1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
#include "RhoFunctor.H"
#include "Diagnostics/ComputeDiagFunctors/ComputeDiagFunctor.H"
#if (defined WARPX_DIM_RZ) && (defined WARPX_USE_PSATD)
#include "FieldSolver/SpectralSolver/SpectralFieldData.H"
#include "FieldSolver/SpectralSolver/SpectralSolverRZ.H"
#include "Utils/WarpXAlgorithmSelection.H"
#endif
#include "Particles/MultiParticleContainer.H"
#include "Particles/WarpXParticleContainer.H"
#include "Utils/CoarsenIO.H"
#include "WarpX.H"
#include <AMReX.H>
#include <AMReX_IntVect.H>
#include <AMReX_MultiFab.H>
#include <memory>
RhoFunctor::RhoFunctor (const int lev,
const amrex::IntVect crse_ratio,
const int species_index,
bool convertRZmodes2cartesian,
const int ncomp)
: ComputeDiagFunctor(ncomp, crse_ratio),
m_lev(lev),
m_species_index(species_index),
m_convertRZmodes2cartesian(convertRZmodes2cartesian)
{}
void
RhoFunctor::operator() ( amrex::MultiFab& mf_dst, const int dcomp, const int /*i_buffer*/ ) const
{
auto& warpx = WarpX::GetInstance();
std::unique_ptr<amrex::MultiFab> rho;
// Deposit charge density
// Call this with local=true since the parallel transfers will be handled
// by ApplyFilterandSumBoundaryRho
// Dump total rho
if (m_species_index == -1) {
auto& mypc = warpx.GetPartContainer();
rho = mypc.GetChargeDensity(m_lev, true);
}
// Dump rho per species
else {
auto& mypc = warpx.GetPartContainer().GetParticleContainer(m_species_index);
rho = mypc.GetChargeDensity(m_lev, true);
}
// Handle the parallel transfers of guard cells and
// apply the filtering if requested.
warpx.ApplyFilterandSumBoundaryRho(m_lev, m_lev, *rho, 0, rho->nComp());
#if (defined WARPX_DIM_RZ) && (defined WARPX_USE_PSATD)
using IdxAvg = SpectralFieldIndexTimeAveraging;
// Apply k-space filtering when using the PSATD solver
if (WarpX::maxwell_solver_id == MaxwellSolverAlgo::PSATD)
{
if (WarpX::use_kspace_filter) {
auto & solver = warpx.get_spectral_solver_fp(m_lev);
solver.ForwardTransform(m_lev, *rho, IdxAvg::rho_new);
solver.ApplyFilter(IdxAvg::rho_new);
solver.BackwardTransform(m_lev, *rho, IdxAvg::rho_new);
}
}
#endif
#ifdef WARPX_DIM_RZ
if (m_convertRZmodes2cartesian) {
// In cylindrical geometry, sum real part of all modes of rho in
// temporary MultiFab mf_dst_stag, and cell-center it to mf_dst
AMREX_ALWAYS_ASSERT_WITH_MESSAGE(
nComp()==1,
"The RZ averaging over modes must write into one single component");
amrex::MultiFab mf_dst_stag( rho->boxArray(), warpx.DistributionMap(m_lev), 1, rho->nGrowVect() );
// Mode 0
amrex::MultiFab::Copy( mf_dst_stag, *rho, 0, 0, 1, rho->nGrowVect() );
for (int ic=1 ; ic < rho->nComp() ; ic += 2) {
// Real part of all modes > 0
amrex::MultiFab::Add( mf_dst_stag, *rho, ic, 0, 1, rho->nGrowVect() );
}
CoarsenIO::Coarsen( mf_dst, mf_dst_stag, dcomp, 0, nComp(), 0, m_crse_ratio );
} else {
CoarsenIO::Coarsen( mf_dst, *rho, dcomp, 0, nComp(), 0, m_crse_ratio );
}
#else
// In Cartesian geometry, coarsen and interpolate from temporary MultiFab rho
// to output diagnostic MultiFab mf_dst
CoarsenIO::Coarsen( mf_dst, *rho, dcomp, 0, nComp(), mf_dst.nGrowVect(), m_crse_ratio );
amrex::ignore_unused(m_convertRZmodes2cartesian);
#endif
}
|