diff options
author | 2022-04-03 16:34:10 -0700 | |
---|---|---|
committer | 2022-04-03 16:34:10 -0700 | |
commit | a87508008dfa1604baf2d4e39bf44704c00f261c (patch) | |
tree | 0be2ade96772037a02803b30e157c367d931e3d9 /src/deps/skia/include/private/SkFloatingPoint.h | |
parent | 4a19a3f07f1887903e5638a3be167f0c7b377ba3 (diff) | |
download | bun-jarred/canvas.tar.gz bun-jarred/canvas.tar.zst bun-jarred/canvas.zip |
skia WIPjarred/canvas
Diffstat (limited to 'src/deps/skia/include/private/SkFloatingPoint.h')
-rw-r--r-- | src/deps/skia/include/private/SkFloatingPoint.h | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/src/deps/skia/include/private/SkFloatingPoint.h b/src/deps/skia/include/private/SkFloatingPoint.h new file mode 100644 index 000000000..fbabd0ebc --- /dev/null +++ b/src/deps/skia/include/private/SkFloatingPoint.h @@ -0,0 +1,272 @@ +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkFloatingPoint_DEFINED +#define SkFloatingPoint_DEFINED + +#include "include/core/SkTypes.h" +#include "include/private/SkFloatBits.h" +#include "include/private/SkSafe_math.h" +#include <float.h> +#include <math.h> +#include <cmath> +#include <cstring> +#include <limits> + + +#if defined(SK_LEGACY_FLOAT_RSQRT) +#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 + #include <xmmintrin.h> +#elif defined(SK_ARM_HAS_NEON) + #include <arm_neon.h> +#endif +#endif + +constexpr float SK_FloatSqrt2 = 1.41421356f; +constexpr float SK_FloatPI = 3.14159265f; +constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; + +// C++98 cmath std::pow seems to be the earliest portable way to get float pow. +// However, on Linux including cmath undefines isfinite. +// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 +static inline float sk_float_pow(float base, float exp) { + return powf(base, exp); +} + +#define sk_float_sqrt(x) sqrtf(x) +#define sk_float_sin(x) sinf(x) +#define sk_float_cos(x) cosf(x) +#define sk_float_tan(x) tanf(x) +#define sk_float_floor(x) floorf(x) +#define sk_float_ceil(x) ceilf(x) +#define sk_float_trunc(x) truncf(x) +#ifdef SK_BUILD_FOR_MAC +# define sk_float_acos(x) static_cast<float>(acos(x)) +# define sk_float_asin(x) static_cast<float>(asin(x)) +#else +# define sk_float_acos(x) acosf(x) +# define sk_float_asin(x) asinf(x) +#endif +#define sk_float_atan2(y,x) atan2f(y,x) +#define sk_float_abs(x) fabsf(x) +#define sk_float_copysign(x, y) copysignf(x, y) +#define sk_float_mod(x,y) fmodf(x,y) +#define sk_float_exp(x) expf(x) +#define sk_float_log(x) logf(x) + +constexpr float sk_float_degrees_to_radians(float degrees) { + return degrees * (SK_FloatPI / 180); +} + +constexpr float sk_float_radians_to_degrees(float radians) { + return radians * (180 / SK_FloatPI); +} + +#define sk_float_round(x) sk_float_floor((x) + 0.5f) + +// can't find log2f on android, but maybe that just a tool bug? +#ifdef SK_BUILD_FOR_ANDROID + static inline float sk_float_log2(float x) { + const double inv_ln_2 = 1.44269504088896; + return (float)(log(x) * inv_ln_2); + } +#else + #define sk_float_log2(x) log2f(x) +#endif + +static inline bool sk_float_isfinite(float x) { + return SkFloatBits_IsFinite(SkFloat2Bits(x)); +} + +static inline bool sk_floats_are_finite(float a, float b) { + return sk_float_isfinite(a) && sk_float_isfinite(b); +} + +static inline bool sk_floats_are_finite(const float array[], int count) { + float prod = 0; + for (int i = 0; i < count; ++i) { + prod *= array[i]; + } + // At this point, prod will either be NaN or 0 + return prod == 0; // if prod is NaN, this check will return false +} + +static inline bool sk_float_isinf(float x) { + return SkFloatBits_IsInf(SkFloat2Bits(x)); +} + +static inline bool sk_float_isnan(float x) { + return !(x == x); +} + +#define sk_double_isnan(a) sk_float_isnan(a) + +#define SK_MaxS32FitsInFloat 2147483520 +#define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat + +#define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 +#define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat + +/** + * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. + */ +static inline int sk_float_saturate2int(float x) { + x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat; + x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat; + return (int)x; +} + +/** + * Return the closest int for the given double. Returns SK_MaxS32 for NaN. + */ +static inline int sk_double_saturate2int(double x) { + x = x < SK_MaxS32 ? x : SK_MaxS32; + x = x > SK_MinS32 ? x : SK_MinS32; + return (int)x; +} + +/** + * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. + */ +static inline int64_t sk_float_saturate2int64(float x) { + x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat; + x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat; + return (int64_t)x; +} + +#define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) +#define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f)) +#define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) + +#define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) +#define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f) +#define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) + +#define sk_double_floor(x) floor(x) +#define sk_double_round(x) floor((x) + 0.5) +#define sk_double_ceil(x) ceil(x) +#define sk_double_floor2int(x) (int)floor(x) +#define sk_double_round2int(x) (int)floor((x) + 0.5) +#define sk_double_ceil2int(x) (int)ceil(x) + +// Cast double to float, ignoring any warning about too-large finite values being cast to float. +// Clang thinks this is undefined, but it's actually implementation defined to return either +// the largest float or infinity (one of the two bracketing representable floats). Good enough! +SK_ATTRIBUTE(no_sanitize("float-cast-overflow")) +static inline float sk_double_to_float(double x) { + return static_cast<float>(x); +} + +#define SK_FloatNaN std::numeric_limits<float>::quiet_NaN() +#define SK_FloatInfinity (+std::numeric_limits<float>::infinity()) +#define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity()) + +#define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN() + +// Returns false if any of the floats are outside of [0...1] +// Returns true if count is 0 +bool sk_floats_are_unit(const float array[], size_t count); + +#if defined(SK_LEGACY_FLOAT_RSQRT) +static inline float sk_float_rsqrt_portable(float x) { + // Get initial estimate. + int i; + memcpy(&i, &x, 4); + i = 0x5F1FFFF9 - (i>>1); + float estimate; + memcpy(&estimate, &i, 4); + + // One step of Newton's method to refine. + const float estimate_sq = estimate*estimate; + estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); + return estimate; +} + +// Fast, approximate inverse square root. +// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. +static inline float sk_float_rsqrt(float x) { +// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got +// it at compile time. This is going to be too fast to productively hide behind a function pointer. +// +// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No +// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. +// +// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html +#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 + return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); +#elif defined(SK_ARM_HAS_NEON) + // Get initial estimate. + const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. + float32x2_t estimate = vrsqrte_f32(xx); + + // One step of Newton's method to refine. + const float32x2_t estimate_sq = vmul_f32(estimate, estimate); + estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); + return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. +#else + return sk_float_rsqrt_portable(x); +#endif +} +#else + +static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); } +static inline float sk_float_rsqrt (float x) { return 1.0f / sk_float_sqrt(x); } + +#endif + +// Returns the log2 of the provided value, were that value to be rounded up to the next power of 2. +// Returns 0 if value <= 0: +// Never returns a negative number, even if value is NaN. +// +// sk_float_nextlog2((-inf..1]) -> 0 +// sk_float_nextlog2((1..2]) -> 1 +// sk_float_nextlog2((2..4]) -> 2 +// sk_float_nextlog2((4..8]) -> 3 +// ... +static inline int sk_float_nextlog2(float x) { + uint32_t bits = (uint32_t)SkFloat2Bits(x); + bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2. + int exp = ((int32_t)bits >> 23) - 127; + return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0. +} + +// This is the number of significant digits we can print in a string such that when we read that +// string back we get the floating point number we expect. The minimum value C requires is 6, but +// most compilers support 9 +#ifdef FLT_DECIMAL_DIG +#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG +#else +#define SK_FLT_DECIMAL_DIG 9 +#endif + +// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not +// so we have a helper that suppresses the possible undefined-behavior warnings. + +SK_ATTRIBUTE(no_sanitize("float-divide-by-zero")) +static inline float sk_ieee_float_divide(float numer, float denom) { + return numer / denom; +} + +SK_ATTRIBUTE(no_sanitize("float-divide-by-zero")) +static inline double sk_ieee_double_divide(double numer, double denom) { + return numer / denom; +} + +// While we clean up divide by zero, we'll replace places that do divide by zero with this TODO. +static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) { + return sk_ieee_float_divide(n,d); +} + +static inline float sk_fmaf(float f, float m, float a) { +#if defined(FP_FAST_FMA) + return std::fmaf(f,m,a); +#else + return f*m+a; +#endif +} + +#endif |