1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/* Copyright 2019-2020 Andrew Myers, Ann Almgren, Axel Huebl
* David Grote, Jean-Luc Vay, Junmin Gu
* Luca Fedeli, Mathieu Lobet, Maxence Thevenet
* Remi Lehe, Revathi Jambunathan, Weiqun Zhang
* Yinjian Zhao
*
* This file is part of WarpX.
*
* License: BSD-3-Clause-LBNL
*/
#ifndef WARPX_ParticleContainer_H_
#define WARPX_ParticleContainer_H_
#include "ElementaryProcess.H"
#include <WarpXParticleContainer.H>
#include <PhysicalParticleContainer.H>
#include <RigidInjectedParticleContainer.H>
#include <PhotonParticleContainer.H>
#include <LaserParticleContainer.H>
#include <WarpXParserWrapper.H>
#include <AMReX_Particles.H>
#ifdef WARPX_QED
#include <QedChiFunctions.H>
#include <BreitWheelerEngineWrapper.H>
#include <QuantumSyncEngineWrapper.H>
#endif
#include "CollisionType.H"
#include <memory>
#include <map>
#include <string>
#include <algorithm>
/**
* The class MultiParticleContainer holds multiple instances of the polymorphic
* class WarpXParticleContainer, stored in its member variable "allcontainers".
* The class WarpX typically has a single (pointer to an) instance of
* MultiParticleContainer.
*
* MultiParticleContainer typically has two types of functions:
* - Functions that loop over all instances of WarpXParticleContainer in
* allcontainers and calls the corresponding function (for instance,
* MultiParticleContainer::Evolve loops over all particles containers and
* calls the corresponding WarpXParticleContainer::Evolve function).
* - Functions that specifically handle multiple species (for instance
* ReadParameters or mapSpeciesProduct).
*/
class MultiParticleContainer
{
public:
MultiParticleContainer (amrex::AmrCore* amr_core);
~MultiParticleContainer() {}
WarpXParticleContainer& GetParticleContainer (int ispecies) {
return *allcontainers[ispecies];
}
#ifdef WARPX_USE_OPENPMD
std::unique_ptr<WarpXParticleContainer>& GetUniqueContainer(int ispecies) {
return allcontainers[ispecies];
}
#endif
std::array<amrex::Real, 3> meanParticleVelocity(int ispecies) {
return allcontainers[ispecies]->meanParticleVelocity();
}
void AllocData ();
void InitData ();
#ifdef WARPX_DO_ELECTROSTATIC
///
/// Performs the field gather operation using the input field E, for all the species
/// in the MultiParticleContainer. This is the electrostatic version of the field gather.
///
void FieldGatherES (const amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E,
const amrex::Vector<std::unique_ptr<amrex::FabArray<amrex::BaseFab<int> > > >& masks);
///
/// This evolves all the particles by one PIC time step, including charge deposition, the
/// field solve, and pushing the particles, for all the species in the MultiParticleContainer.
/// This is the electrostatic version.
///
void EvolveES (const amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E,
amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rho,
amrex::Real t, amrex::Real dt);
///
/// This pushes the particle positions by one half time step for all the species in the
/// MultiParticleContainer. It is used to desynchronize the particles after initializaton
/// or when restarting from a checkpoint. This is the electrostatic version.
///
void PushXES (amrex::Real dt);
///
/// This deposits the particle charge onto rho, accumulating the value for all the species
/// in the MultiParticleContainer. rho is assumed to contain node-centered multifabs.
/// This version is hard-coded for CIC deposition.
///
void DepositCharge(amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rho, bool local = false);
///
/// This returns the total particle charge for all the species in this MultiParticleContainer.
/// This is needed to subtract the offset for periodic boundary conditions.
///
amrex::Real sumParticleCharge(bool local = false);
#endif // WARPX_DO_ELECTROSTATIC
///
/// Performs the field gather operation using the input fields E and B, for all the species
/// in the MultiParticleContainer. This is the electromagnetic version of the field gather.
///
void FieldGather (int lev,
const amrex::MultiFab& Ex, const amrex::MultiFab& Ey,
const amrex::MultiFab& Ez, const amrex::MultiFab& Bx,
const amrex::MultiFab& By, const amrex::MultiFab& Bz);
///
/// This evolves all the particles by one PIC time step, including current deposition, the
/// field solve, and pushing the particles, for all the species in the MultiParticleContainer.
/// This is the electromagnetic version.
///
void Evolve (int lev,
const amrex::MultiFab& Ex, const amrex::MultiFab& Ey, const amrex::MultiFab& Ez,
const amrex::MultiFab& Bx, const amrex::MultiFab& By, const amrex::MultiFab& Bz,
amrex::MultiFab& jx, amrex::MultiFab& jy, amrex::MultiFab& jz,
amrex::MultiFab* cjx, amrex::MultiFab* cjy, amrex::MultiFab* cjz,
amrex::MultiFab* rho, amrex::MultiFab* crho,
const amrex::MultiFab* cEx, const amrex::MultiFab* cEy, const amrex::MultiFab* cEz,
const amrex::MultiFab* cBx, const amrex::MultiFab* cBy, const amrex::MultiFab* cBz,
amrex::Real t, amrex::Real dt, DtType a_dt_type=DtType::Full);
///
/// This pushes the particle positions by one half time step for all the species in the
/// MultiParticleContainer. It is used to desynchronize the particles after initializaton
/// or when restarting from a checkpoint. This is the electromagnetic version.
///
void PushX (amrex::Real dt);
///
/// This pushes the particle momenta by dt for all the species in the
/// MultiParticleContainer. It is used to desynchronize the particles after initializaton
/// or when restarting from a checkpoint. It is also used to synchronize particles at the
/// the end of the run. This is the electromagnetic version.
///
void PushP (int lev, amrex::Real dt,
const amrex::MultiFab& Ex, const amrex::MultiFab& Ey, const amrex::MultiFab& Ez,
const amrex::MultiFab& Bx, const amrex::MultiFab& By, const amrex::MultiFab& Bz);
///
/// This deposits the particle charge onto a node-centered MultiFab and returns a unique ptr
/// to it. The charge density is accumulated over all the particles in the MultiParticleContainer
///
std::unique_ptr<amrex::MultiFab> GetChargeDensity(int lev, bool local = false);
void doFieldIonization ();
void doCoulombCollisions ();
void Checkpoint (const std::string& dir) const;
void WritePlotFile (const std::string& dir) const;
void Restart (const std::string& dir);
void PostRestart ();
void ReadHeader (std::istream& is);
void WriteHeader (std::ostream& os) const;
void SortParticlesByCell ();
void Redistribute ();
void RedistributeLocal (const int num_ghost);
amrex::Vector<long> NumberOfParticlesInGrid(int lev) const;
void Increment (amrex::MultiFab& mf, int lev);
void SetParticleBoxArray (int lev, amrex::BoxArray& new_ba);
void SetParticleDistributionMap (int lev, amrex::DistributionMapping& new_dm);
int nSpecies() const {return nspecies;}
int nSpeciesBackTransformedDiagnostics() const {return nspecies_back_transformed_diagnostics;}
int mapSpeciesBackTransformedDiagnostics(int i) const {return map_species_back_transformed_diagnostics[i];}
int doBackTransformedDiagnostics() const {return do_back_transformed_diagnostics;}
int nSpeciesDepositOnMainGrid () const {
bool const onMainGrid = true;
auto const & v = m_deposit_on_main_grid;
return std::count( v.begin(), v.end(), onMainGrid );
}
int nSpeciesGatherFromMainGrid() const {
bool const fromMainGrid = true;
auto const & v = m_gather_from_main_grid;
return std::count( v.begin(), v.end(), fromMainGrid );
}
void GetLabFrameData(const std::string& snapshot_name,
const int i_lab, const int direction,
const amrex::Real z_old, const amrex::Real z_new,
const amrex::Real t_boost, const amrex::Real t_lab, const amrex::Real dt,
amrex::Vector<WarpXParticleContainer::DiagnosticParticleData>& parts) const;
// Inject particles during the simulation (for particles entering the
// simulation domain after some iterations, due to flowing plasma and/or
// moving window).
void ContinuousInjection(const amrex::RealBox& injection_box) const;
// Update injection position for continuously-injected species.
void UpdateContinuousInjectionPosition(amrex::Real dt) const;
int doContinuousInjection() const;
std::vector<std::string> GetSpeciesNames() const { return species_names; }
PhysicalParticleContainer& GetPCtmp () { return *pc_tmp; }
IonizationProcess ionization_process;
std::string m_B_ext_particle_s = "default";
std::string m_E_ext_particle_s = "default";
// External fields added to particle fields.
amrex::Vector<amrex::Real> m_B_external_particle;
amrex::Vector<amrex::Real> m_E_external_particle;
// ParserWrapper for B_external on the particle
std::unique_ptr<ParserWrapper> m_Bx_particle_parser;
std::unique_ptr<ParserWrapper> m_By_particle_parser;
std::unique_ptr<ParserWrapper> m_Bz_particle_parser;
// ParserWrapper for E_external on the particle
std::unique_ptr<ParserWrapper> m_Ex_particle_parser;
std::unique_ptr<ParserWrapper> m_Ey_particle_parser;
std::unique_ptr<ParserWrapper> m_Ez_particle_parser;
protected:
// Particle container types
enum struct PCTypes {Physical, RigidInjected, Photon};
std::vector<std::string> species_names;
std::vector<std::string> lasers_names;
std::vector<std::string> collision_names;
amrex::Vector<std::unique_ptr<CollisionType> > allcollisions;
//! instead of depositing (current, charge) on the finest patch level, deposit to the coarsest grid
std::vector<bool> m_deposit_on_main_grid;
//! instead of gathering fields from the finest patch level, gather from the coarsest
std::vector<bool> m_gather_from_main_grid;
std::vector<PCTypes> species_types;
#ifdef WARPX_QED
// The QED engines
std::shared_ptr<BreitWheelerEngine> m_shr_p_bw_engine;
std::shared_ptr<QuantumSynchrotronEngine> m_shr_p_qs_engine;
//_______________________________
/**
* Initialize QED engines and provides smart pointers
* to species who need QED processes
*/
void InitQED ();
//Variables to store how many species need a QED process
int m_nspecies_quantum_sync = 0;
int m_nspecies_breit_wheeler = 0;
//________
/**
* Returns the number of species having Quantum Synchrotron process enabled
*/
int NSpeciesQuantumSync() const { return m_nspecies_quantum_sync;}
/**
* Returns the number of species having Breit Wheeler process enabled
*/
int NSpeciesBreitWheeler() const { return m_nspecies_breit_wheeler;}
/**
* Initializes the Quantum Synchrotron engine
*/
void InitQuantumSync ();
/**
* Initializes the Quantum Synchrotron engine
*/
void InitBreitWheeler ();
/**
* Called by InitQuantumSync if a new table has
* to be generated.
*/
void QuantumSyncGenerateTable();
/**
* Called by InitBreitWheeler if a new table has
* to be generated.
*/
void BreitWheelerGenerateTable();
#endif
private:
// physical particles (+ laser)
amrex::Vector<std::unique_ptr<WarpXParticleContainer> > allcontainers;
// Temporary particle container, used e.g. for particle splitting.
std::unique_ptr<PhysicalParticleContainer> pc_tmp;
void ReadParameters ();
void mapSpeciesProduct ();
int getSpeciesID (std::string product_str);
// Number of species dumped in BackTransformedDiagnostics
int nspecies_back_transformed_diagnostics = 0;
// map_species_back_transformed_diagnostics[i] is the species ID in
// MultiParticleContainer for 0<i<nspecies_back_transformed_diagnostics
std::vector<int> map_species_back_transformed_diagnostics;
int do_back_transformed_diagnostics = 0;
// runtime parameters
int nlasers = 0;
int nspecies = 1; // physical particles only. nspecies+nlasers == allcontainers.size().
int ncollisions = 0;
};
#endif /*WARPX_ParticleContainer_H_*/
|