diff options
Diffstat (limited to 'src/deps/skia/include/core/SkM44.h')
-rw-r--r-- | src/deps/skia/include/core/SkM44.h | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/src/deps/skia/include/core/SkM44.h b/src/deps/skia/include/core/SkM44.h new file mode 100644 index 000000000..ae08b4400 --- /dev/null +++ b/src/deps/skia/include/core/SkM44.h @@ -0,0 +1,426 @@ +/* + * Copyright 2020 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkM44_DEFINED +#define SkM44_DEFINED + +#include "include/core/SkMatrix.h" +#include "include/core/SkRect.h" +#include "include/core/SkScalar.h" + +struct SK_API SkV2 { + float x, y; + + bool operator==(const SkV2 v) const { return x == v.x && y == v.y; } + bool operator!=(const SkV2 v) const { return !(*this == v); } + + static SkScalar Dot(SkV2 a, SkV2 b) { return a.x * b.x + a.y * b.y; } + static SkScalar Cross(SkV2 a, SkV2 b) { return a.x * b.y - a.y * b.x; } + static SkV2 Normalize(SkV2 v) { return v * (1.0f / v.length()); } + + SkV2 operator-() const { return {-x, -y}; } + SkV2 operator+(SkV2 v) const { return {x+v.x, y+v.y}; } + SkV2 operator-(SkV2 v) const { return {x-v.x, y-v.y}; } + + SkV2 operator*(SkV2 v) const { return {x*v.x, y*v.y}; } + friend SkV2 operator*(SkV2 v, SkScalar s) { return {v.x*s, v.y*s}; } + friend SkV2 operator*(SkScalar s, SkV2 v) { return {v.x*s, v.y*s}; } + friend SkV2 operator/(SkV2 v, SkScalar s) { return {v.x/s, v.y/s}; } + + void operator+=(SkV2 v) { *this = *this + v; } + void operator-=(SkV2 v) { *this = *this - v; } + void operator*=(SkV2 v) { *this = *this * v; } + void operator*=(SkScalar s) { *this = *this * s; } + void operator/=(SkScalar s) { *this = *this / s; } + + SkScalar lengthSquared() const { return Dot(*this, *this); } + SkScalar length() const { return SkScalarSqrt(this->lengthSquared()); } + + SkScalar dot(SkV2 v) const { return Dot(*this, v); } + SkScalar cross(SkV2 v) const { return Cross(*this, v); } + SkV2 normalize() const { return Normalize(*this); } + + const float* ptr() const { return &x; } + float* ptr() { return &x; } +}; + +struct SK_API SkV3 { + float x, y, z; + + bool operator==(const SkV3& v) const { + return x == v.x && y == v.y && z == v.z; + } + bool operator!=(const SkV3& v) const { return !(*this == v); } + + static SkScalar Dot(const SkV3& a, const SkV3& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } + static SkV3 Cross(const SkV3& a, const SkV3& b) { + return { a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x }; + } + static SkV3 Normalize(const SkV3& v) { return v * (1.0f / v.length()); } + + SkV3 operator-() const { return {-x, -y, -z}; } + SkV3 operator+(const SkV3& v) const { return { x + v.x, y + v.y, z + v.z }; } + SkV3 operator-(const SkV3& v) const { return { x - v.x, y - v.y, z - v.z }; } + + SkV3 operator*(const SkV3& v) const { + return { x*v.x, y*v.y, z*v.z }; + } + friend SkV3 operator*(const SkV3& v, SkScalar s) { + return { v.x*s, v.y*s, v.z*s }; + } + friend SkV3 operator*(SkScalar s, const SkV3& v) { return v*s; } + + void operator+=(SkV3 v) { *this = *this + v; } + void operator-=(SkV3 v) { *this = *this - v; } + void operator*=(SkV3 v) { *this = *this * v; } + void operator*=(SkScalar s) { *this = *this * s; } + + SkScalar lengthSquared() const { return Dot(*this, *this); } + SkScalar length() const { return SkScalarSqrt(Dot(*this, *this)); } + + SkScalar dot(const SkV3& v) const { return Dot(*this, v); } + SkV3 cross(const SkV3& v) const { return Cross(*this, v); } + SkV3 normalize() const { return Normalize(*this); } + + const float* ptr() const { return &x; } + float* ptr() { return &x; } +}; + +struct SK_API SkV4 { + float x, y, z, w; + + bool operator==(const SkV4& v) const { + return x == v.x && y == v.y && z == v.z && w == v.w; + } + bool operator!=(const SkV4& v) const { return !(*this == v); } + + SkV4 operator-() const { return {-x, -y, -z, -w}; } + SkV4 operator+(const SkV4& v) const { return { x + v.x, y + v.y, z + v.z, w + v.w }; } + SkV4 operator-(const SkV4& v) const { return { x - v.x, y - v.y, z - v.z, w - v.w }; } + + SkV4 operator*(const SkV4& v) const { + return { x*v.x, y*v.y, z*v.z, w*v.w }; + } + friend SkV4 operator*(const SkV4& v, SkScalar s) { + return { v.x*s, v.y*s, v.z*s, v.w*s }; + } + friend SkV4 operator*(SkScalar s, const SkV4& v) { return v*s; } + + const float* ptr() const { return &x; } + float* ptr() { return &x; } + + float operator[](int i) const { + SkASSERT(i >= 0 && i < 4); + return this->ptr()[i]; + } + float& operator[](int i) { + SkASSERT(i >= 0 && i < 4); + return this->ptr()[i]; + } +}; + +/** + * 4x4 matrix used by SkCanvas and other parts of Skia. + * + * Skia assumes a right-handed coordinate system: + * +X goes to the right + * +Y goes down + * +Z goes into the screen (away from the viewer) + */ +class SK_API SkM44 { +public: + SkM44(const SkM44& src) = default; + SkM44& operator=(const SkM44& src) = default; + + constexpr SkM44() + : fMat{1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1} + {} + + SkM44(const SkM44& a, const SkM44& b) { + this->setConcat(a, b); + } + + enum Uninitialized_Constructor { + kUninitialized_Constructor + }; + SkM44(Uninitialized_Constructor) {} + + enum NaN_Constructor { + kNaN_Constructor + }; + constexpr SkM44(NaN_Constructor) + : fMat{SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, + SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, + SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, + SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN} + {} + + /** + * The constructor parameters are in row-major order. + */ + constexpr SkM44(SkScalar m0, SkScalar m4, SkScalar m8, SkScalar m12, + SkScalar m1, SkScalar m5, SkScalar m9, SkScalar m13, + SkScalar m2, SkScalar m6, SkScalar m10, SkScalar m14, + SkScalar m3, SkScalar m7, SkScalar m11, SkScalar m15) + // fMat is column-major order in memory. + : fMat{m0, m1, m2, m3, + m4, m5, m6, m7, + m8, m9, m10, m11, + m12, m13, m14, m15} + {} + + static SkM44 Rows(const SkV4& r0, const SkV4& r1, const SkV4& r2, const SkV4& r3) { + SkM44 m(kUninitialized_Constructor); + m.setRow(0, r0); + m.setRow(1, r1); + m.setRow(2, r2); + m.setRow(3, r3); + return m; + } + static SkM44 Cols(const SkV4& c0, const SkV4& c1, const SkV4& c2, const SkV4& c3) { + SkM44 m(kUninitialized_Constructor); + m.setCol(0, c0); + m.setCol(1, c1); + m.setCol(2, c2); + m.setCol(3, c3); + return m; + } + + static SkM44 RowMajor(const SkScalar r[16]) { + return SkM44(r[ 0], r[ 1], r[ 2], r[ 3], + r[ 4], r[ 5], r[ 6], r[ 7], + r[ 8], r[ 9], r[10], r[11], + r[12], r[13], r[14], r[15]); + } + static SkM44 ColMajor(const SkScalar c[16]) { + return SkM44(c[0], c[4], c[ 8], c[12], + c[1], c[5], c[ 9], c[13], + c[2], c[6], c[10], c[14], + c[3], c[7], c[11], c[15]); + } + + static SkM44 Translate(SkScalar x, SkScalar y, SkScalar z = 0) { + return SkM44(1, 0, 0, x, + 0, 1, 0, y, + 0, 0, 1, z, + 0, 0, 0, 1); + } + + static SkM44 Scale(SkScalar x, SkScalar y, SkScalar z = 1) { + return SkM44(x, 0, 0, 0, + 0, y, 0, 0, + 0, 0, z, 0, + 0, 0, 0, 1); + } + + static SkM44 Rotate(SkV3 axis, SkScalar radians) { + SkM44 m(kUninitialized_Constructor); + m.setRotate(axis, radians); + return m; + } + + // Scales and translates 'src' to fill 'dst' exactly. + static SkM44 RectToRect(const SkRect& src, const SkRect& dst); + + static SkM44 LookAt(const SkV3& eye, const SkV3& center, const SkV3& up); + static SkM44 Perspective(float near, float far, float angle); + + bool operator==(const SkM44& other) const; + bool operator!=(const SkM44& other) const { + return !(other == *this); + } + + void getColMajor(SkScalar v[]) const { + memcpy(v, fMat, sizeof(fMat)); + } + void getRowMajor(SkScalar v[]) const; + + SkScalar rc(int r, int c) const { + SkASSERT(r >= 0 && r <= 3); + SkASSERT(c >= 0 && c <= 3); + return fMat[c*4 + r]; + } + void setRC(int r, int c, SkScalar value) { + SkASSERT(r >= 0 && r <= 3); + SkASSERT(c >= 0 && c <= 3); + fMat[c*4 + r] = value; + } + + SkV4 row(int i) const { + SkASSERT(i >= 0 && i <= 3); + return {fMat[i + 0], fMat[i + 4], fMat[i + 8], fMat[i + 12]}; + } + SkV4 col(int i) const { + SkASSERT(i >= 0 && i <= 3); + return {fMat[i*4 + 0], fMat[i*4 + 1], fMat[i*4 + 2], fMat[i*4 + 3]}; + } + + void setRow(int i, const SkV4& v) { + SkASSERT(i >= 0 && i <= 3); + fMat[i + 0] = v.x; + fMat[i + 4] = v.y; + fMat[i + 8] = v.z; + fMat[i + 12] = v.w; + } + void setCol(int i, const SkV4& v) { + SkASSERT(i >= 0 && i <= 3); + memcpy(&fMat[i*4], v.ptr(), sizeof(v)); + } + + SkM44& setIdentity() { + *this = { 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 }; + return *this; + } + + SkM44& setTranslate(SkScalar x, SkScalar y, SkScalar z = 0) { + *this = { 1, 0, 0, x, + 0, 1, 0, y, + 0, 0, 1, z, + 0, 0, 0, 1 }; + return *this; + } + + SkM44& setScale(SkScalar x, SkScalar y, SkScalar z = 1) { + *this = { x, 0, 0, 0, + 0, y, 0, 0, + 0, 0, z, 0, + 0, 0, 0, 1 }; + return *this; + } + + /** + * Set this matrix to rotate about the specified unit-length axis vector, + * by an angle specified by its sin() and cos(). + * + * This does not attempt to verify that axis.length() == 1 or that the sin,cos values + * are correct. + */ + SkM44& setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle); + + /** + * Set this matrix to rotate about the specified unit-length axis vector, + * by an angle specified in radians. + * + * This does not attempt to verify that axis.length() == 1. + */ + SkM44& setRotateUnit(SkV3 axis, SkScalar radians) { + return this->setRotateUnitSinCos(axis, SkScalarSin(radians), SkScalarCos(radians)); + } + + /** + * Set this matrix to rotate about the specified axis vector, + * by an angle specified in radians. + * + * Note: axis is not assumed to be unit-length, so it will be normalized internally. + * If axis is already unit-length, call setRotateAboutUnitRadians() instead. + */ + SkM44& setRotate(SkV3 axis, SkScalar radians); + + SkM44& setConcat(const SkM44& a, const SkM44& b); + + friend SkM44 operator*(const SkM44& a, const SkM44& b) { + return SkM44(a, b); + } + + SkM44& preConcat(const SkM44& m) { + return this->setConcat(*this, m); + } + + SkM44& postConcat(const SkM44& m) { + return this->setConcat(m, *this); + } + + /** + * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 0, 1]. + * For most uses, a bottom row of [0, 0, 0, X] behaves like a non-perspective matrix, though + * it will be categorized as perspective. Calling normalizePerspective() will change the + * matrix such that, if its bottom row was [0, 0, 0, X], it will be changed to [0, 0, 0, 1] + * by scaling the rest of the matrix by 1/X. + * + * | A B C D | | A/X B/X C/X D/X | + * | E F G H | -> | E/X F/X G/X H/X | for X != 0 + * | I J K L | | I/X J/X K/X L/X | + * | 0 0 0 X | | 0 0 0 1 | + */ + void normalizePerspective(); + + /** Returns true if all elements of the matrix are finite. Returns false if any + element is infinity, or NaN. + + @return true if matrix has only finite elements + */ + bool isFinite() const { return SkScalarsAreFinite(fMat, 16); } + + /** If this is invertible, return that in inverse and return true. If it is + * not invertible, return false and leave the inverse parameter unchanged. + */ + bool SK_WARN_UNUSED_RESULT invert(SkM44* inverse) const; + + SkM44 SK_WARN_UNUSED_RESULT transpose() const; + + void dump() const; + + //////////// + + SkV4 map(float x, float y, float z, float w) const; + SkV4 operator*(const SkV4& v) const { + return this->map(v.x, v.y, v.z, v.w); + } + SkV3 operator*(SkV3 v) const { + auto v4 = this->map(v.x, v.y, v.z, 0); + return {v4.x, v4.y, v4.z}; + } + ////////////////////// Converting to/from SkMatrix + + /* When converting from SkM44 to SkMatrix, the third row and + * column is dropped. When converting from SkMatrix to SkM44 + * the third row and column remain as identity: + * [ a b c ] [ a b 0 c ] + * [ d e f ] -> [ d e 0 f ] + * [ g h i ] [ 0 0 1 0 ] + * [ g h 0 i ] + */ + SkMatrix asM33() const { + return SkMatrix::MakeAll(fMat[0], fMat[4], fMat[12], + fMat[1], fMat[5], fMat[13], + fMat[3], fMat[7], fMat[15]); + } + + explicit SkM44(const SkMatrix& src) + : SkM44(src[SkMatrix::kMScaleX], src[SkMatrix::kMSkewX], 0, src[SkMatrix::kMTransX], + src[SkMatrix::kMSkewY], src[SkMatrix::kMScaleY], 0, src[SkMatrix::kMTransY], + 0, 0, 1, 0, + src[SkMatrix::kMPersp0], src[SkMatrix::kMPersp1], 0, src[SkMatrix::kMPersp2]) + {} + + SkM44& preTranslate(SkScalar x, SkScalar y, SkScalar z = 0); + SkM44& postTranslate(SkScalar x, SkScalar y, SkScalar z = 0); + + SkM44& preScale(SkScalar x, SkScalar y); + SkM44& preScale(SkScalar x, SkScalar y, SkScalar z); + SkM44& preConcat(const SkMatrix&); + +private: + /* Stored in column-major. + * Indices + * 0 4 8 12 1 0 0 trans_x + * 1 5 9 13 e.g. 0 1 0 trans_y + * 2 6 10 14 0 0 1 trans_z + * 3 7 11 15 0 0 0 1 + */ + SkScalar fMat[16]; + + friend class SkMatrixPriv; +}; + +#endif |