aboutsummaryrefslogtreecommitdiff
path: root/src/zee_alloc.zig
diff options
context:
space:
mode:
authorGravatar Jarred Sumner <jarred@jarredsumner.com> 2021-05-07 01:26:26 -0700
committerGravatar Jarred Sumner <jarred@jarredsumner.com> 2021-05-07 01:26:26 -0700
commitfad34bb4abfe1715d4febec6e7de2809bfffb4e2 (patch)
tree6616f92155a3473c228e46f3c5693c47548761e9 /src/zee_alloc.zig
parentdd9e7de689dafb29ed3e79e2b7af54ea097f75e9 (diff)
downloadbun-fad34bb4abfe1715d4febec6e7de2809bfffb4e2.tar.gz
bun-fad34bb4abfe1715d4febec6e7de2809bfffb4e2.tar.zst
bun-fad34bb4abfe1715d4febec6e7de2809bfffb4e2.zip
cool
Former-commit-id: 96ff169e46fcb43d5afbc9a6e2fde039e27e9d5f
Diffstat (limited to 'src/zee_alloc.zig')
-rw-r--r--src/zee_alloc.zig663
1 files changed, 663 insertions, 0 deletions
diff --git a/src/zee_alloc.zig b/src/zee_alloc.zig
new file mode 100644
index 000000000..ab98fe854
--- /dev/null
+++ b/src/zee_alloc.zig
@@ -0,0 +1,663 @@
+const std = @import("std");
+
+const Allocator = std.mem.Allocator;
+
+pub const Config = struct {
+ /// ZeeAlloc will request a multiple of `slab_size` from the backing allocator.
+ /// **Must** be a power of two.
+ slab_size: usize = std.math.max(std.mem.page_size, 65536), // 64K ought to be enough for everybody
+
+ /// **Must** be a power of two.
+ min_element_size: usize = 4,
+
+ fn maxElementSize(conf: Config) usize {
+ // Scientifically derived value
+ return conf.slab_size / 4;
+ }
+};
+
+pub const ZeeAllocDefaults = ZeeAlloc(Config{});
+
+pub fn ZeeAlloc(comptime conf: Config) type {
+ return struct {
+ const Self = @This();
+
+ const min_shift_size = unsafeLog2(usize, conf.min_element_size);
+ const max_shift_size = unsafeLog2(usize, conf.maxElementSize());
+ const total_slabs = max_shift_size - min_shift_size + 1;
+
+ /// The definitiveā„¢ way of using `ZeeAlloc`
+ pub const wasm_allocator = &_wasm.allocator;
+ var _wasm = init(&wasm_page_allocator);
+
+ jumbo: ?*Slab = null,
+ slabs: [total_slabs]?*Slab = [_]?*Slab{null} ** total_slabs,
+ backing_allocator: *std.mem.Allocator,
+
+ allocator: Allocator = Allocator{
+ .allocFn = alloc,
+ .resizeFn = resize,
+ },
+
+ const Slab = extern struct {
+ const header_size = 2 * @sizeOf(usize);
+ const payload_alignment = header_size;
+
+ next: ?*Slab align(conf.slab_size),
+ element_size: usize,
+ pad: [conf.slab_size - header_size]u8 align(payload_alignment),
+
+ fn init(element_size: usize) Slab {
+ var result: Slab = undefined;
+ result.reset(element_size);
+ return result;
+ }
+
+ fn reset(self: *Slab, element_size: usize) void {
+ self.next = null;
+ self.element_size = element_size;
+
+ const blocks = self.freeBlocks();
+ for (blocks) |*block| {
+ block.* = std.math.maxInt(u64);
+ }
+
+ const remaining_bits = @truncate(u6, (self.elementCount() - self.dataOffset()) % 64);
+ // TODO: detect overflow
+ blocks[blocks.len - 1] = (@as(u64, 1) << remaining_bits) - 1;
+ }
+
+ fn fromMemPtr(ptr: [*]u8) *Slab {
+ const addr = std.mem.alignBackward(@ptrToInt(ptr), conf.slab_size);
+ return @intToPtr(*Slab, addr);
+ }
+
+ const detached_signal = @intToPtr(*align(1) Slab, 0xaaaa);
+ fn markDetached(self: *Slab) void {
+ // Salt the earth
+ const raw_next = @ptrCast(*usize, &self.next);
+ raw_next.* = @ptrToInt(detached_signal);
+ }
+
+ fn isDetached(self: Slab) bool {
+ return self.next == detached_signal;
+ }
+
+ fn freeBlocks(self: *Slab) []u64 {
+ const count = divCeil(usize, self.elementCount(), 64);
+ const ptr = @ptrCast([*]u64, &self.pad);
+ return ptr[0..count];
+ }
+
+ fn totalFree(self: *Slab) usize {
+ var i: usize = 0;
+ for (self.freeBlocks()) |block| {
+ i += @popCount(u64, block);
+ }
+ return i;
+ }
+
+ const UsizeShift = std.meta.Int(.unsigned, @bitSizeOf(std.math.Log2Int(usize)) - 1);
+ fn elementSizeShift(self: Slab) UsizeShift {
+ return @truncate(UsizeShift, @ctz(usize, self.element_size));
+ }
+
+ fn elementCount(self: Slab) usize {
+ return conf.slab_size >> self.elementSizeShift();
+ }
+
+ fn dataOffset(self: Slab) usize {
+ const BITS_PER_BYTE = 8;
+ return 1 + ((conf.slab_size / BITS_PER_BYTE) >> self.elementSizeShift() >> self.elementSizeShift());
+ }
+
+ fn elementAt(self: *Slab, idx: usize) []u8 {
+ std.debug.assert(idx >= self.dataOffset());
+ std.debug.assert(idx < self.elementCount());
+
+ const bytes = std.mem.asBytes(self);
+ return bytes[idx << self.elementSizeShift() ..][0..self.element_size];
+ }
+
+ fn elementIdx(self: *Slab, element: []u8) usize {
+ std.debug.assert(element.len <= self.element_size);
+ const diff = @ptrToInt(element.ptr) - @ptrToInt(self);
+ std.debug.assert(diff % self.element_size == 0);
+
+ return diff >> self.elementSizeShift();
+ }
+
+ fn alloc(self: *Slab) ![]u8 {
+ for (self.freeBlocks()) |*block, i| {
+ const bit = @ctz(u64, block.*);
+ if (bit != 64) {
+ const index = 64 * i + bit;
+
+ const mask = @as(u64, 1) << @intCast(u6, bit);
+ block.* &= ~mask;
+
+ return self.elementAt(index + self.dataOffset());
+ }
+ }
+
+ return error.OutOfMemory;
+ }
+
+ fn free(self: *Slab, element: []u8) void {
+ const index = self.elementIdx(element) - self.dataOffset();
+
+ const block = &self.freeBlocks()[index / 64];
+ const mask = @as(u64, 1) << @truncate(u6, index);
+ std.debug.assert(mask & block.* == 0);
+ block.* |= mask;
+ }
+ };
+
+ pub fn init(allocator: *std.mem.Allocator) Self {
+ return .{ .backing_allocator = allocator };
+ }
+
+ pub fn deinit(self: *Self) void {
+ {
+ var iter = self.jumbo;
+ while (iter) |node| {
+ iter = node.next;
+ const bytes = @ptrCast([*]u8, node);
+ self.backing_allocator.free(bytes[0..node.element_size]);
+ }
+ }
+
+ for (self.slabs) |root| {
+ var iter = root;
+ while (iter) |node| {
+ iter = node.next;
+ self.backing_allocator.destroy(node);
+ }
+ }
+ self.* = undefined;
+ }
+
+ fn isJumbo(value: usize) bool {
+ return value > conf.slab_size / 4;
+ }
+
+ fn padToSize(memsize: usize) usize {
+ if (isJumbo(memsize)) {
+ return std.mem.alignForward(memsize + Slab.header_size, conf.slab_size);
+ } else {
+ return std.math.max(conf.min_element_size, ceilPowerOfTwo(usize, memsize));
+ }
+ }
+
+ fn unsafeLog2(comptime T: type, val: T) T {
+ std.debug.assert(ceilPowerOfTwo(T, val) == val);
+ return @ctz(T, val);
+ }
+
+ fn findSlabIndex(padded_size: usize) usize {
+ return unsafeLog2(usize, padded_size) - min_shift_size;
+ }
+
+ fn allocJumbo(self: *Self, padded_size: usize, ptr_align: usize) ![*]u8 {
+ if (ptr_align > Slab.payload_alignment) {
+ return error.OutOfMemory;
+ }
+
+ const slab: *Slab = blk: {
+ var prev = @ptrCast(*align(@alignOf(Self)) Slab, self);
+ while (prev.next) |curr| : (prev = curr) {
+ if (curr.element_size == padded_size) {
+ prev.next = curr.next;
+ break :blk curr;
+ }
+ }
+
+ const new_frame = try self.backing_allocator.allocAdvanced(u8, conf.slab_size, padded_size, .exact);
+ const synth_slab = @ptrCast(*Slab, new_frame.ptr);
+ synth_slab.element_size = padded_size;
+ break :blk synth_slab;
+ };
+ slab.markDetached();
+ return @ptrCast([*]u8, &slab.pad);
+ }
+
+ fn allocSlab(self: *Self, element_size: usize, ptr_align: usize) ![*]u8 {
+ if (ptr_align > element_size) {
+ return error.OutOfMemory;
+ }
+
+ const idx = findSlabIndex(element_size);
+ const slab = self.slabs[idx] orelse blk: {
+ const new_slab = try self.backing_allocator.create(Slab);
+ new_slab.reset(element_size);
+ self.slabs[idx] = new_slab;
+ break :blk new_slab;
+ };
+
+ const result = slab.alloc() catch unreachable;
+ if (slab.totalFree() == 0) {
+ self.slabs[idx] = slab.next;
+ slab.markDetached();
+ }
+
+ return result.ptr;
+ }
+
+ fn alloc(allocator: *Allocator, n: usize, ptr_align: u29, len_align: u29, ret_addr: usize) Allocator.Error![]u8 {
+ const self = @fieldParentPtr(Self, "allocator", allocator);
+
+ const padded_size = padToSize(n);
+ const ptr: [*]u8 = if (isJumbo(n))
+ try self.allocJumbo(padded_size, ptr_align)
+ else
+ try self.allocSlab(padded_size, ptr_align);
+
+ return ptr[0..std.mem.alignAllocLen(padded_size, n, len_align)];
+ }
+
+ fn resize(allocator: *Allocator, buf: []u8, buf_align: u29, new_size: usize, len_align: u29, ret_addr: usize) Allocator.Error!usize {
+ const self = @fieldParentPtr(Self, "allocator", allocator);
+
+ const slab = Slab.fromMemPtr(buf.ptr);
+ if (new_size == 0) {
+ if (isJumbo(slab.element_size)) {
+ std.debug.assert(slab.isDetached());
+ slab.next = self.jumbo;
+ self.jumbo = slab;
+ } else {
+ slab.free(buf);
+ if (slab.isDetached()) {
+ const idx = findSlabIndex(slab.element_size);
+ slab.next = self.slabs[idx];
+ self.slabs[idx] = slab;
+ }
+ }
+ return 0;
+ }
+
+ const padded_new_size = padToSize(new_size);
+ if (padded_new_size > slab.element_size) {
+ return error.OutOfMemory;
+ }
+
+ return std.mem.alignAllocLen(padded_new_size, new_size, len_align);
+ }
+ };
+}
+
+var wasm_page_allocator = init: {
+ if (!std.builtin.target.isWasm()) {
+ @compileError("wasm allocator is only available for wasm32 arch");
+ }
+
+ // std.heap.WasmPageAllocator is designed for reusing pages
+ // We never free, so this lets us stay super small
+ const WasmPageAllocator = struct {
+ fn alloc(allocator: *Allocator, n: usize, alignment: u29, len_align: u29, ret_addr: usize) Allocator.Error![]u8 {
+ const is_debug = std.builtin.mode == .Debug;
+ @setRuntimeSafety(is_debug);
+ std.debug.assert(n % std.mem.page_size == 0); // Should only be allocating page size chunks
+ std.debug.assert(alignment % std.mem.page_size == 0); // Should only align to page_size increments
+
+ const requested_page_count = @intCast(u32, n / std.mem.page_size);
+ const prev_page_count = @wasmMemoryGrow(0, requested_page_count);
+ if (prev_page_count < 0) {
+ return error.OutOfMemory;
+ }
+
+ const start_ptr = @intToPtr([*]u8, @intCast(usize, prev_page_count) * std.mem.page_size);
+ return start_ptr[0..n];
+ }
+ };
+
+ break :init Allocator{
+ .allocFn = WasmPageAllocator.alloc,
+ .resizeFn = undefined, // Shouldn't be shrinking / freeing
+ };
+};
+
+pub const ExportC = struct {
+ allocator: *std.mem.Allocator,
+ malloc: bool = true,
+ free: bool = true,
+ calloc: bool = false,
+ realloc: bool = false,
+
+ pub fn run(comptime conf: ExportC) void {
+ const Funcs = struct {
+ fn malloc(size: usize) callconv(.C) ?*c_void {
+ if (size == 0) {
+ return null;
+ }
+ //const result = conf.allocator.alloc(u8, size) catch return null;
+ const result = conf.allocator.allocFn(conf.allocator, size, 1, 1, 0) catch return null;
+ return result.ptr;
+ }
+ fn calloc(num_elements: usize, element_size: usize) callconv(.C) ?*c_void {
+ const size = num_elements *% element_size;
+ const c_ptr = @call(.{ .modifier = .never_inline }, malloc, .{size});
+ if (c_ptr) |ptr| {
+ const p = @ptrCast([*]u8, ptr);
+ @memset(p, 0, size);
+ }
+ return c_ptr;
+ }
+ fn realloc(c_ptr: ?*c_void, new_size: usize) callconv(.C) ?*c_void {
+ if (new_size == 0) {
+ @call(.{ .modifier = .never_inline }, free, .{c_ptr});
+ return null;
+ } else if (c_ptr) |ptr| {
+ // Use a synthetic slice
+ const p = @ptrCast([*]u8, ptr);
+ const result = conf.allocator.realloc(p[0..1], new_size) catch return null;
+ return @ptrCast(*c_void, result.ptr);
+ } else {
+ return @call(.{ .modifier = .never_inline }, malloc, .{new_size});
+ }
+ }
+ fn free(c_ptr: ?*c_void) callconv(.C) void {
+ if (c_ptr) |ptr| {
+ // Use a synthetic slice. zee_alloc will free via corresponding metadata.
+ const p = @ptrCast([*]u8, ptr);
+ //conf.allocator.free(p[0..1]);
+ _ = conf.allocator.resizeFn(conf.allocator, p[0..1], 0, 0, 0, 0) catch unreachable;
+ }
+ }
+ };
+
+ if (conf.malloc) {
+ @export(Funcs.malloc, .{ .name = "malloc" });
+ }
+ if (conf.calloc) {
+ @export(Funcs.calloc, .{ .name = "calloc" });
+ }
+ if (conf.realloc) {
+ @export(Funcs.realloc, .{ .name = "realloc" });
+ }
+ if (conf.free) {
+ @export(Funcs.free, .{ .name = "free" });
+ }
+ }
+};
+
+fn divCeil(comptime T: type, numerator: T, denominator: T) T {
+ return (numerator + denominator - 1) / denominator;
+}
+
+// https://github.com/ziglang/zig/issues/2426
+fn ceilPowerOfTwo(comptime T: type, value: T) T {
+ std.debug.assert(value != 0);
+ const Shift = comptime std.math.Log2Int(T);
+ return @as(T, 1) << @intCast(Shift, @bitSizeOf(T) - @clz(T, value - 1));
+}
+
+test "divCeil" {
+ std.testing.expectEqual(@as(u32, 0), divCeil(u32, 0, 64));
+ std.testing.expectEqual(@as(u32, 1), divCeil(u32, 1, 64));
+ std.testing.expectEqual(@as(u32, 1), divCeil(u32, 64, 64));
+ std.testing.expectEqual(@as(u32, 2), divCeil(u32, 65, 64));
+}
+
+test "Slab.init" {
+ {
+ const slab = ZeeAllocDefaults.Slab.init(16384);
+ std.testing.expectEqual(@as(usize, 16384), slab.element_size);
+ std.testing.expectEqual(@as(?*ZeeAllocDefaults.Slab, null), slab.next);
+
+ const raw_ptr = @ptrCast(*const u64, &slab.pad);
+ std.testing.expectEqual((@as(u64, 1) << 3) - 1, raw_ptr.*);
+ }
+
+ {
+ const slab = ZeeAllocDefaults.Slab.init(2048);
+ std.testing.expectEqual(@as(usize, 2048), slab.element_size);
+ std.testing.expectEqual(@as(?*ZeeAllocDefaults.Slab, null), slab.next);
+
+ const raw_ptr = @ptrCast(*const u64, &slab.pad);
+ std.testing.expectEqual((@as(u64, 1) << 31) - 1, raw_ptr.*);
+ }
+
+ const u64_max: u64 = std.math.maxInt(u64);
+
+ {
+ const slab = ZeeAllocDefaults.Slab.init(256);
+ std.testing.expectEqual(@as(usize, 256), slab.element_size);
+ std.testing.expectEqual(@as(?*ZeeAllocDefaults.Slab, null), slab.next);
+
+ const raw_ptr = @ptrCast([*]const u64, &slab.pad);
+ std.testing.expectEqual(u64_max, raw_ptr[0]);
+ std.testing.expectEqual(u64_max, raw_ptr[1]);
+ std.testing.expectEqual(u64_max, raw_ptr[2]);
+ std.testing.expectEqual((@as(u64, 1) << 63) - 1, raw_ptr[3]);
+ }
+}
+
+test "Slab.elementAt" {
+ {
+ var slab = ZeeAllocDefaults.Slab.init(16384);
+
+ var element = slab.elementAt(1);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(1 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(2);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(2 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(3);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(3 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+ }
+ {
+ var slab = ZeeAllocDefaults.Slab.init(128);
+
+ var element = slab.elementAt(1);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(1 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(2);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(2 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(3);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(3 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+ }
+ {
+ var slab = ZeeAllocDefaults.Slab.init(64);
+ std.testing.expectEqual(@as(usize, 3), slab.dataOffset());
+
+ var element = slab.elementAt(3);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(3 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(5);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(5 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+ }
+ {
+ var slab = ZeeAllocDefaults.Slab.init(4);
+ std.testing.expectEqual(@as(usize, 513), slab.dataOffset());
+
+ var element = slab.elementAt(513);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(513 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+
+ element = slab.elementAt(1023);
+ std.testing.expectEqual(slab.element_size, element.len);
+ std.testing.expectEqual(1023 * slab.element_size, @ptrToInt(element.ptr) - @ptrToInt(&slab));
+ }
+}
+
+test "Slab.elementIdx" {
+ var slab = ZeeAllocDefaults.Slab.init(128);
+
+ var element = slab.elementAt(1);
+ std.testing.expectEqual(@as(usize, 1), slab.elementIdx(element));
+}
+
+test "Slab.freeBlocks" {
+ {
+ var slab = ZeeAllocDefaults.Slab.init(16384);
+
+ const blocks = slab.freeBlocks();
+ std.testing.expectEqual(@as(usize, 1), blocks.len);
+ std.testing.expectEqual(@ptrToInt(&slab.pad), @ptrToInt(blocks.ptr));
+ }
+ {
+ var slab = ZeeAllocDefaults.Slab.init(128);
+
+ const blocks = slab.freeBlocks();
+ std.testing.expectEqual(@as(usize, 8), blocks.len);
+ std.testing.expectEqual(@ptrToInt(&slab.pad), @ptrToInt(blocks.ptr));
+ }
+}
+
+test "Slab.alloc + free" {
+ var slab = ZeeAllocDefaults.Slab.init(16384);
+
+ std.testing.expectEqual(@as(usize, 3), slab.totalFree());
+
+ const data0 = try slab.alloc();
+ std.testing.expectEqual(@as(usize, 2), slab.totalFree());
+ std.testing.expectEqual(@as(usize, 16384), data0.len);
+
+ const data1 = try slab.alloc();
+ std.testing.expectEqual(@as(usize, 1), slab.totalFree());
+ std.testing.expectEqual(@as(usize, 16384), data1.len);
+ std.testing.expectEqual(@as(usize, 16384), @ptrToInt(data1.ptr) - @ptrToInt(data0.ptr));
+
+ const data2 = try slab.alloc();
+ std.testing.expectEqual(@as(usize, 0), slab.totalFree());
+ std.testing.expectEqual(@as(usize, 16384), data2.len);
+ std.testing.expectEqual(@as(usize, 16384), @ptrToInt(data2.ptr) - @ptrToInt(data1.ptr));
+
+ std.testing.expectError(error.OutOfMemory, slab.alloc());
+
+ {
+ slab.free(data2);
+ std.testing.expectEqual(@as(usize, 1), slab.totalFree());
+ slab.free(data1);
+ std.testing.expectEqual(@as(usize, 2), slab.totalFree());
+ slab.free(data0);
+ std.testing.expectEqual(@as(usize, 3), slab.totalFree());
+ }
+}
+
+test "padToSize" {
+ const page_size = 65536;
+ const header_size = 2 * @sizeOf(usize);
+
+ std.testing.expectEqual(@as(usize, 4), ZeeAllocDefaults.padToSize(1));
+ std.testing.expectEqual(@as(usize, 4), ZeeAllocDefaults.padToSize(4));
+ std.testing.expectEqual(@as(usize, 8), ZeeAllocDefaults.padToSize(8));
+ std.testing.expectEqual(@as(usize, 16), ZeeAllocDefaults.padToSize(9));
+ std.testing.expectEqual(@as(usize, 16384), ZeeAllocDefaults.padToSize(16384));
+}
+
+test "alloc slabs" {
+ var zee_alloc = ZeeAllocDefaults.init(std.testing.allocator);
+ defer zee_alloc.deinit();
+
+ for (zee_alloc.slabs) |root| {
+ std.testing.expect(root == null);
+ }
+
+ std.testing.expect(zee_alloc.slabs[0] == null);
+ const small = try zee_alloc.allocator.alloc(u8, 4);
+ std.testing.expect(zee_alloc.slabs[0] != null);
+ const smalls_before_free = zee_alloc.slabs[0].?.totalFree();
+ zee_alloc.allocator.free(small);
+ std.testing.expectEqual(smalls_before_free + 1, zee_alloc.slabs[0].?.totalFree());
+
+ std.testing.expect(zee_alloc.slabs[12] == null);
+ const large = try zee_alloc.allocator.alloc(u8, 16384);
+ std.testing.expect(zee_alloc.slabs[12] != null);
+ const larges_before_free = zee_alloc.slabs[12].?.totalFree();
+ zee_alloc.allocator.free(large);
+ std.testing.expectEqual(larges_before_free + 1, zee_alloc.slabs[12].?.totalFree());
+}
+
+test "alloc jumbo" {
+ var zee_alloc = ZeeAllocDefaults.init(std.testing.allocator);
+ defer zee_alloc.deinit();
+
+ std.testing.expect(zee_alloc.jumbo == null);
+ const first = try zee_alloc.allocator.alloc(u8, 32000);
+ std.testing.expect(zee_alloc.jumbo == null);
+ std.testing.expectEqual(@as(usize, ZeeAllocDefaults.Slab.header_size), @ptrToInt(first.ptr) % 65536);
+ zee_alloc.allocator.free(first);
+ std.testing.expect(zee_alloc.jumbo != null);
+
+ const reuse = try zee_alloc.allocator.alloc(u8, 32000);
+ std.testing.expect(zee_alloc.jumbo == null);
+ std.testing.expectEqual(first.ptr, reuse.ptr);
+ zee_alloc.allocator.free(first);
+ std.testing.expect(zee_alloc.jumbo != null);
+}
+
+test "functional tests" {
+ var zee_alloc = ZeeAllocDefaults.init(std.testing.allocator);
+ defer zee_alloc.deinit();
+
+ try std.heap.testAllocator(&zee_alloc.allocator);
+ try std.heap.testAllocatorAligned(&zee_alloc.allocator, 16);
+}
+
+fn expectIllegalBehavior(context: anytype, comptime func: anytype) !void {
+ if (!@hasDecl(std.os.system, "fork") or !std.debug.runtime_safety) return;
+
+ const child_pid = try std.os.fork();
+ if (child_pid == 0) {
+ const null_fd = std.os.openZ("/dev/null", std.os.O_RDWR, 0) catch {
+ std.debug.print("Cannot open /dev/null\n", .{});
+ std.os.exit(0);
+ };
+ std.os.dup2(null_fd, std.io.getStdErr().handle) catch {
+ std.debug.print("Cannot close child process stderr\n", .{});
+ std.os.exit(0);
+ };
+
+ func(context); // this should crash
+ std.os.exit(0);
+ } else {
+ const status = std.os.waitpid(child_pid, 0);
+ // Maybe we should use a fixed error code instead of checking status != 0
+ if (status == 0) @panic("Expected illegal behavior but succeeded instead");
+ }
+}
+
+const AllocContext = struct {
+ allocator: *Allocator,
+ mem: []u8,
+
+ fn init(allocator: *Allocator, mem: []u8) AllocContext {
+ return .{ .allocator = allocator, .mem = mem };
+ }
+
+ fn free(self: AllocContext) void {
+ self.allocator.free(self.mem);
+ }
+};
+
+test "double free" {
+ var zee_alloc = ZeeAllocDefaults.init(std.testing.allocator);
+ defer zee_alloc.deinit();
+
+ const mem = try zee_alloc.allocator.alloc(u8, 16);
+ zee_alloc.allocator.free(mem);
+
+ const context = AllocContext.init(&zee_alloc.allocator, mem);
+ try expectIllegalBehavior(context, AllocContext.free);
+}
+
+test "freeing non-owned memory" {
+ var zee_alloc = ZeeAllocDefaults.init(std.testing.allocator);
+ defer zee_alloc.deinit();
+
+ const mem = try std.testing.allocator.alloc(u8, 16);
+ defer std.testing.allocator.free(mem);
+
+ const context = AllocContext.init(&zee_alloc.allocator, mem);
+ try expectIllegalBehavior(context, AllocContext.free);
+}