diff options
Diffstat (limited to 'src/deps/skia/include/core/SkMatrix.h')
-rw-r--r-- | src/deps/skia/include/core/SkMatrix.h | 1986 |
1 files changed, 1986 insertions, 0 deletions
diff --git a/src/deps/skia/include/core/SkMatrix.h b/src/deps/skia/include/core/SkMatrix.h new file mode 100644 index 000000000..03140760d --- /dev/null +++ b/src/deps/skia/include/core/SkMatrix.h @@ -0,0 +1,1986 @@ +/* + * Copyright 2006 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkMatrix_DEFINED +#define SkMatrix_DEFINED + +#include "include/core/SkRect.h" +#include "include/private/SkMacros.h" +#include "include/private/SkTo.h" + +struct SkRSXform; +struct SkPoint3; + +// Remove when clients are updated to live without this +#define SK_SUPPORT_LEGACY_MATRIX_RECTTORECT + +/** + * When we transform points through a matrix containing perspective (the bottom row is something + * other than 0,0,1), the bruteforce math can produce confusing results (since we might divide + * by 0, or a negative w value). By default, methods that map rects and paths will apply + * perspective clipping, but this can be changed by specifying kYes to those methods. + */ +enum class SkApplyPerspectiveClip { + kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix + kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix +}; + +/** \class SkMatrix + SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping + SkPoint and vectors with translation, scaling, skewing, rotation, and + perspective. + + SkMatrix elements are in row major order. + SkMatrix constexpr default constructs to identity. + + SkMatrix includes a hidden variable that classifies the type of matrix to + improve performance. SkMatrix is not thread safe unless getType() is called first. + + example: https://fiddle.skia.org/c/@Matrix_063 +*/ +SK_BEGIN_REQUIRE_DENSE +class SK_API SkMatrix { +public: + + /** Creates an identity SkMatrix: + + | 1 0 0 | + | 0 1 0 | + | 0 0 1 | + */ + constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {} + + /** Sets SkMatrix to scale by (sx, sy). Returned matrix is: + + | sx 0 0 | + | 0 sy 0 | + | 0 0 1 | + + @param sx horizontal scale factor + @param sy vertical scale factor + @return SkMatrix with scale + */ + static SkMatrix SK_WARN_UNUSED_RESULT Scale(SkScalar sx, SkScalar sy) { + SkMatrix m; + m.setScale(sx, sy); + return m; + } + + /** Sets SkMatrix to translate by (dx, dy). Returned matrix is: + + | 1 0 dx | + | 0 1 dy | + | 0 0 1 | + + @param dx horizontal translation + @param dy vertical translation + @return SkMatrix with translation + */ + static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkScalar dx, SkScalar dy) { + SkMatrix m; + m.setTranslate(dx, dy); + return m; + } + static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkVector t) { return Translate(t.x(), t.y()); } + static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkIVector t) { return Translate(t.x(), t.y()); } + + /** Sets SkMatrix to rotate by |deg| about a pivot point at (0, 0). + + @param deg rotation angle in degrees (positive rotates clockwise) + @return SkMatrix with rotation + */ + static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg) { + SkMatrix m; + m.setRotate(deg); + return m; + } + static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg, SkPoint pt) { + SkMatrix m; + m.setRotate(deg, pt.x(), pt.y()); + return m; + } + static SkMatrix SK_WARN_UNUSED_RESULT RotateRad(SkScalar rad) { + return RotateDeg(SkRadiansToDegrees(rad)); + } + + /** Sets SkMatrix to skew by (kx, ky) about pivot point (0, 0). + + @param kx horizontal skew factor + @param ky vertical skew factor + @return SkMatrix with skew + */ + static SkMatrix SK_WARN_UNUSED_RESULT Skew(SkScalar kx, SkScalar ky) { + SkMatrix m; + m.setSkew(kx, ky); + return m; + } + + /** \enum SkMatrix::ScaleToFit + ScaleToFit describes how SkMatrix is constructed to map one SkRect to another. + ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling, + or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies + how SkMatrix maps to the side or center of the destination SkRect. + */ + enum ScaleToFit { + kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect + kStart_ScaleToFit, //!< scales and aligns to left and top + kCenter_ScaleToFit, //!< scales and aligns to center + kEnd_ScaleToFit, //!< scales and aligns to right and bottom + }; + + /** Returns SkMatrix set to scale and translate src to dst. ScaleToFit selects + whether mapping completely fills dst or preserves the aspect ratio, and how to + align src within dst. Returns the identity SkMatrix if src is empty. If dst is + empty, returns SkMatrix set to: + + | 0 0 0 | + | 0 0 0 | + | 0 0 1 | + + @param src SkRect to map from + @param dst SkRect to map to + @param mode How to handle the mapping + @return SkMatrix mapping src to dst + */ + static SkMatrix SK_WARN_UNUSED_RESULT RectToRect(const SkRect& src, const SkRect& dst, + ScaleToFit mode = kFill_ScaleToFit) { + return MakeRectToRect(src, dst, mode); + } + + /** Sets SkMatrix to: + + | scaleX skewX transX | + | skewY scaleY transY | + | pers0 pers1 pers2 | + + @param scaleX horizontal scale factor + @param skewX horizontal skew factor + @param transX horizontal translation + @param skewY vertical skew factor + @param scaleY vertical scale factor + @param transY vertical translation + @param pers0 input x-axis perspective factor + @param pers1 input y-axis perspective factor + @param pers2 perspective scale factor + @return SkMatrix constructed from parameters + */ + static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, + SkScalar skewY, SkScalar scaleY, SkScalar transY, + SkScalar pers0, SkScalar pers1, SkScalar pers2) { + SkMatrix m; + m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2); + return m; + } + + /** \enum SkMatrix::TypeMask + Enum of bit fields for mask returned by getType(). + Used to identify the complexity of SkMatrix, to optimize performance. + */ + enum TypeMask { + kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear + kTranslate_Mask = 0x01, //!< translation SkMatrix + kScale_Mask = 0x02, //!< scale SkMatrix + kAffine_Mask = 0x04, //!< skew or rotate SkMatrix + kPerspective_Mask = 0x08, //!< perspective SkMatrix + }; + + /** Returns a bit field describing the transformations the matrix may + perform. The bit field is computed conservatively, so it may include + false positives. For example, when kPerspective_Mask is set, all + other bits are set. + + @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, + kAffine_Mask, kPerspective_Mask + */ + TypeMask getType() const { + if (fTypeMask & kUnknown_Mask) { + fTypeMask = this->computeTypeMask(); + } + // only return the public masks + return (TypeMask)(fTypeMask & 0xF); + } + + /** Returns true if SkMatrix is identity. Identity matrix is: + + | 1 0 0 | + | 0 1 0 | + | 0 0 1 | + + @return true if SkMatrix has no effect + */ + bool isIdentity() const { + return this->getType() == 0; + } + + /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity, + contain only scale elements, only translate elements, or both. SkMatrix form is: + + | scale-x 0 translate-x | + | 0 scale-y translate-y | + | 0 0 1 | + + @return true if SkMatrix is identity; or scales, translates, or both + */ + bool isScaleTranslate() const { + return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); + } + + /** Returns true if SkMatrix is identity, or translates. SkMatrix form is: + + | 1 0 translate-x | + | 0 1 translate-y | + | 0 0 1 | + + @return true if SkMatrix is identity, or translates + */ + bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); } + + /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, + or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all + cases, SkMatrix may also have translation. SkMatrix form is either: + + | scale-x 0 translate-x | + | 0 scale-y translate-y | + | 0 0 1 | + + or + + | 0 rotate-x translate-x | + | rotate-y 0 translate-y | + | 0 0 1 | + + for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. + + Also called preservesAxisAlignment(); use the one that provides better inline + documentation. + + @return true if SkMatrix maps one SkRect into another + */ + bool rectStaysRect() const { + if (fTypeMask & kUnknown_Mask) { + fTypeMask = this->computeTypeMask(); + } + return (fTypeMask & kRectStaysRect_Mask) != 0; + } + + /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, + or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all + cases, SkMatrix may also have translation. SkMatrix form is either: + + | scale-x 0 translate-x | + | 0 scale-y translate-y | + | 0 0 1 | + + or + + | 0 rotate-x translate-x | + | rotate-y 0 translate-y | + | 0 0 1 | + + for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. + + Also called rectStaysRect(); use the one that provides better inline + documentation. + + @return true if SkMatrix maps one SkRect into another + */ + bool preservesAxisAlignment() const { return this->rectStaysRect(); } + + /** Returns true if the matrix contains perspective elements. SkMatrix form is: + + | -- -- -- | + | -- -- -- | + | perspective-x perspective-y perspective-scale | + + where perspective-x or perspective-y is non-zero, or perspective-scale is + not one. All other elements may have any value. + + @return true if SkMatrix is in most general form + */ + bool hasPerspective() const { + return SkToBool(this->getPerspectiveTypeMaskOnly() & + kPerspective_Mask); + } + + /** Returns true if SkMatrix contains only translation, rotation, reflection, and + uniform scale. + Returns false if SkMatrix contains different scales, skewing, perspective, or + degenerate forms that collapse to a line or point. + + Describes that the SkMatrix makes rendering with and without the matrix are + visually alike; a transformed circle remains a circle. Mathematically, this is + referred to as similarity of a Euclidean space, or a similarity transformation. + + Preserves right angles, keeping the arms of the angle equal lengths. + + @param tol to be deprecated + @return true if SkMatrix only rotates, uniformly scales, translates + + example: https://fiddle.skia.org/c/@Matrix_isSimilarity + */ + bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; + + /** Returns true if SkMatrix contains only translation, rotation, reflection, and + scale. Scale may differ along rotated axes. + Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse + to a line or point. + + Preserves right angles, but not requiring that the arms of the angle + retain equal lengths. + + @param tol to be deprecated + @return true if SkMatrix only rotates, scales, translates + + example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles + */ + bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; + + /** SkMatrix organizes its values in row-major order. These members correspond to + each value in SkMatrix. + */ + static constexpr int kMScaleX = 0; //!< horizontal scale factor + static constexpr int kMSkewX = 1; //!< horizontal skew factor + static constexpr int kMTransX = 2; //!< horizontal translation + static constexpr int kMSkewY = 3; //!< vertical skew factor + static constexpr int kMScaleY = 4; //!< vertical scale factor + static constexpr int kMTransY = 5; //!< vertical translation + static constexpr int kMPersp0 = 6; //!< input x perspective factor + static constexpr int kMPersp1 = 7; //!< input y perspective factor + static constexpr int kMPersp2 = 8; //!< perspective bias + + /** Affine arrays are in column-major order to match the matrix used by + PDF and XPS. + */ + static constexpr int kAScaleX = 0; //!< horizontal scale factor + static constexpr int kASkewY = 1; //!< vertical skew factor + static constexpr int kASkewX = 2; //!< horizontal skew factor + static constexpr int kAScaleY = 3; //!< vertical scale factor + static constexpr int kATransX = 4; //!< horizontal translation + static constexpr int kATransY = 5; //!< vertical translation + + /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is + defined. + + @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, + kMPersp0, kMPersp1, kMPersp2 + @return value corresponding to index + */ + SkScalar operator[](int index) const { + SkASSERT((unsigned)index < 9); + return fMat[index]; + } + + /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is + defined. + + @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, + kMPersp0, kMPersp1, kMPersp2 + @return value corresponding to index + */ + SkScalar get(int index) const { + SkASSERT((unsigned)index < 9); + return fMat[index]; + } + + /** Returns one matrix value from a particular row/column. Asserts if index is out + of range and SK_DEBUG is defined. + + @param r matrix row to fetch + @param c matrix column to fetch + @return value at the given matrix position + */ + SkScalar rc(int r, int c) const { + SkASSERT(r >= 0 && r <= 2); + SkASSERT(c >= 0 && c <= 2); + return fMat[r*3 + c]; + } + + /** Returns scale factor multiplied by x-axis input, contributing to x-axis output. + With mapPoints(), scales SkPoint along the x-axis. + + @return horizontal scale factor + */ + SkScalar getScaleX() const { return fMat[kMScaleX]; } + + /** Returns scale factor multiplied by y-axis input, contributing to y-axis output. + With mapPoints(), scales SkPoint along the y-axis. + + @return vertical scale factor + */ + SkScalar getScaleY() const { return fMat[kMScaleY]; } + + /** Returns scale factor multiplied by x-axis input, contributing to y-axis output. + With mapPoints(), skews SkPoint along the y-axis. + Skewing both axes can rotate SkPoint. + + @return vertical skew factor + */ + SkScalar getSkewY() const { return fMat[kMSkewY]; } + + /** Returns scale factor multiplied by y-axis input, contributing to x-axis output. + With mapPoints(), skews SkPoint along the x-axis. + Skewing both axes can rotate SkPoint. + + @return horizontal scale factor + */ + SkScalar getSkewX() const { return fMat[kMSkewX]; } + + /** Returns translation contributing to x-axis output. + With mapPoints(), moves SkPoint along the x-axis. + + @return horizontal translation factor + */ + SkScalar getTranslateX() const { return fMat[kMTransX]; } + + /** Returns translation contributing to y-axis output. + With mapPoints(), moves SkPoint along the y-axis. + + @return vertical translation factor + */ + SkScalar getTranslateY() const { return fMat[kMTransY]; } + + /** Returns factor scaling input x-axis relative to input y-axis. + + @return input x-axis perspective factor + */ + SkScalar getPerspX() const { return fMat[kMPersp0]; } + + /** Returns factor scaling input y-axis relative to input x-axis. + + @return input y-axis perspective factor + */ + SkScalar getPerspY() const { return fMat[kMPersp1]; } + + /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is + defined. Clears internal cache anticipating that caller will change SkMatrix value. + + Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix + value must be followed by dirtyMatrixTypeCache(). + + @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, + kMPersp0, kMPersp1, kMPersp2 + @return writable value corresponding to index + */ + SkScalar& operator[](int index) { + SkASSERT((unsigned)index < 9); + this->setTypeMask(kUnknown_Mask); + return fMat[index]; + } + + /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is + defined. Safer than operator[]; internal cache is always maintained. + + @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, + kMPersp0, kMPersp1, kMPersp2 + @param value scalar to store in SkMatrix + */ + SkMatrix& set(int index, SkScalar value) { + SkASSERT((unsigned)index < 9); + fMat[index] = value; + this->setTypeMask(kUnknown_Mask); + return *this; + } + + /** Sets horizontal scale factor. + + @param v horizontal scale factor to store + */ + SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); } + + /** Sets vertical scale factor. + + @param v vertical scale factor to store + */ + SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); } + + /** Sets vertical skew factor. + + @param v vertical skew factor to store + */ + SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); } + + /** Sets horizontal skew factor. + + @param v horizontal skew factor to store + */ + SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); } + + /** Sets horizontal translation. + + @param v horizontal translation to store + */ + SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); } + + /** Sets vertical translation. + + @param v vertical translation to store + */ + SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); } + + /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values + inversely proportional to input y-axis values. + + @param v perspective factor + */ + SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); } + + /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values + inversely proportional to input x-axis values. + + @param v perspective factor + */ + SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); } + + /** Sets all values from parameters. Sets matrix to: + + | scaleX skewX transX | + | skewY scaleY transY | + | persp0 persp1 persp2 | + + @param scaleX horizontal scale factor to store + @param skewX horizontal skew factor to store + @param transX horizontal translation to store + @param skewY vertical skew factor to store + @param scaleY vertical scale factor to store + @param transY vertical translation to store + @param persp0 input x-axis values perspective factor to store + @param persp1 input y-axis values perspective factor to store + @param persp2 perspective scale factor to store + */ + SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, + SkScalar skewY, SkScalar scaleY, SkScalar transY, + SkScalar persp0, SkScalar persp1, SkScalar persp2) { + fMat[kMScaleX] = scaleX; + fMat[kMSkewX] = skewX; + fMat[kMTransX] = transX; + fMat[kMSkewY] = skewY; + fMat[kMScaleY] = scaleY; + fMat[kMTransY] = transY; + fMat[kMPersp0] = persp0; + fMat[kMPersp1] = persp1; + fMat[kMPersp2] = persp2; + this->setTypeMask(kUnknown_Mask); + return *this; + } + + /** Copies nine scalar values contained by SkMatrix into buffer, in member value + ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, + kMPersp0, kMPersp1, kMPersp2. + + @param buffer storage for nine scalar values + */ + void get9(SkScalar buffer[9]) const { + memcpy(buffer, fMat, 9 * sizeof(SkScalar)); + } + + /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order: + kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, + kMPersp2. + + Sets matrix to: + + | buffer[0] buffer[1] buffer[2] | + | buffer[3] buffer[4] buffer[5] | + | buffer[6] buffer[7] buffer[8] | + + In the future, set9 followed by get9 may not return the same values. Since SkMatrix + maps non-homogeneous coordinates, scaling all nine values produces an equivalent + transformation, possibly improving precision. + + @param buffer nine scalar values + */ + SkMatrix& set9(const SkScalar buffer[9]); + + /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: + + | 1 0 0 | + | 0 1 0 | + | 0 0 1 | + + Also called setIdentity(); use the one that provides better inline + documentation. + */ + SkMatrix& reset(); + + /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: + + | 1 0 0 | + | 0 1 0 | + | 0 0 1 | + + Also called reset(); use the one that provides better inline + documentation. + */ + SkMatrix& setIdentity() { return this->reset(); } + + /** Sets SkMatrix to translate by (dx, dy). + + @param dx horizontal translation + @param dy vertical translation + */ + SkMatrix& setTranslate(SkScalar dx, SkScalar dy); + + /** Sets SkMatrix to translate by (v.fX, v.fY). + + @param v vector containing horizontal and vertical translation + */ + SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); } + + /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py). + The pivot point is unchanged when mapped with SkMatrix. + + @param sx horizontal scale factor + @param sy vertical scale factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); + + /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0). + + @param sx horizontal scale factor + @param sy vertical scale factor + */ + SkMatrix& setScale(SkScalar sx, SkScalar sy); + + /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py). + The pivot point is unchanged when mapped with SkMatrix. + + Positive degrees rotates clockwise. + + @param degrees angle of axes relative to upright axes + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py); + + /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0). + Positive degrees rotates clockwise. + + @param degrees angle of axes relative to upright axes + */ + SkMatrix& setRotate(SkScalar degrees); + + /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py). + The pivot point is unchanged when mapped with SkMatrix. + + Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). + Vector length specifies scale. + + @param sinValue rotation vector x-axis component + @param cosValue rotation vector y-axis component + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue, + SkScalar px, SkScalar py); + + /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0). + + Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). + Vector length specifies scale. + + @param sinValue rotation vector x-axis component + @param cosValue rotation vector y-axis component + */ + SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue); + + /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form. + + Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative + to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled + by vector, then translated by (rsxForm.fTx, rsxForm.fTy). + + @param rsxForm compressed SkRSXform matrix + @return reference to SkMatrix + + example: https://fiddle.skia.org/c/@Matrix_setRSXform + */ + SkMatrix& setRSXform(const SkRSXform& rsxForm); + + /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py). + The pivot point is unchanged when mapped with SkMatrix. + + @param kx horizontal skew factor + @param ky vertical skew factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); + + /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0). + + @param kx horizontal skew factor + @param ky vertical skew factor + */ + SkMatrix& setSkew(SkScalar kx, SkScalar ky); + + /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this. + + Given: + + | A B C | | J K L | + a = | D E F |, b = | M N O | + | G H I | | P Q R | + + sets SkMatrix to: + + | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | + a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | + | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | + + @param a SkMatrix on left side of multiply expression + @param b SkMatrix on right side of multiply expression + */ + SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy). + This can be thought of as moving the point to be mapped before applying SkMatrix. + + Given: + + | A B C | | 1 0 dx | + Matrix = | D E F |, T(dx, dy) = | 0 1 dy | + | G H I | | 0 0 1 | + + sets SkMatrix to: + + | A B C | | 1 0 dx | | A B A*dx+B*dy+C | + Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F | + | G H I | | 0 0 1 | | G H G*dx+H*dy+I | + + @param dx x-axis translation before applying SkMatrix + @param dy y-axis translation before applying SkMatrix + */ + SkMatrix& preTranslate(SkScalar dx, SkScalar dy); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) + about pivot point (px, py). + This can be thought of as scaling about a pivot point before applying SkMatrix. + + Given: + + | A B C | | sx 0 dx | + Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy | + | G H I | | 0 0 1 | + + where + + dx = px - sx * px + dy = py - sy * py + + sets SkMatrix to: + + | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C | + Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F | + | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I | + + @param sx horizontal scale factor + @param sy vertical scale factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) + about pivot point (0, 0). + This can be thought of as scaling about the origin before applying SkMatrix. + + Given: + + | A B C | | sx 0 0 | + Matrix = | D E F |, S(sx, sy) = | 0 sy 0 | + | G H I | | 0 0 1 | + + sets SkMatrix to: + + | A B C | | sx 0 0 | | A*sx B*sy C | + Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F | + | G H I | | 0 0 1 | | G*sx H*sy I | + + @param sx horizontal scale factor + @param sy vertical scale factor + */ + SkMatrix& preScale(SkScalar sx, SkScalar sy); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees + about pivot point (px, py). + This can be thought of as rotating about a pivot point before applying SkMatrix. + + Positive degrees rotates clockwise. + + Given: + + | A B C | | c -s dx | + Matrix = | D E F |, R(degrees, px, py) = | s c dy | + | G H I | | 0 0 1 | + + where + + c = cos(degrees) + s = sin(degrees) + dx = s * py + (1 - c) * px + dy = -s * px + (1 - c) * py + + sets SkMatrix to: + + | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C | + Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F | + | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I | + + @param degrees angle of axes relative to upright axes + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees + about pivot point (0, 0). + This can be thought of as rotating about the origin before applying SkMatrix. + + Positive degrees rotates clockwise. + + Given: + + | A B C | | c -s 0 | + Matrix = | D E F |, R(degrees, px, py) = | s c 0 | + | G H I | | 0 0 1 | + + where + + c = cos(degrees) + s = sin(degrees) + + sets SkMatrix to: + + | A B C | | c -s 0 | | Ac+Bs -As+Bc C | + Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F | + | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I | + + @param degrees angle of axes relative to upright axes + */ + SkMatrix& preRotate(SkScalar degrees); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) + about pivot point (px, py). + This can be thought of as skewing about a pivot point before applying SkMatrix. + + Given: + + | A B C | | 1 kx dx | + Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy | + | G H I | | 0 0 1 | + + where + + dx = -kx * py + dy = -ky * px + + sets SkMatrix to: + + | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C | + Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F | + | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I | + + @param kx horizontal skew factor + @param ky vertical skew factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) + about pivot point (0, 0). + This can be thought of as skewing about the origin before applying SkMatrix. + + Given: + + | A B C | | 1 kx 0 | + Matrix = | D E F |, K(kx, ky) = | ky 1 0 | + | G H I | | 0 0 1 | + + sets SkMatrix to: + + | A B C | | 1 kx 0 | | A+B*ky A*kx+B C | + Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F | + | G H I | | 0 0 1 | | G+H*ky G*kx+H I | + + @param kx horizontal skew factor + @param ky vertical skew factor + */ + SkMatrix& preSkew(SkScalar kx, SkScalar ky); + + /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other. + This can be thought of mapping by other before applying SkMatrix. + + Given: + + | A B C | | J K L | + Matrix = | D E F |, other = | M N O | + | G H I | | P Q R | + + sets SkMatrix to: + + | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | + Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | + | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | + + @param other SkMatrix on right side of multiply expression + */ + SkMatrix& preConcat(const SkMatrix& other); + + /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix. + This can be thought of as moving the point to be mapped after applying SkMatrix. + + Given: + + | J K L | | 1 0 dx | + Matrix = | M N O |, T(dx, dy) = | 0 1 dy | + | P Q R | | 0 0 1 | + + sets SkMatrix to: + + | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R | + T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R | + | 0 0 1 | | P Q R | | P Q R | + + @param dx x-axis translation after applying SkMatrix + @param dy y-axis translation after applying SkMatrix + */ + SkMatrix& postTranslate(SkScalar dx, SkScalar dy); + + /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point + (px, py), multiplied by SkMatrix. + This can be thought of as scaling about a pivot point after applying SkMatrix. + + Given: + + | J K L | | sx 0 dx | + Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy | + | P Q R | | 0 0 1 | + + where + + dx = px - sx * px + dy = py - sy * py + + sets SkMatrix to: + + | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R | + S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R | + | 0 0 1 | | P Q R | | P Q R | + + @param sx horizontal scale factor + @param sy vertical scale factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point + (0, 0), multiplied by SkMatrix. + This can be thought of as scaling about the origin after applying SkMatrix. + + Given: + + | J K L | | sx 0 0 | + Matrix = | M N O |, S(sx, sy) = | 0 sy 0 | + | P Q R | | 0 0 1 | + + sets SkMatrix to: + + | sx 0 0 | | J K L | | sx*J sx*K sx*L | + S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | + | 0 0 1 | | P Q R | | P Q R | + + @param sx horizontal scale factor + @param sy vertical scale factor + */ + SkMatrix& postScale(SkScalar sx, SkScalar sy); + + /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point + (px, py), multiplied by SkMatrix. + This can be thought of as rotating about a pivot point after applying SkMatrix. + + Positive degrees rotates clockwise. + + Given: + + | J K L | | c -s dx | + Matrix = | M N O |, R(degrees, px, py) = | s c dy | + | P Q R | | 0 0 1 | + + where + + c = cos(degrees) + s = sin(degrees) + dx = s * py + (1 - c) * px + dy = -s * px + (1 - c) * py + + sets SkMatrix to: + + |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R| + R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R| + |0 0 1| |P Q R| | P Q R| + + @param degrees angle of axes relative to upright axes + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point + (0, 0), multiplied by SkMatrix. + This can be thought of as rotating about the origin after applying SkMatrix. + + Positive degrees rotates clockwise. + + Given: + + | J K L | | c -s 0 | + Matrix = | M N O |, R(degrees, px, py) = | s c 0 | + | P Q R | | 0 0 1 | + + where + + c = cos(degrees) + s = sin(degrees) + + sets SkMatrix to: + + | c -s dx | | J K L | | cJ-sM cK-sN cL-sO | + R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO | + | 0 0 1 | | P Q R | | P Q R | + + @param degrees angle of axes relative to upright axes + */ + SkMatrix& postRotate(SkScalar degrees); + + /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point + (px, py), multiplied by SkMatrix. + This can be thought of as skewing about a pivot point after applying SkMatrix. + + Given: + + | J K L | | 1 kx dx | + Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy | + | P Q R | | 0 0 1 | + + where + + dx = -kx * py + dy = -ky * px + + sets SkMatrix to: + + | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R| + K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R| + | 0 0 1| |P Q R| | P Q R| + + @param kx horizontal skew factor + @param ky vertical skew factor + @param px pivot on x-axis + @param py pivot on y-axis + */ + SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); + + /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point + (0, 0), multiplied by SkMatrix. + This can be thought of as skewing about the origin after applying SkMatrix. + + Given: + + | J K L | | 1 kx 0 | + Matrix = | M N O |, K(kx, ky) = | ky 1 0 | + | P Q R | | 0 0 1 | + + sets SkMatrix to: + + | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O | + K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O | + | 0 0 1 | | P Q R | | P Q R | + + @param kx horizontal skew factor + @param ky vertical skew factor + */ + SkMatrix& postSkew(SkScalar kx, SkScalar ky); + + /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix. + This can be thought of mapping by other after applying SkMatrix. + + Given: + + | J K L | | A B C | + Matrix = | M N O |, other = | D E F | + | P Q R | | G H I | + + sets SkMatrix to: + + | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | + other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | + | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | + + @param other SkMatrix on left side of multiply expression + */ + SkMatrix& postConcat(const SkMatrix& other); + +#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT +private: +#endif + /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether + mapping completely fills dst or preserves the aspect ratio, and how to align + src within dst. Returns false if src is empty, and sets SkMatrix to identity. + Returns true if dst is empty, and sets SkMatrix to: + + | 0 0 0 | + | 0 0 0 | + | 0 0 1 | + + @param src SkRect to map from + @param dst SkRect to map to + @return true if SkMatrix can represent SkRect mapping + + example: https://fiddle.skia.org/c/@Matrix_setRectToRect + */ + bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); + + /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects + whether mapping completely fills dst or preserves the aspect ratio, and how to + align src within dst. Returns the identity SkMatrix if src is empty. If dst is + empty, returns SkMatrix set to: + + | 0 0 0 | + | 0 0 0 | + | 0 0 1 | + + @param src SkRect to map from + @param dst SkRect to map to + @return SkMatrix mapping src to dst + */ + static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) { + SkMatrix m; + m.setRectToRect(src, dst, stf); + return m; + } +#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT +public: +#endif + + /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less. + + If count is zero, sets SkMatrix to identity and returns true. + If count is one, sets SkMatrix to translate and returns true. + If count is two or more, sets SkMatrix to map SkPoint if possible; returns false + if SkMatrix cannot be constructed. If count is four, SkMatrix may include + perspective. + + @param src SkPoint to map from + @param dst SkPoint to map to + @param count number of SkPoint in src and dst + @return true if SkMatrix was constructed successfully + + example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly + */ + bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); + + /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted. + Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix + maps from destination to source. If SkMatrix can not be inverted, inverse is + unchanged. + + @param inverse storage for inverted SkMatrix; may be nullptr + @return true if SkMatrix can be inverted + */ + bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const { + // Allow the trivial case to be inlined. + if (this->isIdentity()) { + if (inverse) { + inverse->reset(); + } + return true; + } + return this->invertNonIdentity(inverse); + } + + /** Fills affine with identity values in column major order. + Sets affine to: + + | 1 0 0 | + | 0 1 0 | + + Affine 3 by 2 matrices in column major order are used by OpenGL and XPS. + + @param affine storage for 3 by 2 affine matrix + + example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity + */ + static void SetAffineIdentity(SkScalar affine[6]); + + /** Fills affine in column major order. Sets affine to: + + | scale-x skew-x translate-x | + | skew-y scale-y translate-y | + + If SkMatrix contains perspective, returns false and leaves affine unchanged. + + @param affine storage for 3 by 2 affine matrix; may be nullptr + @return true if SkMatrix does not contain perspective + */ + bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const; + + /** Sets SkMatrix to affine values, passed in column major order. Given affine, + column, then row, as: + + | scale-x skew-x translate-x | + | skew-y scale-y translate-y | + + SkMatrix is set, row, then column, to: + + | scale-x skew-x translate-x | + | skew-y scale-y translate-y | + | 0 0 1 | + + @param affine 3 by 2 affine matrix + */ + SkMatrix& setAffine(const SkScalar affine[6]); + + /** + * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1]. + * However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a + * non-perspective matrix, though it will be categorized as perspective. Calling + * normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X], + * it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X. + * + * | A B C | | A/X B/X C/X | + * | D E F | -> | D/X E/X F/X | for X != 0 + * | 0 0 X | | 0 0 1 | + */ + void normalizePerspective() { + if (fMat[8] != 1) { + this->doNormalizePerspective(); + } + } + + /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater + length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + where + + for (i = 0; i < count; ++i) { + x = src[i].fX + y = src[i].fY + } + + each dst SkPoint is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + src and dst may point to the same storage. + + @param dst storage for mapped SkPoint + @param src SkPoint to transform + @param count number of SkPoint to transform + + example: https://fiddle.skia.org/c/@Matrix_mapPoints + */ + void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; + + /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying + each SkPoint by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + where + + for (i = 0; i < count; ++i) { + x = pts[i].fX + y = pts[i].fY + } + + each resulting pts SkPoint is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param pts storage for mapped SkPoint + @param count number of SkPoint to transform + */ + void mapPoints(SkPoint pts[], int count) const { + this->mapPoints(pts, pts, count); + } + + /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or + greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, src = | y | + | G H I | | z | + + each resulting dst SkPoint is computed as: + + |A B C| |x| + Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz| + |G H I| |z| + + @param dst storage for mapped SkPoint3 array + @param src SkPoint3 array to transform + @param count items in SkPoint3 array to transform + + example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints + */ + void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const; + + /** + * Returns homogeneous points, starting with 2D src points (with implied w = 1). + */ + void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const; + + /** Returns SkPoint pt multiplied by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + result is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param p SkPoint to map + @return mapped SkPoint + */ + SkPoint mapPoint(SkPoint pt) const { + SkPoint result; + this->mapXY(pt.x(), pt.y(), &result); + return result; + } + + /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + result is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param x x-axis value of SkPoint to map + @param y y-axis value of SkPoint to map + @param result storage for mapped SkPoint + + example: https://fiddle.skia.org/c/@Matrix_mapXY + */ + void mapXY(SkScalar x, SkScalar y, SkPoint* result) const; + + /** Returns SkPoint (x, y) multiplied by SkMatrix. Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + result is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param x x-axis value of SkPoint to map + @param y y-axis value of SkPoint to map + @return mapped SkPoint + */ + SkPoint mapXY(SkScalar x, SkScalar y) const { + SkPoint result; + this->mapXY(x,y, &result); + return result; + } + + + /** Returns (0, 0) multiplied by SkMatrix. Given: + + | A B C | | 0 | + Matrix = | D E F |, pt = | 0 | + | G H I | | 1 | + + result is computed as: + + |A B C| |0| C F + Matrix * pt = |D E F| |0| = |C F I| = - , - + |G H I| |1| I I + + @return mapped (0, 0) + */ + SkPoint mapOrigin() const { + SkScalar x = this->getTranslateX(), + y = this->getTranslateY(); + if (this->hasPerspective()) { + SkScalar w = fMat[kMPersp2]; + if (w) { w = 1 / w; } + x *= w; + y *= w; + } + return {x, y}; + } + + /** Maps src vector array of length count to vector SkPoint array of equal or greater + length. Vectors are mapped by multiplying each vector by SkMatrix, treating + SkMatrix translation as zero. Given: + + | A B 0 | | x | + Matrix = | D E 0 |, src = | y | + | G H I | | 1 | + + where + + for (i = 0; i < count; ++i) { + x = src[i].fX + y = src[i].fY + } + + each dst vector is computed as: + + |A B 0| |x| Ax+By Dx+Ey + Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + src and dst may point to the same storage. + + @param dst storage for mapped vectors + @param src vectors to transform + @param count number of vectors to transform + + example: https://fiddle.skia.org/c/@Matrix_mapVectors + */ + void mapVectors(SkVector dst[], const SkVector src[], int count) const; + + /** Maps vecs vector array of length count in place, multiplying each vector by + SkMatrix, treating SkMatrix translation as zero. Given: + + | A B 0 | | x | + Matrix = | D E 0 |, vec = | y | + | G H I | | 1 | + + where + + for (i = 0; i < count; ++i) { + x = vecs[i].fX + y = vecs[i].fY + } + + each result vector is computed as: + + |A B 0| |x| Ax+By Dx+Ey + Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param vecs vectors to transform, and storage for mapped vectors + @param count number of vectors to transform + */ + void mapVectors(SkVector vecs[], int count) const { + this->mapVectors(vecs, vecs, count); + } + + /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix, + treating SkMatrix translation as zero. Given: + + | A B 0 | | dx | + Matrix = | D E 0 |, vec = | dy | + | G H I | | 1 | + + each result vector is computed as: + + |A B 0| |dx| A*dx+B*dy D*dx+E*dy + Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- + |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I + + @param dx x-axis value of vector to map + @param dy y-axis value of vector to map + @param result storage for mapped vector + */ + void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { + SkVector vec = { dx, dy }; + this->mapVectors(result, &vec, 1); + } + + /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero. + Given: + + | A B 0 | | dx | + Matrix = | D E 0 |, vec = | dy | + | G H I | | 1 | + + each result vector is computed as: + + |A B 0| |dx| A*dx+B*dy D*dx+E*dy + Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- + |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I + + @param dx x-axis value of vector to map + @param dy y-axis value of vector to map + @return mapped vector + */ + SkVector mapVector(SkScalar dx, SkScalar dy) const { + SkVector vec = { dx, dy }; + this->mapVectors(&vec, &vec, 1); + return vec; + } + + /** Sets dst to bounds of src corners mapped by SkMatrix. + Returns true if mapped corners are dst corners. + + Returned value is the same as calling rectStaysRect(). + + @param dst storage for bounds of mapped SkPoint + @param src SkRect to map + @param pc whether to apply perspective clipping + @return true if dst is equivalent to mapped src + + example: https://fiddle.skia.org/c/@Matrix_mapRect + */ + bool mapRect(SkRect* dst, const SkRect& src, + SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const; + + /** Sets rect to bounds of rect corners mapped by SkMatrix. + Returns true if mapped corners are computed rect corners. + + Returned value is the same as calling rectStaysRect(). + + @param rect rectangle to map, and storage for bounds of mapped corners + @param pc whether to apply perspective clipping + @return true if result is equivalent to mapped rect + */ + bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { + return this->mapRect(rect, *rect, pc); + } + + /** Returns bounds of src corners mapped by SkMatrix. + + @param src rectangle to map + @return mapped bounds + */ + SkRect mapRect(const SkRect& src, + SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { + SkRect dst; + (void)this->mapRect(&dst, src, pc); + return dst; + } + + /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each + rect corner by SkMatrix. rect corner is processed in this order: + (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), + (rect.fLeft, rect.fBottom). + + rect may be empty: rect.fLeft may be greater than or equal to rect.fRight; + rect.fTop may be greater than or equal to rect.fBottom. + + Given: + + | A B C | | x | + Matrix = | D E F |, pt = | y | + | G H I | | 1 | + + where pt is initialized from each of (rect.fLeft, rect.fTop), + (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom), + each dst SkPoint is computed as: + + |A B C| |x| Ax+By+C Dx+Ey+F + Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- + |G H I| |1| Gx+Hy+I Gx+Hy+I + + @param dst storage for mapped corner SkPoint + @param rect SkRect to map + + Note: this does not perform perspective clipping (as that might result in more than + 4 points, so results are suspect if the matrix contains perspective. + */ + void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { + // This could potentially be faster if we only transformed each x and y of the rect once. + rect.toQuad(dst); + this->mapPoints(dst, 4); + } + + /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains + elements other than scale or translate: asserts if SK_DEBUG is defined; + otherwise, results are undefined. + + @param dst storage for bounds of mapped SkPoint + @param src SkRect to map + + example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate + */ + void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const; + + /** Returns geometric mean radius of ellipse formed by constructing circle of + size radius, and mapping constructed circle with SkMatrix. The result squared is + equal to the major axis length times the minor axis length. + Result is not meaningful if SkMatrix contains perspective elements. + + @param radius circle size to map + @return average mapped radius + + example: https://fiddle.skia.org/c/@Matrix_mapRadius + */ + SkScalar mapRadius(SkScalar radius) const; + + /** Compares a and b; returns true if a and b are numerically equal. Returns true + even if sign of zero values are different. Returns false if either SkMatrix + contains NaN, even if the other SkMatrix also contains NaN. + + @param a SkMatrix to compare + @param b SkMatrix to compare + @return true if SkMatrix a and SkMatrix b are numerically equal + */ + friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); + + /** Compares a and b; returns true if a and b are not numerically equal. Returns false + even if sign of zero values are different. Returns true if either SkMatrix + contains NaN, even if the other SkMatrix also contains NaN. + + @param a SkMatrix to compare + @param b SkMatrix to compare + @return true if SkMatrix a and SkMatrix b are numerically not equal + */ + friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { + return !(a == b); + } + + /** Writes text representation of SkMatrix to standard output. Floating point values + are written with limited precision; it may not be possible to reconstruct + original SkMatrix from output. + + example: https://fiddle.skia.org/c/@Matrix_dump + */ + void dump() const; + + /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and + skewing elements. + Returns -1 if scale factor overflows or SkMatrix contains perspective. + + @return minimum scale factor + + example: https://fiddle.skia.org/c/@Matrix_getMinScale + */ + SkScalar getMinScale() const; + + /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and + skewing elements. + Returns -1 if scale factor overflows or SkMatrix contains perspective. + + @return maximum scale factor + + example: https://fiddle.skia.org/c/@Matrix_getMaxScale + */ + SkScalar getMaxScale() const; + + /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the + maximum scaling factor. Scaling factors are computed by decomposing + the SkMatrix scaling and skewing elements. + + Returns true if scaleFactors are found; otherwise, returns false and sets + scaleFactors to undefined values. + + @param scaleFactors storage for minimum and maximum scale factors + @return true if scale factors were computed correctly + */ + bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const; + + /** Decomposes SkMatrix into scale components and whatever remains. Returns false if + SkMatrix could not be decomposed. + + Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix + with scaling factored out. remaining may be passed as nullptr + to determine if SkMatrix can be decomposed without computing remainder. + + Returns true if scale components are found. scale and remaining are + unchanged if SkMatrix contains perspective; scale factors are not finite, or + are nearly zero. + + On success: Matrix = Remaining * scale. + + @param scale axes scaling factors; may be nullptr + @param remaining SkMatrix without scaling; may be nullptr + @return true if scale can be computed + + example: https://fiddle.skia.org/c/@Matrix_decomposeScale + */ + bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const; + + /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to: + + | 1 0 0 | + | 0 1 0 | + | 0 0 1 | + + @return const identity SkMatrix + + example: https://fiddle.skia.org/c/@Matrix_I + */ + static const SkMatrix& I(); + + /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set + to: + + | SK_ScalarMax SK_ScalarMax SK_ScalarMax | + | SK_ScalarMax SK_ScalarMax SK_ScalarMax | + | SK_ScalarMax SK_ScalarMax SK_ScalarMax | + + @return const invalid SkMatrix + + example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix + */ + static const SkMatrix& InvalidMatrix(); + + /** Returns SkMatrix a multiplied by SkMatrix b. + + Given: + + | A B C | | J K L | + a = | D E F |, b = | M N O | + | G H I | | P Q R | + + sets SkMatrix to: + + | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | + a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | + | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | + + @param a SkMatrix on left side of multiply expression + @param b SkMatrix on right side of multiply expression + @return SkMatrix computed from a times b + */ + static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { + SkMatrix result; + result.setConcat(a, b); + return result; + } + + friend SkMatrix operator*(const SkMatrix& a, const SkMatrix& b) { + return Concat(a, b); + } + + /** Sets internal cache to unknown state. Use to force update after repeated + modifications to SkMatrix element reference returned by operator[](int index). + */ + void dirtyMatrixTypeCache() { + this->setTypeMask(kUnknown_Mask); + } + + /** Initializes SkMatrix with scale and translate elements. + + | sx 0 tx | + | 0 sy ty | + | 0 0 1 | + + @param sx horizontal scale factor to store + @param sy vertical scale factor to store + @param tx horizontal translation to store + @param ty vertical translation to store + */ + void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { + fMat[kMScaleX] = sx; + fMat[kMSkewX] = 0; + fMat[kMTransX] = tx; + + fMat[kMSkewY] = 0; + fMat[kMScaleY] = sy; + fMat[kMTransY] = ty; + + fMat[kMPersp0] = 0; + fMat[kMPersp1] = 0; + fMat[kMPersp2] = 1; + + int mask = 0; + if (sx != 1 || sy != 1) { + mask |= kScale_Mask; + } + if (tx != 0.0f || ty != 0.0f) { + mask |= kTranslate_Mask; + } + this->setTypeMask(mask | kRectStaysRect_Mask); + } + + /** Returns true if all elements of the matrix are finite. Returns false if any + element is infinity, or NaN. + + @return true if matrix has only finite elements + */ + bool isFinite() const { return SkScalarsAreFinite(fMat, 9); } + +private: + /** Set if the matrix will map a rectangle to another rectangle. This + can be true if the matrix is scale-only, or rotates a multiple of + 90 degrees. + + This bit will be set on identity matrices + */ + static constexpr int kRectStaysRect_Mask = 0x10; + + /** Set if the perspective bit is valid even though the rest of + the matrix is Unknown. + */ + static constexpr int kOnlyPerspectiveValid_Mask = 0x40; + + static constexpr int kUnknown_Mask = 0x80; + + static constexpr int kORableMasks = kTranslate_Mask | + kScale_Mask | + kAffine_Mask | + kPerspective_Mask; + + static constexpr int kAllMasks = kTranslate_Mask | + kScale_Mask | + kAffine_Mask | + kPerspective_Mask | + kRectStaysRect_Mask; + + SkScalar fMat[9]; + mutable int32_t fTypeMask; + + constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx, + SkScalar ky, SkScalar sy, SkScalar ty, + SkScalar p0, SkScalar p1, SkScalar p2, int typeMask) + : fMat{sx, kx, tx, + ky, sy, ty, + p0, p1, p2} + , fTypeMask(typeMask) {} + + static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp); + + uint8_t computeTypeMask() const; + uint8_t computePerspectiveTypeMask() const; + + void setTypeMask(int mask) { + // allow kUnknown or a valid mask + SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || + ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) + == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); + fTypeMask = mask; + } + + void orTypeMask(int mask) { + SkASSERT((mask & kORableMasks) == mask); + fTypeMask |= mask; + } + + void clearTypeMask(int mask) { + // only allow a valid mask + SkASSERT((mask & kAllMasks) == mask); + fTypeMask &= ~mask; + } + + TypeMask getPerspectiveTypeMaskOnly() const { + if ((fTypeMask & kUnknown_Mask) && + !(fTypeMask & kOnlyPerspectiveValid_Mask)) { + fTypeMask = this->computePerspectiveTypeMask(); + } + return (TypeMask)(fTypeMask & 0xF); + } + + /** Returns true if we already know that the matrix is identity; + false otherwise. + */ + bool isTriviallyIdentity() const { + if (fTypeMask & kUnknown_Mask) { + return false; + } + return ((fTypeMask & 0xF) == 0); + } + + inline void updateTranslateMask() { + if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) { + fTypeMask |= kTranslate_Mask; + } else { + fTypeMask &= ~kTranslate_Mask; + } + } + + typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, + SkPoint* result); + + static MapXYProc GetMapXYProc(TypeMask mask) { + SkASSERT((mask & ~kAllMasks) == 0); + return gMapXYProcs[mask & kAllMasks]; + } + + MapXYProc getMapXYProc() const { + return GetMapXYProc(this->getType()); + } + + typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], + const SkPoint src[], int count); + + static MapPtsProc GetMapPtsProc(TypeMask mask) { + SkASSERT((mask & ~kAllMasks) == 0); + return gMapPtsProcs[mask & kAllMasks]; + } + + MapPtsProc getMapPtsProc() const { + return GetMapPtsProc(this->getType()); + } + + bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const; + + static bool Poly2Proc(const SkPoint[], SkMatrix*); + static bool Poly3Proc(const SkPoint[], SkMatrix*); + static bool Poly4Proc(const SkPoint[], SkMatrix*); + + static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); + + static const MapXYProc gMapXYProcs[]; + + static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); + static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); + static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); + static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], + int count); + static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); + + static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); + + static const MapPtsProc gMapPtsProcs[]; + + // return the number of bytes written, whether or not buffer is null + size_t writeToMemory(void* buffer) const; + /** + * Reads data from the buffer parameter + * + * @param buffer Memory to read from + * @param length Amount of memory available in the buffer + * @return number of bytes read (must be a multiple of 4) or + * 0 if there was not enough memory available + */ + size_t readFromMemory(const void* buffer, size_t length); + + // legacy method -- still needed? why not just postScale(1/divx, ...)? + bool postIDiv(int divx, int divy); + void doNormalizePerspective(); + + friend class SkPerspIter; + friend class SkMatrixPriv; + friend class SerializationTest; +}; +SK_END_REQUIRE_DENSE + +#endif |