boundary_conditions){ WARPX_PROFILE("WarpXParticleContainer::ApplyBoundaryConditions()"); for (int lev = 0; lev <= finestLevel(); ++lev) { for (WarpXParIter pti(*this, lev); pti.isValid(); ++pti) { auto GetPosition = GetParticlePosition(pti); const Real xmin = Geom(lev).ProbLo(0); const Real xmax = Geom(lev).ProbHi(0); #ifdef WARPX_DIM_3D const Real ymin = Geom(lev).ProbLo(1); const Real ymax = Geom(lev).ProbHi(1); #endif const Real zmin = Geom(lev).ProbLo(AMREX_SPACEDIM-1); const Real zmax = Geom(lev).ProbHi(AMREX_SPACEDIM-1); ParticleTileType& ptile = ParticlesAt(lev, pti); ParticleType * const pp = ptile.GetArrayOfStructs()().data(); // Loop over particles and apply BC to each particle amrex::ParallelFor( pti.numParticles(), [=] AMREX_GPU_DEVICE (long i) { ParticleType& p = pp[i]; ParticleReal x, y, z; GetPosition(i, x, y, z); #ifdef WARPX_DIM_3D if (x < xmin || x > xmax || y < ymin || y > ymax || z < zmin || z > zmax){ if (boundary_conditions == ParticleBC::absorbing) p.id() = -1; } #else if (x < xmin || x > xmax || z < zmin || z > zmax){ if (boundary_conditions == ParticleBC::absorbing) p.id() = -1; } #endif } ); } } }