aboutsummaryrefslogtreecommitdiff
path: root/src/deps/skia/include/private/SkFloatingPoint.h
diff options
context:
space:
mode:
authorGravatar Jarred Sumner <jarred@jarredsumner.com> 2022-04-03 16:34:10 -0700
committerGravatar Jarred Sumner <jarred@jarredsumner.com> 2022-04-03 16:34:10 -0700
commita87508008dfa1604baf2d4e39bf44704c00f261c (patch)
tree0be2ade96772037a02803b30e157c367d931e3d9 /src/deps/skia/include/private/SkFloatingPoint.h
parent4a19a3f07f1887903e5638a3be167f0c7b377ba3 (diff)
downloadbun-jarred/canvas.tar.gz
bun-jarred/canvas.tar.zst
bun-jarred/canvas.zip
Diffstat (limited to 'src/deps/skia/include/private/SkFloatingPoint.h')
-rw-r--r--src/deps/skia/include/private/SkFloatingPoint.h272
1 files changed, 272 insertions, 0 deletions
diff --git a/src/deps/skia/include/private/SkFloatingPoint.h b/src/deps/skia/include/private/SkFloatingPoint.h
new file mode 100644
index 000000000..fbabd0ebc
--- /dev/null
+++ b/src/deps/skia/include/private/SkFloatingPoint.h
@@ -0,0 +1,272 @@
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkFloatingPoint_DEFINED
+#define SkFloatingPoint_DEFINED
+
+#include "include/core/SkTypes.h"
+#include "include/private/SkFloatBits.h"
+#include "include/private/SkSafe_math.h"
+#include <float.h>
+#include <math.h>
+#include <cmath>
+#include <cstring>
+#include <limits>
+
+
+#if defined(SK_LEGACY_FLOAT_RSQRT)
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
+ #include <xmmintrin.h>
+#elif defined(SK_ARM_HAS_NEON)
+ #include <arm_neon.h>
+#endif
+#endif
+
+constexpr float SK_FloatSqrt2 = 1.41421356f;
+constexpr float SK_FloatPI = 3.14159265f;
+constexpr double SK_DoublePI = 3.14159265358979323846264338327950288;
+
+// C++98 cmath std::pow seems to be the earliest portable way to get float pow.
+// However, on Linux including cmath undefines isfinite.
+// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
+static inline float sk_float_pow(float base, float exp) {
+ return powf(base, exp);
+}
+
+#define sk_float_sqrt(x) sqrtf(x)
+#define sk_float_sin(x) sinf(x)
+#define sk_float_cos(x) cosf(x)
+#define sk_float_tan(x) tanf(x)
+#define sk_float_floor(x) floorf(x)
+#define sk_float_ceil(x) ceilf(x)
+#define sk_float_trunc(x) truncf(x)
+#ifdef SK_BUILD_FOR_MAC
+# define sk_float_acos(x) static_cast<float>(acos(x))
+# define sk_float_asin(x) static_cast<float>(asin(x))
+#else
+# define sk_float_acos(x) acosf(x)
+# define sk_float_asin(x) asinf(x)
+#endif
+#define sk_float_atan2(y,x) atan2f(y,x)
+#define sk_float_abs(x) fabsf(x)
+#define sk_float_copysign(x, y) copysignf(x, y)
+#define sk_float_mod(x,y) fmodf(x,y)
+#define sk_float_exp(x) expf(x)
+#define sk_float_log(x) logf(x)
+
+constexpr float sk_float_degrees_to_radians(float degrees) {
+ return degrees * (SK_FloatPI / 180);
+}
+
+constexpr float sk_float_radians_to_degrees(float radians) {
+ return radians * (180 / SK_FloatPI);
+}
+
+#define sk_float_round(x) sk_float_floor((x) + 0.5f)
+
+// can't find log2f on android, but maybe that just a tool bug?
+#ifdef SK_BUILD_FOR_ANDROID
+ static inline float sk_float_log2(float x) {
+ const double inv_ln_2 = 1.44269504088896;
+ return (float)(log(x) * inv_ln_2);
+ }
+#else
+ #define sk_float_log2(x) log2f(x)
+#endif
+
+static inline bool sk_float_isfinite(float x) {
+ return SkFloatBits_IsFinite(SkFloat2Bits(x));
+}
+
+static inline bool sk_floats_are_finite(float a, float b) {
+ return sk_float_isfinite(a) && sk_float_isfinite(b);
+}
+
+static inline bool sk_floats_are_finite(const float array[], int count) {
+ float prod = 0;
+ for (int i = 0; i < count; ++i) {
+ prod *= array[i];
+ }
+ // At this point, prod will either be NaN or 0
+ return prod == 0; // if prod is NaN, this check will return false
+}
+
+static inline bool sk_float_isinf(float x) {
+ return SkFloatBits_IsInf(SkFloat2Bits(x));
+}
+
+static inline bool sk_float_isnan(float x) {
+ return !(x == x);
+}
+
+#define sk_double_isnan(a) sk_float_isnan(a)
+
+#define SK_MaxS32FitsInFloat 2147483520
+#define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat
+
+#define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000
+#define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat
+
+/**
+ * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
+ */
+static inline int sk_float_saturate2int(float x) {
+ x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
+ x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
+ return (int)x;
+}
+
+/**
+ * Return the closest int for the given double. Returns SK_MaxS32 for NaN.
+ */
+static inline int sk_double_saturate2int(double x) {
+ x = x < SK_MaxS32 ? x : SK_MaxS32;
+ x = x > SK_MinS32 ? x : SK_MinS32;
+ return (int)x;
+}
+
+/**
+ * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
+ */
+static inline int64_t sk_float_saturate2int64(float x) {
+ x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
+ x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
+ return (int64_t)x;
+}
+
+#define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x))
+#define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f))
+#define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x))
+
+#define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x)
+#define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f)
+#define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x)
+
+#define sk_double_floor(x) floor(x)
+#define sk_double_round(x) floor((x) + 0.5)
+#define sk_double_ceil(x) ceil(x)
+#define sk_double_floor2int(x) (int)floor(x)
+#define sk_double_round2int(x) (int)floor((x) + 0.5)
+#define sk_double_ceil2int(x) (int)ceil(x)
+
+// Cast double to float, ignoring any warning about too-large finite values being cast to float.
+// Clang thinks this is undefined, but it's actually implementation defined to return either
+// the largest float or infinity (one of the two bracketing representable floats). Good enough!
+SK_ATTRIBUTE(no_sanitize("float-cast-overflow"))
+static inline float sk_double_to_float(double x) {
+ return static_cast<float>(x);
+}
+
+#define SK_FloatNaN std::numeric_limits<float>::quiet_NaN()
+#define SK_FloatInfinity (+std::numeric_limits<float>::infinity())
+#define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity())
+
+#define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN()
+
+// Returns false if any of the floats are outside of [0...1]
+// Returns true if count is 0
+bool sk_floats_are_unit(const float array[], size_t count);
+
+#if defined(SK_LEGACY_FLOAT_RSQRT)
+static inline float sk_float_rsqrt_portable(float x) {
+ // Get initial estimate.
+ int i;
+ memcpy(&i, &x, 4);
+ i = 0x5F1FFFF9 - (i>>1);
+ float estimate;
+ memcpy(&estimate, &i, 4);
+
+ // One step of Newton's method to refine.
+ const float estimate_sq = estimate*estimate;
+ estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
+ return estimate;
+}
+
+// Fast, approximate inverse square root.
+// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
+static inline float sk_float_rsqrt(float x) {
+// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
+// it at compile time. This is going to be too fast to productively hide behind a function pointer.
+//
+// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
+// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
+//
+// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
+ return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
+#elif defined(SK_ARM_HAS_NEON)
+ // Get initial estimate.
+ const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
+ float32x2_t estimate = vrsqrte_f32(xx);
+
+ // One step of Newton's method to refine.
+ const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
+ estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
+ return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
+#else
+ return sk_float_rsqrt_portable(x);
+#endif
+}
+#else
+
+static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); }
+static inline float sk_float_rsqrt (float x) { return 1.0f / sk_float_sqrt(x); }
+
+#endif
+
+// Returns the log2 of the provided value, were that value to be rounded up to the next power of 2.
+// Returns 0 if value <= 0:
+// Never returns a negative number, even if value is NaN.
+//
+// sk_float_nextlog2((-inf..1]) -> 0
+// sk_float_nextlog2((1..2]) -> 1
+// sk_float_nextlog2((2..4]) -> 2
+// sk_float_nextlog2((4..8]) -> 3
+// ...
+static inline int sk_float_nextlog2(float x) {
+ uint32_t bits = (uint32_t)SkFloat2Bits(x);
+ bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2.
+ int exp = ((int32_t)bits >> 23) - 127;
+ return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0.
+}
+
+// This is the number of significant digits we can print in a string such that when we read that
+// string back we get the floating point number we expect. The minimum value C requires is 6, but
+// most compilers support 9
+#ifdef FLT_DECIMAL_DIG
+#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
+#else
+#define SK_FLT_DECIMAL_DIG 9
+#endif
+
+// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
+// so we have a helper that suppresses the possible undefined-behavior warnings.
+
+SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
+static inline float sk_ieee_float_divide(float numer, float denom) {
+ return numer / denom;
+}
+
+SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
+static inline double sk_ieee_double_divide(double numer, double denom) {
+ return numer / denom;
+}
+
+// While we clean up divide by zero, we'll replace places that do divide by zero with this TODO.
+static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) {
+ return sk_ieee_float_divide(n,d);
+}
+
+static inline float sk_fmaf(float f, float m, float a) {
+#if defined(FP_FAST_FMA)
+ return std::fmaf(f,m,a);
+#else
+ return f*m+a;
+#endif
+}
+
+#endif