/* Copyright 2019 Andrew Myers, Axel Huebl, David Grote * Luca Fedeli, Maxence Thevenet, Remi Lehe * Weiqun Zhang * * This file is part of WarpX. * * License: BSD-3-Clause-LBNL */ #include "BoundaryConditions/PML.H" #include "FieldSolver/FiniteDifferenceSolver/HybridPICModel/HybridPICModel.H" #include "Initialization/WarpXAMReXInit.H" #include "Particles/MultiParticleContainer.H" #include "Particles/ParticleBoundaryBuffer.H" #include "Particles/WarpXParticleContainer.H" #include "Utils/WarpXProfilerWrapper.H" #include "Utils/WarpXUtil.H" #include "WarpX.H" #include "WarpXWrappers.H" #include "WarpX_py.H" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { amrex::Real** getMultiFabPointers (amrex::MultiFab& mf, int *num_boxes, int *ncomps, int **ngrowvect, int **shapes) { *ncomps = mf.nComp(); *num_boxes = mf.local_size(); int shapesize = AMREX_SPACEDIM; *ngrowvect = static_cast(malloc(sizeof(int)*shapesize)); for (int j = 0; j < AMREX_SPACEDIM; ++j) { (*ngrowvect)[j] = mf.nGrow(j); } if (mf.nComp() > 1) shapesize += 1; *shapes = static_cast(malloc(sizeof(int)*shapesize * (*num_boxes))); auto data = static_cast(malloc((*num_boxes) * sizeof(amrex::Real*))); #ifdef AMREX_USE_OMP #pragma omp parallel if (amrex::Gpu::notInLaunchRegion()) #endif for ( amrex::MFIter mfi(mf, false); mfi.isValid(); ++mfi ) { int i = mfi.LocalIndex(); data[i] = mf[mfi].dataPtr(); for (int j = 0; j < AMREX_SPACEDIM; ++j) { (*shapes)[shapesize*i+j] = mf[mfi].box().length(j); } if (mf.nComp() > 1) (*shapes)[shapesize*i+AMREX_SPACEDIM] = mf.nComp(); } return data; } int* getMultiFabLoVects (const amrex::MultiFab& mf, int *num_boxes, int **ngrowvect) { int shapesize = AMREX_SPACEDIM; *ngrowvect = static_cast(malloc(sizeof(int)*shapesize)); for (int j = 0; j < AMREX_SPACEDIM; ++j) { (*ngrowvect)[j] = mf.nGrow(j); } *num_boxes = mf.local_size(); auto loVects = static_cast(malloc((*num_boxes)*AMREX_SPACEDIM * sizeof(int))); int i = 0; for ( amrex::MFIter mfi(mf, false); mfi.isValid(); ++mfi, ++i ) { const int* loVect = mf[mfi].loVect(); for (int j = 0; j < AMREX_SPACEDIM; ++j) { loVects[AMREX_SPACEDIM*i+j] = loVect[j]; } } return loVects; } // Copy the nodal flag data and return the copy: // the nodal flag data should not be modifiable from Python. int* getFieldNodalFlagData ( const amrex::MultiFab* mf ) { if (mf == nullptr) return nullptr; const amrex::IntVect nodal_flag( mf->ixType().toIntVect() ); auto *nodal_flag_data = static_cast(malloc(AMREX_SPACEDIM * sizeof(int))); constexpr int NODE = amrex::IndexType::NODE; for (int i=0 ; i < AMREX_SPACEDIM ; i++) { nodal_flag_data[i] = (nodal_flag[i] == NODE ? 1 : 0); } return nodal_flag_data; } } int warpx_Real_size() { return (int)sizeof(amrex::Real); } int warpx_ParticleReal_size() { return (int)sizeof(amrex::ParticleReal); } int warpx_nSpecies() { const auto & mypc = WarpX::GetInstance().GetPartContainer(); return mypc.nSpecies(); } bool warpx_use_fdtd_nci_corr() { return WarpX::use_fdtd_nci_corr; } int warpx_galerkin_interpolation() { return WarpX::galerkin_interpolation; } int warpx_nComps() { return PIdx::nattribs; } int warpx_nCompsSpecies(const char* char_species_name) { auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); return myspc.NumRealComps(); } int warpx_SpaceDim() { return AMREX_SPACEDIM; } void amrex_init (int argc, char* argv[]) { warpx_amrex_init(argc, argv); } void amrex_init_with_inited_mpi (int argc, char* argv[], MPI_Comm mpicomm) { warpx_amrex_init(argc, argv, true, mpicomm); } void amrex_finalize (int /*finalize_mpi*/) { amrex::Finalize(); } void warpx_init () { WarpX& warpx = WarpX::GetInstance(); warpx.InitData(); ExecutePythonCallback("afterinit"); ExecutePythonCallback("particleloader"); } void warpx_finalize () { WarpX::ResetInstance(); } void warpx_set_callback_py ( const char* char_callback_name, WARPX_CALLBACK_PY_FUNC_0 callback) { const std::string callback_name(char_callback_name); warpx_callback_py_map[callback_name] = callback; } void warpx_clear_callback_py (const char* char_callback_name) { const std::string callback_name(char_callback_name); warpx_callback_py_map.erase(callback_name); } void warpx_evolve (int numsteps) { WarpX& warpx = WarpX::GetInstance(); warpx.Evolve(numsteps); } void warpx_addNParticles( const char* char_species_name, int lenx, amrex::ParticleReal const * x, amrex::ParticleReal const * y, amrex::ParticleReal const * z, amrex::ParticleReal const * vx, amrex::ParticleReal const * vy, amrex::ParticleReal const * vz, const int nattr_real, amrex::ParticleReal const * attr_real, const int nattr_int, int const * attr_int, int uniqueparticles) { auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); const int lev = 0; myspc.AddNParticles(lev, lenx, x, y, z, vx, vy, vz, nattr_real, attr_real, nattr_int, attr_int, uniqueparticles); } void warpx_ConvertLabParamsToBoost() { ConvertLabParamsToBoost(); } void warpx_ReadBCParams() { ReadBCParams(); } void warpx_CheckGriddingForRZSpectral() { CheckGriddingForRZSpectral(); } amrex::Real warpx_getProbLo(int dir) { WarpX& warpx = WarpX::GetInstance(); const amrex::Geometry& geom = warpx.Geom(0); return geom.ProbLo(dir); } amrex::Real warpx_getProbHi(int dir) { WarpX& warpx = WarpX::GetInstance(); const amrex::Geometry& geom = warpx.Geom(0); return geom.ProbHi(dir); } amrex::Real warpx_getCellSize(int dir, int lev) { const std::array& dx = WarpX::CellSize(lev); return dx[dir]; } long warpx_getNumParticles(const char* char_species_name, const bool local) { const auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); // the first argument below is to only count valid particles return myspc.TotalNumberOfParticles(true, local); } #define WARPX_GET_FIELD(FIELD, GETTER) \ amrex::Real** FIELD(int lev, int direction, \ int *return_size, int *ncomps, int **ngrowvect, int **shapes) { \ auto * mf = GETTER(lev, direction); \ if (mf != nullptr) { \ return getMultiFabPointers(*mf, return_size, ncomps, ngrowvect, shapes); \ } else { \ return nullptr; \ } \ } #define WARPX_GET_LOVECTS(FIELD, GETTER) \ int* FIELD(int lev, int direction, \ int *return_size, int **ngrowvect) { \ auto * mf = GETTER(lev, direction); \ if (mf != nullptr) { \ return getMultiFabLoVects(*mf, return_size, ngrowvect); \ } else { \ return nullptr; \ } \ } WARPX_GET_FIELD(warpx_getEfield, WarpX::GetInstance().get_pointer_Efield_aux) WARPX_GET_FIELD(warpx_getEfieldCP, WarpX::GetInstance().get_pointer_Efield_cp) WARPX_GET_FIELD(warpx_getEfieldFP, WarpX::GetInstance().get_pointer_Efield_fp) WARPX_GET_FIELD(warpx_getBfield, WarpX::GetInstance().get_pointer_Bfield_aux) WARPX_GET_FIELD(warpx_getBfieldCP, WarpX::GetInstance().get_pointer_Bfield_cp) WARPX_GET_FIELD(warpx_getBfieldFP, WarpX::GetInstance().get_pointer_Bfield_fp) WARPX_GET_FIELD(warpx_getEdgeLengths, WarpX::GetInstance().get_pointer_edge_lengths) WARPX_GET_FIELD(warpx_getFaceAreas, WarpX::GetInstance().get_pointer_face_areas) WARPX_GET_FIELD(warpx_getCurrentDensity, WarpX::GetInstance().get_pointer_current_fp) WARPX_GET_FIELD(warpx_getCurrentDensityCP, WarpX::GetInstance().get_pointer_current_cp) WARPX_GET_FIELD(warpx_getCurrentDensityFP, WarpX::GetInstance().get_pointer_current_fp) WARPX_GET_FIELD(warpx_getCurrentDensityFP_Ampere, WarpX::GetInstance().GetHybridPICModel().get_pointer_current_fp_ampere) WARPX_GET_FIELD(warpx_getVectorPotentialFP, WarpX::GetInstance().get_pointer_vector_potential_fp) WARPX_GET_LOVECTS(warpx_getEfieldLoVects, WarpX::GetInstance().get_pointer_Efield_aux) WARPX_GET_LOVECTS(warpx_getEfieldCPLoVects, WarpX::GetInstance().get_pointer_Efield_cp) WARPX_GET_LOVECTS(warpx_getEfieldFPLoVects, WarpX::GetInstance().get_pointer_Efield_fp) WARPX_GET_LOVECTS(warpx_getBfieldLoVects, WarpX::GetInstance().get_pointer_Bfield_aux) WARPX_GET_LOVECTS(warpx_getBfieldCPLoVects, WarpX::GetInstance().get_pointer_Bfield_cp) WARPX_GET_LOVECTS(warpx_getBfieldFPLoVects, WarpX::GetInstance().get_pointer_Bfield_fp) WARPX_GET_LOVECTS(warpx_getCurrentDensityLoVects, WarpX::GetInstance().get_pointer_current_fp) WARPX_GET_LOVECTS(warpx_getCurrentDensityCPLoVects, WarpX::GetInstance().get_pointer_current_cp) WARPX_GET_LOVECTS(warpx_getCurrentDensityFPLoVects, WarpX::GetInstance().get_pointer_current_fp) WARPX_GET_LOVECTS(warpx_getVectorPotentialFPLoVects, WarpX::GetInstance().get_pointer_vector_potential_fp) WARPX_GET_LOVECTS(warpx_getEdgeLengthsLoVects, WarpX::GetInstance().get_pointer_edge_lengths) WARPX_GET_LOVECTS(warpx_getFaceAreasLoVects, WarpX::GetInstance().get_pointer_face_areas) int* warpx_getEx_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Efield_aux(0,0) );} int* warpx_getEy_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Efield_aux(0,1) );} int* warpx_getEz_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Efield_aux(0,2) );} int* warpx_getBx_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Bfield_aux(0,0) );} int* warpx_getBy_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Bfield_aux(0,1) );} int* warpx_getBz_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_Bfield_aux(0,2) );} int* warpx_getJx_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_current_fp(0,0) );} int* warpx_getJy_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_current_fp(0,1) );} int* warpx_getJz_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_current_fp(0,2) );} int* warpx_getAx_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_vector_potential_fp(0,0) );} int* warpx_getAy_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_vector_potential_fp(0,1) );} int* warpx_getAz_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_vector_potential_fp(0,2) );} int* warpx_getRho_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_rho_fp(0) );} int* warpx_getPhi_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_phi_fp(0) );} int* warpx_getF_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_F_fp(0) );} int* warpx_getG_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_G_fp(0) );} int* warpx_get_edge_lengths_x_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_edge_lengths(0, 0) );} int* warpx_get_edge_lengths_y_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_edge_lengths(0, 1) );} int* warpx_get_edge_lengths_z_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_edge_lengths(0, 2) );} int* warpx_get_face_areas_x_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_face_areas(0, 0) );} int* warpx_get_face_areas_y_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_face_areas(0, 1) );} int* warpx_get_face_areas_z_nodal_flag() {return getFieldNodalFlagData( WarpX::GetInstance().get_pointer_face_areas(0, 2) );} #define WARPX_GET_SCALAR(SCALAR, GETTER) \ amrex::Real** SCALAR(int lev, \ int *return_size, int *ncomps, int **ngrowvect, int **shapes) { \ auto * mf = GETTER(lev); \ if (mf != nullptr) { \ return getMultiFabPointers(*mf, return_size, ncomps, ngrowvect, shapes); \ } else { \ return nullptr; \ } \ } #define WARPX_GET_LOVECTS_SCALAR(SCALAR, GETTER) \ int* SCALAR(int lev, \ int *return_size, int **ngrowvect) { \ auto * mf = GETTER(lev); \ if (mf != nullptr) { \ return getMultiFabLoVects(*mf, return_size, ngrowvect); \ } else { \ return nullptr; \ } \ } WARPX_GET_SCALAR(warpx_getChargeDensityCP, WarpX::GetInstance().get_pointer_rho_cp) WARPX_GET_SCALAR(warpx_getChargeDensityFP, WarpX::GetInstance().get_pointer_rho_fp) WARPX_GET_LOVECTS_SCALAR(warpx_getChargeDensityCPLoVects, WarpX::GetInstance().get_pointer_rho_cp) WARPX_GET_LOVECTS_SCALAR(warpx_getChargeDensityFPLoVects, WarpX::GetInstance().get_pointer_rho_fp) WARPX_GET_SCALAR(warpx_getPhiFP, WarpX::GetInstance().get_pointer_phi_fp) WARPX_GET_LOVECTS_SCALAR(warpx_getPhiFPLoVects, WarpX::GetInstance().get_pointer_phi_fp) // F and G WARPX_GET_SCALAR(warpx_getFfieldCP, WarpX::GetInstance().get_pointer_F_cp) WARPX_GET_SCALAR(warpx_getFfieldFP, WarpX::GetInstance().get_pointer_F_fp) WARPX_GET_LOVECTS_SCALAR(warpx_getFfieldCPLoVects, WarpX::GetInstance().get_pointer_F_cp) WARPX_GET_LOVECTS_SCALAR(warpx_getFfieldFPLoVects, WarpX::GetInstance().get_pointer_F_fp) WARPX_GET_SCALAR(warpx_getGfieldCP, WarpX::GetInstance().get_pointer_G_cp) WARPX_GET_SCALAR(warpx_getGfieldFP, WarpX::GetInstance().get_pointer_G_fp) WARPX_GET_LOVECTS_SCALAR(warpx_getGfieldCPLoVects, WarpX::GetInstance().get_pointer_G_cp) WARPX_GET_LOVECTS_SCALAR(warpx_getGfieldFPLoVects, WarpX::GetInstance().get_pointer_G_fp) #define WARPX_GET_FIELD_PML(FIELD, GETTER) \ amrex::Real** FIELD(int lev, int direction, \ int *return_size, int *ncomps, int **ngrowvect, int **shapes) { \ auto * pml = WarpX::GetInstance().GetPML(lev); \ if (!pml) return nullptr; \ auto * mf = (pml->GETTER()[direction]); \ if (!mf) return nullptr; \ return getMultiFabPointers(*mf, return_size, ncomps, ngrowvect, shapes); \ } #define WARPX_GET_LOVECTS_PML(FIELD, GETTER) \ int* FIELD(int lev, int direction, \ int *return_size, int **ngrowvect) { \ auto * pml = WarpX::GetInstance().GetPML(lev); \ if (!pml) return nullptr; \ auto * mf = (pml->GETTER()[direction]); \ if (!mf) return nullptr; \ return getMultiFabLoVects(*mf, return_size, ngrowvect); \ } WARPX_GET_FIELD_PML(warpx_getEfieldCP_PML, GetE_cp) WARPX_GET_FIELD_PML(warpx_getEfieldFP_PML, GetE_fp) WARPX_GET_FIELD_PML(warpx_getBfieldCP_PML, GetB_cp) WARPX_GET_FIELD_PML(warpx_getBfieldFP_PML, GetB_fp) WARPX_GET_FIELD_PML(warpx_getCurrentDensityCP_PML, Getj_cp) WARPX_GET_FIELD_PML(warpx_getCurrentDensityFP_PML, Getj_fp) WARPX_GET_LOVECTS_PML(warpx_getEfieldCPLoVects_PML, GetE_cp) WARPX_GET_LOVECTS_PML(warpx_getEfieldFPLoVects_PML, GetE_fp) WARPX_GET_LOVECTS_PML(warpx_getBfieldCPLoVects_PML, GetB_cp) WARPX_GET_LOVECTS_PML(warpx_getBfieldFPLoVects_PML, GetB_fp) WARPX_GET_LOVECTS_PML(warpx_getCurrentDensityCPLoVects_PML, Getj_cp) WARPX_GET_LOVECTS_PML(warpx_getCurrentDensityFPLoVects_PML, Getj_fp) #define WARPX_GET_SCALAR_PML(SCALAR, GETTER) \ amrex::Real** SCALAR(int lev, \ int *return_size, int *ncomps, int **ngrowvect, int **shapes) { \ auto * pml = WarpX::GetInstance().GetPML(lev); \ if (!pml) return nullptr; \ auto * mf = pml->GETTER(); \ if (!mf) return nullptr; \ return getMultiFabPointers(*mf, return_size, ncomps, ngrowvect, shapes); \ } #define WARPX_GET_LOVECTS_PML_SCALAR(SCALAR, GETTER) \ int* SCALAR(int lev, \ int *return_size, int **ngrowvect) { \ auto * pml = WarpX::GetInstance().GetPML(lev); \ if (!pml) return nullptr; \ auto * mf = pml->GETTER(); \ if (!mf) return nullptr; \ return getMultiFabLoVects(*mf, return_size, ngrowvect); \ } // F and G WARPX_GET_SCALAR_PML(warpx_getFfieldCP_PML, GetF_cp) WARPX_GET_SCALAR_PML(warpx_getFfieldFP_PML, GetF_fp) WARPX_GET_LOVECTS_PML_SCALAR(warpx_getFfieldCPLoVects_PML, GetF_cp) WARPX_GET_LOVECTS_PML_SCALAR(warpx_getFfieldFPLoVects_PML, GetF_fp) WARPX_GET_SCALAR_PML(warpx_getGfieldCP_PML, GetG_cp) WARPX_GET_SCALAR_PML(warpx_getGfieldFP_PML, GetG_fp) WARPX_GET_LOVECTS_PML_SCALAR(warpx_getGfieldCPLoVects_PML, GetG_cp) WARPX_GET_LOVECTS_PML_SCALAR(warpx_getGfieldFPLoVects_PML, GetG_fp) int* warpx_getF_pml_nodal_flag () { auto * pml = WarpX::GetInstance().GetPML(0); if (!pml) return nullptr; return getFieldNodalFlagData(pml->GetF_fp()); } int* warpx_getG_pml_nodal_flag () { auto * pml = WarpX::GetInstance().GetPML(0); if (!pml) return nullptr; return getFieldNodalFlagData(pml->GetG_fp()); } amrex::ParticleReal** warpx_getParticleStructs( const char* char_species_name, int lev, int* num_tiles, int** particles_per_tile) { const auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); *num_tiles = myspc.numLocalTilesAtLevel(lev); *particles_per_tile = static_cast(malloc(*num_tiles*sizeof(int))); memset(*particles_per_tile, 0, *num_tiles*sizeof(int)); auto data = static_cast(malloc(*num_tiles*sizeof(typename WarpXParticleContainer::ParticleType*))); int i = 0; for (WarpXParIter pti(myspc, lev); pti.isValid(); ++pti, ++i) { auto& aos = pti.GetArrayOfStructs(); data[i] = (amrex::ParticleReal*) aos.data(); (*particles_per_tile)[i] = pti.numParticles(); } return data; } amrex::ParticleReal** warpx_getParticleArrays ( const char* char_species_name, const char* char_comp_name, int lev, int* num_tiles, int** particles_per_tile ) { const auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); int comp = warpx_getParticleCompIndex(char_species_name, char_comp_name); *num_tiles = myspc.numLocalTilesAtLevel(lev); *particles_per_tile = static_cast(malloc(*num_tiles*sizeof(int))); memset(*particles_per_tile, 0, *num_tiles*sizeof(int)); auto data = static_cast(malloc(*num_tiles*sizeof(amrex::ParticleReal*))); int i = 0; for (WarpXParIter pti(myspc, lev); pti.isValid(); ++pti, ++i) { auto& soa = pti.GetStructOfArrays(); data[i] = (amrex::ParticleReal*) soa.GetRealData(comp).dataPtr(); (*particles_per_tile)[i] = pti.numParticles(); } return data; } void warpx_convert_id_to_long (amrex::Long* ids, const WarpXParticleContainer::ParticleType* pstructs, int size) { amrex::Long* d_ptr = nullptr; #ifdef AMREX_USE_GPU amrex::Gpu::DeviceVector d_ids(size); d_ptr = d_ids.data(); #else d_ptr = ids; #endif amrex::ParallelFor(size, [=] AMREX_GPU_DEVICE (int i) noexcept { d_ptr[i] = pstructs[i].id(); }); #ifdef AMREX_USE_GPU amrex::Gpu::dtoh_memcpy(ids, d_ptr, size*sizeof(amrex::Long)); #endif } void warpx_convert_cpu_to_int (int* cpus, const WarpXParticleContainer::ParticleType* pstructs, int size) { int* d_ptr = nullptr; #ifdef AMREX_USE_GPU amrex::Gpu::DeviceVector d_cpus(size); d_ptr = d_cpus.data(); #else d_ptr = cpus; #endif amrex::ParallelFor(size, [=] AMREX_GPU_DEVICE (int i) noexcept { d_ptr[i] = pstructs[i].cpu(); }); #ifdef AMREX_USE_GPU amrex::Gpu::dtoh_memcpy(cpus, d_ptr, size*sizeof(int)); #endif } int warpx_getParticleCompIndex ( const char* char_species_name, const char* char_comp_name ) { const auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); const std::string comp_name(char_comp_name); auto particle_comps = myspc.getParticleComps(); return particle_comps.at(comp_name); } void warpx_addRealComp(const char* char_species_name, const char* char_comp_name, bool comm=true) { auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); const std::string comp_name(char_comp_name); myspc.AddRealComp(comp_name, comm); mypc.defineAllParticleTiles(); } amrex::Real warpx_sumParticleCharge(const char* char_species_name, const bool local) { auto & mypc = WarpX::GetInstance().GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); return myspc.sumParticleCharge(local); } int warpx_getParticleBoundaryBufferSize(const char* species_name, int boundary, bool local) { const std::string name(species_name); auto& particle_buffers = WarpX::GetInstance().GetParticleBoundaryBuffer(); return particle_buffers.getNumParticlesInContainer(species_name, boundary, local); } int** warpx_getParticleBoundaryBufferScrapedSteps(const char* species_name, int boundary, int lev, int* num_tiles, int** particles_per_tile) { const std::string name(species_name); auto& particle_buffers = WarpX::GetInstance().GetParticleBoundaryBuffer(); auto& particle_buffer = particle_buffers.getParticleBuffer(species_name, boundary); const int comp = particle_buffer.NumIntComps() - 1; *num_tiles = particle_buffer.numLocalTilesAtLevel(lev); *particles_per_tile = static_cast(malloc(*num_tiles*sizeof(int))); memset(*particles_per_tile, 0, *num_tiles*sizeof(int)); auto data = static_cast(malloc(*num_tiles*sizeof(int*))); int i = 0; for (amrex::ParIter<0,0,PIdx::nattribs, 0, amrex::PinnedArenaAllocator> pti(particle_buffer, lev); pti.isValid(); ++pti, ++i) { auto& soa = pti.GetStructOfArrays(); data[i] = (int*) soa.GetIntData(comp).dataPtr(); (*particles_per_tile)[i] = pti.numParticles(); } return data; } amrex::ParticleReal** warpx_getParticleBoundaryBuffer(const char* species_name, int boundary, int lev, int* num_tiles, int** particles_per_tile, const char* comp_name) { const std::string name(species_name); auto& particle_buffers = WarpX::GetInstance().GetParticleBoundaryBuffer(); auto& particle_buffer = particle_buffers.getParticleBuffer(species_name, boundary); const int comp = warpx_getParticleCompIndex(species_name, comp_name); *num_tiles = particle_buffer.numLocalTilesAtLevel(lev); *particles_per_tile = static_cast(malloc(*num_tiles*sizeof(int))); memset(*particles_per_tile, 0, *num_tiles*sizeof(int)); auto data = static_cast(malloc(*num_tiles*sizeof(amrex::ParticleReal*))); int i = 0; for (amrex::ParIter<0,0,PIdx::nattribs, 0, amrex::PinnedArenaAllocator> pti(particle_buffer, lev); pti.isValid(); ++pti, ++i) { auto& soa = pti.GetStructOfArrays(); data[i] = (amrex::ParticleReal*) soa.GetRealData(comp).dataPtr(); (*particles_per_tile)[i] = pti.numParticles(); } return data; } amrex::ParticleReal** warpx_getParticleBoundaryBufferStructs(const char* species_name, int boundary, int lev, int* num_tiles, int** particles_per_tile) { const std::string name(species_name); auto& particle_buffers = WarpX::GetInstance().GetParticleBoundaryBuffer(); auto& particle_buffer = particle_buffers.getParticleBuffer(species_name, boundary); *num_tiles = particle_buffer.numLocalTilesAtLevel(lev); *particles_per_tile = static_cast(malloc(*num_tiles*sizeof(int))); memset(*particles_per_tile, 0, *num_tiles*sizeof(int)); auto data = static_cast(malloc(*num_tiles*sizeof(typename WarpXParticleContainer::ParticleType*))); int i = 0; for (amrex::ParIter<0,0,PIdx::nattribs, 0, amrex::PinnedArenaAllocator> pti(particle_buffer, lev); pti.isValid(); ++pti, ++i) { auto& aos = pti.GetArrayOfStructs(); data[i] = (amrex::ParticleReal*) aos.data(); (*particles_per_tile)[i] = pti.numParticles(); } return data; } void warpx_clearParticleBoundaryBuffer () { auto& particle_buffers = WarpX::GetInstance().GetParticleBoundaryBuffer(); particle_buffers.clearParticles(); } void warpx_depositChargeDensity (const char* char_species_name, int lev) { // this function is used to deposit a given species' charge density // in the rho_fp multifab which can then be accessed from python via // pywarpx.fields.RhoFPWrapper() WarpX& warpx = WarpX::GetInstance(); const auto & mypc = warpx.GetPartContainer(); const std::string species_name(char_species_name); auto & myspc = mypc.GetParticleContainerFromName(species_name); auto * rho_fp = warpx.get_pointer_rho_fp(lev); if (rho_fp == nullptr) { ablastr::warn_manager::WMRecordWarning( "WarpXWrappers", "rho_fp is not allocated", ablastr::warn_manager::WarnPriority::low ); return; } for (WarpXParIter pti(myspc, lev); pti.isValid(); ++pti) { const long np = pti.numParticles(); auto& wp = pti.GetAttribs(PIdx::w); // Do this unconditionally, ignoring myspc.do_not_deposit, to support diagnostic uses myspc.DepositCharge(pti, wp, nullptr, rho_fp, 0, 0, np, 0, lev, lev); } #ifdef WARPX_DIM_RZ warpx.ApplyInverseVolumeScalingToChargeDensity(rho_fp, lev); #endif } void warpx_ComputeDt () { WarpX& warpx = WarpX::GetInstance(); warpx.ComputeDt(); } void warpx_MoveWindow (int step,bool move_j) { WarpX& warpx = WarpX::GetInstance(); warpx.MoveWindow(step, move_j); } void warpx_EvolveE (amrex::Real dt) { WarpX& warpx = WarpX::GetInstance(); warpx.EvolveE(dt); } void warpx_EvolveB (amrex::Real dt, DtType a_dt_type) { WarpX& warpx = WarpX::GetInstance(); warpx.EvolveB(dt, a_dt_type); } void warpx_FillBoundaryE () { WarpX& warpx = WarpX::GetInstance(); warpx.FillBoundaryE(warpx.getngEB()); } void warpx_FillBoundaryB () { WarpX& warpx = WarpX::GetInstance(); warpx.FillBoundaryB(warpx.getngEB()); } void warpx_SyncRho () { WarpX& warpx = WarpX::GetInstance(); warpx.SyncRho(); } void warpx_SyncCurrent ( const amrex::Vector,3>>& J_fp, const amrex::Vector,3>>& J_cp) { WarpX& warpx = WarpX::GetInstance(); warpx.SyncCurrent(J_fp, J_cp); } void warpx_UpdateAuxilaryData () { WarpX& warpx = WarpX::GetInstance(); warpx.UpdateAuxilaryData(); } void warpx_PushParticlesandDepose (amrex::Real cur_time) { WarpX& warpx = WarpX::GetInstance(); warpx.PushParticlesandDepose(cur_time); } int warpx_getistep (int lev) { WarpX& warpx = WarpX::GetInstance(); return warpx.getistep(lev); } void warpx_setistep (int lev, int ii) { WarpX& warpx = WarpX::GetInstance(); warpx.setistep(lev, ii); } amrex::Real warpx_gett_new (int lev) { WarpX& warpx = WarpX::GetInstance(); return warpx.gett_new(lev); } void warpx_sett_new (int lev, amrex::Real time) { WarpX& warpx = WarpX::GetInstance(); warpx.sett_new(lev, time); } amrex::Real warpx_getdt (int lev) { WarpX& warpx = WarpX::GetInstance(); return warpx.getdt(lev); } int warpx_maxStep () { WarpX& warpx = WarpX::GetInstance(); return warpx.maxStep(); } amrex::Real warpx_stopTime () { WarpX& warpx = WarpX::GetInstance(); return warpx.stopTime(); } int warpx_finestLevel () { WarpX& warpx = WarpX::GetInstance(); return warpx.finestLevel(); } int warpx_getMyProc () { return amrex::ParallelDescriptor::MyProc(); } int warpx_getNProcs () { return amrex::ParallelDescriptor::NProcs(); } void warpx_setPotentialEB (const char * char_potential) { WarpX& warpx = WarpX::GetInstance(); const std::string potential(char_potential); warpx.m_poisson_boundary_handler.setPotentialEB(potential); } void mypc_Redistribute () { auto & mypc = WarpX::GetInstance().GetPartContainer(); mypc.Redistribute(); }