aboutsummaryrefslogtreecommitdiff
path: root/src/deps/skia/include/core/SkMatrix.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/deps/skia/include/core/SkMatrix.h')
-rw-r--r--src/deps/skia/include/core/SkMatrix.h1986
1 files changed, 1986 insertions, 0 deletions
diff --git a/src/deps/skia/include/core/SkMatrix.h b/src/deps/skia/include/core/SkMatrix.h
new file mode 100644
index 000000000..03140760d
--- /dev/null
+++ b/src/deps/skia/include/core/SkMatrix.h
@@ -0,0 +1,1986 @@
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkMatrix_DEFINED
+#define SkMatrix_DEFINED
+
+#include "include/core/SkRect.h"
+#include "include/private/SkMacros.h"
+#include "include/private/SkTo.h"
+
+struct SkRSXform;
+struct SkPoint3;
+
+// Remove when clients are updated to live without this
+#define SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
+
+/**
+ * When we transform points through a matrix containing perspective (the bottom row is something
+ * other than 0,0,1), the bruteforce math can produce confusing results (since we might divide
+ * by 0, or a negative w value). By default, methods that map rects and paths will apply
+ * perspective clipping, but this can be changed by specifying kYes to those methods.
+ */
+enum class SkApplyPerspectiveClip {
+ kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix
+ kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix
+};
+
+/** \class SkMatrix
+ SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping
+ SkPoint and vectors with translation, scaling, skewing, rotation, and
+ perspective.
+
+ SkMatrix elements are in row major order.
+ SkMatrix constexpr default constructs to identity.
+
+ SkMatrix includes a hidden variable that classifies the type of matrix to
+ improve performance. SkMatrix is not thread safe unless getType() is called first.
+
+ example: https://fiddle.skia.org/c/@Matrix_063
+*/
+SK_BEGIN_REQUIRE_DENSE
+class SK_API SkMatrix {
+public:
+
+ /** Creates an identity SkMatrix:
+
+ | 1 0 0 |
+ | 0 1 0 |
+ | 0 0 1 |
+ */
+ constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {}
+
+ /** Sets SkMatrix to scale by (sx, sy). Returned matrix is:
+
+ | sx 0 0 |
+ | 0 sy 0 |
+ | 0 0 1 |
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ @return SkMatrix with scale
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT Scale(SkScalar sx, SkScalar sy) {
+ SkMatrix m;
+ m.setScale(sx, sy);
+ return m;
+ }
+
+ /** Sets SkMatrix to translate by (dx, dy). Returned matrix is:
+
+ | 1 0 dx |
+ | 0 1 dy |
+ | 0 0 1 |
+
+ @param dx horizontal translation
+ @param dy vertical translation
+ @return SkMatrix with translation
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkScalar dx, SkScalar dy) {
+ SkMatrix m;
+ m.setTranslate(dx, dy);
+ return m;
+ }
+ static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkVector t) { return Translate(t.x(), t.y()); }
+ static SkMatrix SK_WARN_UNUSED_RESULT Translate(SkIVector t) { return Translate(t.x(), t.y()); }
+
+ /** Sets SkMatrix to rotate by |deg| about a pivot point at (0, 0).
+
+ @param deg rotation angle in degrees (positive rotates clockwise)
+ @return SkMatrix with rotation
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg) {
+ SkMatrix m;
+ m.setRotate(deg);
+ return m;
+ }
+ static SkMatrix SK_WARN_UNUSED_RESULT RotateDeg(SkScalar deg, SkPoint pt) {
+ SkMatrix m;
+ m.setRotate(deg, pt.x(), pt.y());
+ return m;
+ }
+ static SkMatrix SK_WARN_UNUSED_RESULT RotateRad(SkScalar rad) {
+ return RotateDeg(SkRadiansToDegrees(rad));
+ }
+
+ /** Sets SkMatrix to skew by (kx, ky) about pivot point (0, 0).
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ @return SkMatrix with skew
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT Skew(SkScalar kx, SkScalar ky) {
+ SkMatrix m;
+ m.setSkew(kx, ky);
+ return m;
+ }
+
+ /** \enum SkMatrix::ScaleToFit
+ ScaleToFit describes how SkMatrix is constructed to map one SkRect to another.
+ ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling,
+ or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies
+ how SkMatrix maps to the side or center of the destination SkRect.
+ */
+ enum ScaleToFit {
+ kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect
+ kStart_ScaleToFit, //!< scales and aligns to left and top
+ kCenter_ScaleToFit, //!< scales and aligns to center
+ kEnd_ScaleToFit, //!< scales and aligns to right and bottom
+ };
+
+ /** Returns SkMatrix set to scale and translate src to dst. ScaleToFit selects
+ whether mapping completely fills dst or preserves the aspect ratio, and how to
+ align src within dst. Returns the identity SkMatrix if src is empty. If dst is
+ empty, returns SkMatrix set to:
+
+ | 0 0 0 |
+ | 0 0 0 |
+ | 0 0 1 |
+
+ @param src SkRect to map from
+ @param dst SkRect to map to
+ @param mode How to handle the mapping
+ @return SkMatrix mapping src to dst
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT RectToRect(const SkRect& src, const SkRect& dst,
+ ScaleToFit mode = kFill_ScaleToFit) {
+ return MakeRectToRect(src, dst, mode);
+ }
+
+ /** Sets SkMatrix to:
+
+ | scaleX skewX transX |
+ | skewY scaleY transY |
+ | pers0 pers1 pers2 |
+
+ @param scaleX horizontal scale factor
+ @param skewX horizontal skew factor
+ @param transX horizontal translation
+ @param skewY vertical skew factor
+ @param scaleY vertical scale factor
+ @param transY vertical translation
+ @param pers0 input x-axis perspective factor
+ @param pers1 input y-axis perspective factor
+ @param pers2 perspective scale factor
+ @return SkMatrix constructed from parameters
+ */
+ static SkMatrix SK_WARN_UNUSED_RESULT MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
+ SkScalar skewY, SkScalar scaleY, SkScalar transY,
+ SkScalar pers0, SkScalar pers1, SkScalar pers2) {
+ SkMatrix m;
+ m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, pers0, pers1, pers2);
+ return m;
+ }
+
+ /** \enum SkMatrix::TypeMask
+ Enum of bit fields for mask returned by getType().
+ Used to identify the complexity of SkMatrix, to optimize performance.
+ */
+ enum TypeMask {
+ kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear
+ kTranslate_Mask = 0x01, //!< translation SkMatrix
+ kScale_Mask = 0x02, //!< scale SkMatrix
+ kAffine_Mask = 0x04, //!< skew or rotate SkMatrix
+ kPerspective_Mask = 0x08, //!< perspective SkMatrix
+ };
+
+ /** Returns a bit field describing the transformations the matrix may
+ perform. The bit field is computed conservatively, so it may include
+ false positives. For example, when kPerspective_Mask is set, all
+ other bits are set.
+
+ @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask,
+ kAffine_Mask, kPerspective_Mask
+ */
+ TypeMask getType() const {
+ if (fTypeMask & kUnknown_Mask) {
+ fTypeMask = this->computeTypeMask();
+ }
+ // only return the public masks
+ return (TypeMask)(fTypeMask & 0xF);
+ }
+
+ /** Returns true if SkMatrix is identity. Identity matrix is:
+
+ | 1 0 0 |
+ | 0 1 0 |
+ | 0 0 1 |
+
+ @return true if SkMatrix has no effect
+ */
+ bool isIdentity() const {
+ return this->getType() == 0;
+ }
+
+ /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity,
+ contain only scale elements, only translate elements, or both. SkMatrix form is:
+
+ | scale-x 0 translate-x |
+ | 0 scale-y translate-y |
+ | 0 0 1 |
+
+ @return true if SkMatrix is identity; or scales, translates, or both
+ */
+ bool isScaleTranslate() const {
+ return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
+ }
+
+ /** Returns true if SkMatrix is identity, or translates. SkMatrix form is:
+
+ | 1 0 translate-x |
+ | 0 1 translate-y |
+ | 0 0 1 |
+
+ @return true if SkMatrix is identity, or translates
+ */
+ bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); }
+
+ /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
+ or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
+ cases, SkMatrix may also have translation. SkMatrix form is either:
+
+ | scale-x 0 translate-x |
+ | 0 scale-y translate-y |
+ | 0 0 1 |
+
+ or
+
+ | 0 rotate-x translate-x |
+ | rotate-y 0 translate-y |
+ | 0 0 1 |
+
+ for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
+
+ Also called preservesAxisAlignment(); use the one that provides better inline
+ documentation.
+
+ @return true if SkMatrix maps one SkRect into another
+ */
+ bool rectStaysRect() const {
+ if (fTypeMask & kUnknown_Mask) {
+ fTypeMask = this->computeTypeMask();
+ }
+ return (fTypeMask & kRectStaysRect_Mask) != 0;
+ }
+
+ /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity,
+ or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all
+ cases, SkMatrix may also have translation. SkMatrix form is either:
+
+ | scale-x 0 translate-x |
+ | 0 scale-y translate-y |
+ | 0 0 1 |
+
+ or
+
+ | 0 rotate-x translate-x |
+ | rotate-y 0 translate-y |
+ | 0 0 1 |
+
+ for non-zero values of scale-x, scale-y, rotate-x, and rotate-y.
+
+ Also called rectStaysRect(); use the one that provides better inline
+ documentation.
+
+ @return true if SkMatrix maps one SkRect into another
+ */
+ bool preservesAxisAlignment() const { return this->rectStaysRect(); }
+
+ /** Returns true if the matrix contains perspective elements. SkMatrix form is:
+
+ | -- -- -- |
+ | -- -- -- |
+ | perspective-x perspective-y perspective-scale |
+
+ where perspective-x or perspective-y is non-zero, or perspective-scale is
+ not one. All other elements may have any value.
+
+ @return true if SkMatrix is in most general form
+ */
+ bool hasPerspective() const {
+ return SkToBool(this->getPerspectiveTypeMaskOnly() &
+ kPerspective_Mask);
+ }
+
+ /** Returns true if SkMatrix contains only translation, rotation, reflection, and
+ uniform scale.
+ Returns false if SkMatrix contains different scales, skewing, perspective, or
+ degenerate forms that collapse to a line or point.
+
+ Describes that the SkMatrix makes rendering with and without the matrix are
+ visually alike; a transformed circle remains a circle. Mathematically, this is
+ referred to as similarity of a Euclidean space, or a similarity transformation.
+
+ Preserves right angles, keeping the arms of the angle equal lengths.
+
+ @param tol to be deprecated
+ @return true if SkMatrix only rotates, uniformly scales, translates
+
+ example: https://fiddle.skia.org/c/@Matrix_isSimilarity
+ */
+ bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
+
+ /** Returns true if SkMatrix contains only translation, rotation, reflection, and
+ scale. Scale may differ along rotated axes.
+ Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse
+ to a line or point.
+
+ Preserves right angles, but not requiring that the arms of the angle
+ retain equal lengths.
+
+ @param tol to be deprecated
+ @return true if SkMatrix only rotates, scales, translates
+
+ example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles
+ */
+ bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
+
+ /** SkMatrix organizes its values in row-major order. These members correspond to
+ each value in SkMatrix.
+ */
+ static constexpr int kMScaleX = 0; //!< horizontal scale factor
+ static constexpr int kMSkewX = 1; //!< horizontal skew factor
+ static constexpr int kMTransX = 2; //!< horizontal translation
+ static constexpr int kMSkewY = 3; //!< vertical skew factor
+ static constexpr int kMScaleY = 4; //!< vertical scale factor
+ static constexpr int kMTransY = 5; //!< vertical translation
+ static constexpr int kMPersp0 = 6; //!< input x perspective factor
+ static constexpr int kMPersp1 = 7; //!< input y perspective factor
+ static constexpr int kMPersp2 = 8; //!< perspective bias
+
+ /** Affine arrays are in column-major order to match the matrix used by
+ PDF and XPS.
+ */
+ static constexpr int kAScaleX = 0; //!< horizontal scale factor
+ static constexpr int kASkewY = 1; //!< vertical skew factor
+ static constexpr int kASkewX = 2; //!< horizontal skew factor
+ static constexpr int kAScaleY = 3; //!< vertical scale factor
+ static constexpr int kATransX = 4; //!< horizontal translation
+ static constexpr int kATransY = 5; //!< vertical translation
+
+ /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
+ defined.
+
+ @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
+ kMPersp0, kMPersp1, kMPersp2
+ @return value corresponding to index
+ */
+ SkScalar operator[](int index) const {
+ SkASSERT((unsigned)index < 9);
+ return fMat[index];
+ }
+
+ /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is
+ defined.
+
+ @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
+ kMPersp0, kMPersp1, kMPersp2
+ @return value corresponding to index
+ */
+ SkScalar get(int index) const {
+ SkASSERT((unsigned)index < 9);
+ return fMat[index];
+ }
+
+ /** Returns one matrix value from a particular row/column. Asserts if index is out
+ of range and SK_DEBUG is defined.
+
+ @param r matrix row to fetch
+ @param c matrix column to fetch
+ @return value at the given matrix position
+ */
+ SkScalar rc(int r, int c) const {
+ SkASSERT(r >= 0 && r <= 2);
+ SkASSERT(c >= 0 && c <= 2);
+ return fMat[r*3 + c];
+ }
+
+ /** Returns scale factor multiplied by x-axis input, contributing to x-axis output.
+ With mapPoints(), scales SkPoint along the x-axis.
+
+ @return horizontal scale factor
+ */
+ SkScalar getScaleX() const { return fMat[kMScaleX]; }
+
+ /** Returns scale factor multiplied by y-axis input, contributing to y-axis output.
+ With mapPoints(), scales SkPoint along the y-axis.
+
+ @return vertical scale factor
+ */
+ SkScalar getScaleY() const { return fMat[kMScaleY]; }
+
+ /** Returns scale factor multiplied by x-axis input, contributing to y-axis output.
+ With mapPoints(), skews SkPoint along the y-axis.
+ Skewing both axes can rotate SkPoint.
+
+ @return vertical skew factor
+ */
+ SkScalar getSkewY() const { return fMat[kMSkewY]; }
+
+ /** Returns scale factor multiplied by y-axis input, contributing to x-axis output.
+ With mapPoints(), skews SkPoint along the x-axis.
+ Skewing both axes can rotate SkPoint.
+
+ @return horizontal scale factor
+ */
+ SkScalar getSkewX() const { return fMat[kMSkewX]; }
+
+ /** Returns translation contributing to x-axis output.
+ With mapPoints(), moves SkPoint along the x-axis.
+
+ @return horizontal translation factor
+ */
+ SkScalar getTranslateX() const { return fMat[kMTransX]; }
+
+ /** Returns translation contributing to y-axis output.
+ With mapPoints(), moves SkPoint along the y-axis.
+
+ @return vertical translation factor
+ */
+ SkScalar getTranslateY() const { return fMat[kMTransY]; }
+
+ /** Returns factor scaling input x-axis relative to input y-axis.
+
+ @return input x-axis perspective factor
+ */
+ SkScalar getPerspX() const { return fMat[kMPersp0]; }
+
+ /** Returns factor scaling input y-axis relative to input x-axis.
+
+ @return input y-axis perspective factor
+ */
+ SkScalar getPerspY() const { return fMat[kMPersp1]; }
+
+ /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is
+ defined. Clears internal cache anticipating that caller will change SkMatrix value.
+
+ Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix
+ value must be followed by dirtyMatrixTypeCache().
+
+ @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
+ kMPersp0, kMPersp1, kMPersp2
+ @return writable value corresponding to index
+ */
+ SkScalar& operator[](int index) {
+ SkASSERT((unsigned)index < 9);
+ this->setTypeMask(kUnknown_Mask);
+ return fMat[index];
+ }
+
+ /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is
+ defined. Safer than operator[]; internal cache is always maintained.
+
+ @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
+ kMPersp0, kMPersp1, kMPersp2
+ @param value scalar to store in SkMatrix
+ */
+ SkMatrix& set(int index, SkScalar value) {
+ SkASSERT((unsigned)index < 9);
+ fMat[index] = value;
+ this->setTypeMask(kUnknown_Mask);
+ return *this;
+ }
+
+ /** Sets horizontal scale factor.
+
+ @param v horizontal scale factor to store
+ */
+ SkMatrix& setScaleX(SkScalar v) { return this->set(kMScaleX, v); }
+
+ /** Sets vertical scale factor.
+
+ @param v vertical scale factor to store
+ */
+ SkMatrix& setScaleY(SkScalar v) { return this->set(kMScaleY, v); }
+
+ /** Sets vertical skew factor.
+
+ @param v vertical skew factor to store
+ */
+ SkMatrix& setSkewY(SkScalar v) { return this->set(kMSkewY, v); }
+
+ /** Sets horizontal skew factor.
+
+ @param v horizontal skew factor to store
+ */
+ SkMatrix& setSkewX(SkScalar v) { return this->set(kMSkewX, v); }
+
+ /** Sets horizontal translation.
+
+ @param v horizontal translation to store
+ */
+ SkMatrix& setTranslateX(SkScalar v) { return this->set(kMTransX, v); }
+
+ /** Sets vertical translation.
+
+ @param v vertical translation to store
+ */
+ SkMatrix& setTranslateY(SkScalar v) { return this->set(kMTransY, v); }
+
+ /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values
+ inversely proportional to input y-axis values.
+
+ @param v perspective factor
+ */
+ SkMatrix& setPerspX(SkScalar v) { return this->set(kMPersp0, v); }
+
+ /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values
+ inversely proportional to input x-axis values.
+
+ @param v perspective factor
+ */
+ SkMatrix& setPerspY(SkScalar v) { return this->set(kMPersp1, v); }
+
+ /** Sets all values from parameters. Sets matrix to:
+
+ | scaleX skewX transX |
+ | skewY scaleY transY |
+ | persp0 persp1 persp2 |
+
+ @param scaleX horizontal scale factor to store
+ @param skewX horizontal skew factor to store
+ @param transX horizontal translation to store
+ @param skewY vertical skew factor to store
+ @param scaleY vertical scale factor to store
+ @param transY vertical translation to store
+ @param persp0 input x-axis values perspective factor to store
+ @param persp1 input y-axis values perspective factor to store
+ @param persp2 perspective scale factor to store
+ */
+ SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
+ SkScalar skewY, SkScalar scaleY, SkScalar transY,
+ SkScalar persp0, SkScalar persp1, SkScalar persp2) {
+ fMat[kMScaleX] = scaleX;
+ fMat[kMSkewX] = skewX;
+ fMat[kMTransX] = transX;
+ fMat[kMSkewY] = skewY;
+ fMat[kMScaleY] = scaleY;
+ fMat[kMTransY] = transY;
+ fMat[kMPersp0] = persp0;
+ fMat[kMPersp1] = persp1;
+ fMat[kMPersp2] = persp2;
+ this->setTypeMask(kUnknown_Mask);
+ return *this;
+ }
+
+ /** Copies nine scalar values contained by SkMatrix into buffer, in member value
+ ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY,
+ kMPersp0, kMPersp1, kMPersp2.
+
+ @param buffer storage for nine scalar values
+ */
+ void get9(SkScalar buffer[9]) const {
+ memcpy(buffer, fMat, 9 * sizeof(SkScalar));
+ }
+
+ /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order:
+ kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1,
+ kMPersp2.
+
+ Sets matrix to:
+
+ | buffer[0] buffer[1] buffer[2] |
+ | buffer[3] buffer[4] buffer[5] |
+ | buffer[6] buffer[7] buffer[8] |
+
+ In the future, set9 followed by get9 may not return the same values. Since SkMatrix
+ maps non-homogeneous coordinates, scaling all nine values produces an equivalent
+ transformation, possibly improving precision.
+
+ @param buffer nine scalar values
+ */
+ SkMatrix& set9(const SkScalar buffer[9]);
+
+ /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
+
+ | 1 0 0 |
+ | 0 1 0 |
+ | 0 0 1 |
+
+ Also called setIdentity(); use the one that provides better inline
+ documentation.
+ */
+ SkMatrix& reset();
+
+ /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to:
+
+ | 1 0 0 |
+ | 0 1 0 |
+ | 0 0 1 |
+
+ Also called reset(); use the one that provides better inline
+ documentation.
+ */
+ SkMatrix& setIdentity() { return this->reset(); }
+
+ /** Sets SkMatrix to translate by (dx, dy).
+
+ @param dx horizontal translation
+ @param dy vertical translation
+ */
+ SkMatrix& setTranslate(SkScalar dx, SkScalar dy);
+
+ /** Sets SkMatrix to translate by (v.fX, v.fY).
+
+ @param v vector containing horizontal and vertical translation
+ */
+ SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(v.fX, v.fY); }
+
+ /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py).
+ The pivot point is unchanged when mapped with SkMatrix.
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0).
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ */
+ SkMatrix& setScale(SkScalar sx, SkScalar sy);
+
+ /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py).
+ The pivot point is unchanged when mapped with SkMatrix.
+
+ Positive degrees rotates clockwise.
+
+ @param degrees angle of axes relative to upright axes
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0).
+ Positive degrees rotates clockwise.
+
+ @param degrees angle of axes relative to upright axes
+ */
+ SkMatrix& setRotate(SkScalar degrees);
+
+ /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py).
+ The pivot point is unchanged when mapped with SkMatrix.
+
+ Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
+ Vector length specifies scale.
+
+ @param sinValue rotation vector x-axis component
+ @param cosValue rotation vector y-axis component
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue,
+ SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0).
+
+ Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1).
+ Vector length specifies scale.
+
+ @param sinValue rotation vector x-axis component
+ @param cosValue rotation vector y-axis component
+ */
+ SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue);
+
+ /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form.
+
+ Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative
+ to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled
+ by vector, then translated by (rsxForm.fTx, rsxForm.fTy).
+
+ @param rsxForm compressed SkRSXform matrix
+ @return reference to SkMatrix
+
+ example: https://fiddle.skia.org/c/@Matrix_setRSXform
+ */
+ SkMatrix& setRSXform(const SkRSXform& rsxForm);
+
+ /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py).
+ The pivot point is unchanged when mapped with SkMatrix.
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0).
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ */
+ SkMatrix& setSkew(SkScalar kx, SkScalar ky);
+
+ /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this.
+
+ Given:
+
+ | A B C | | J K L |
+ a = | D E F |, b = | M N O |
+ | G H I | | P Q R |
+
+ sets SkMatrix to:
+
+ | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
+ a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
+ | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
+
+ @param a SkMatrix on left side of multiply expression
+ @param b SkMatrix on right side of multiply expression
+ */
+ SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy).
+ This can be thought of as moving the point to be mapped before applying SkMatrix.
+
+ Given:
+
+ | A B C | | 1 0 dx |
+ Matrix = | D E F |, T(dx, dy) = | 0 1 dy |
+ | G H I | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | A B C | | 1 0 dx | | A B A*dx+B*dy+C |
+ Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F |
+ | G H I | | 0 0 1 | | G H G*dx+H*dy+I |
+
+ @param dx x-axis translation before applying SkMatrix
+ @param dy y-axis translation before applying SkMatrix
+ */
+ SkMatrix& preTranslate(SkScalar dx, SkScalar dy);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
+ about pivot point (px, py).
+ This can be thought of as scaling about a pivot point before applying SkMatrix.
+
+ Given:
+
+ | A B C | | sx 0 dx |
+ Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy |
+ | G H I | | 0 0 1 |
+
+ where
+
+ dx = px - sx * px
+ dy = py - sy * py
+
+ sets SkMatrix to:
+
+ | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C |
+ Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F |
+ | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I |
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy)
+ about pivot point (0, 0).
+ This can be thought of as scaling about the origin before applying SkMatrix.
+
+ Given:
+
+ | A B C | | sx 0 0 |
+ Matrix = | D E F |, S(sx, sy) = | 0 sy 0 |
+ | G H I | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | A B C | | sx 0 0 | | A*sx B*sy C |
+ Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F |
+ | G H I | | 0 0 1 | | G*sx H*sy I |
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ */
+ SkMatrix& preScale(SkScalar sx, SkScalar sy);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
+ about pivot point (px, py).
+ This can be thought of as rotating about a pivot point before applying SkMatrix.
+
+ Positive degrees rotates clockwise.
+
+ Given:
+
+ | A B C | | c -s dx |
+ Matrix = | D E F |, R(degrees, px, py) = | s c dy |
+ | G H I | | 0 0 1 |
+
+ where
+
+ c = cos(degrees)
+ s = sin(degrees)
+ dx = s * py + (1 - c) * px
+ dy = -s * px + (1 - c) * py
+
+ sets SkMatrix to:
+
+ | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C |
+ Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F |
+ | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I |
+
+ @param degrees angle of axes relative to upright axes
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees
+ about pivot point (0, 0).
+ This can be thought of as rotating about the origin before applying SkMatrix.
+
+ Positive degrees rotates clockwise.
+
+ Given:
+
+ | A B C | | c -s 0 |
+ Matrix = | D E F |, R(degrees, px, py) = | s c 0 |
+ | G H I | | 0 0 1 |
+
+ where
+
+ c = cos(degrees)
+ s = sin(degrees)
+
+ sets SkMatrix to:
+
+ | A B C | | c -s 0 | | Ac+Bs -As+Bc C |
+ Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F |
+ | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I |
+
+ @param degrees angle of axes relative to upright axes
+ */
+ SkMatrix& preRotate(SkScalar degrees);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
+ about pivot point (px, py).
+ This can be thought of as skewing about a pivot point before applying SkMatrix.
+
+ Given:
+
+ | A B C | | 1 kx dx |
+ Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy |
+ | G H I | | 0 0 1 |
+
+ where
+
+ dx = -kx * py
+ dy = -ky * px
+
+ sets SkMatrix to:
+
+ | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C |
+ Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F |
+ | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I |
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky)
+ about pivot point (0, 0).
+ This can be thought of as skewing about the origin before applying SkMatrix.
+
+ Given:
+
+ | A B C | | 1 kx 0 |
+ Matrix = | D E F |, K(kx, ky) = | ky 1 0 |
+ | G H I | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | A B C | | 1 kx 0 | | A+B*ky A*kx+B C |
+ Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F |
+ | G H I | | 0 0 1 | | G+H*ky G*kx+H I |
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ */
+ SkMatrix& preSkew(SkScalar kx, SkScalar ky);
+
+ /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other.
+ This can be thought of mapping by other before applying SkMatrix.
+
+ Given:
+
+ | A B C | | J K L |
+ Matrix = | D E F |, other = | M N O |
+ | G H I | | P Q R |
+
+ sets SkMatrix to:
+
+ | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
+ Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
+ | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
+
+ @param other SkMatrix on right side of multiply expression
+ */
+ SkMatrix& preConcat(const SkMatrix& other);
+
+ /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix.
+ This can be thought of as moving the point to be mapped after applying SkMatrix.
+
+ Given:
+
+ | J K L | | 1 0 dx |
+ Matrix = | M N O |, T(dx, dy) = | 0 1 dy |
+ | P Q R | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R |
+ T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R |
+ | 0 0 1 | | P Q R | | P Q R |
+
+ @param dx x-axis translation after applying SkMatrix
+ @param dy y-axis translation after applying SkMatrix
+ */
+ SkMatrix& postTranslate(SkScalar dx, SkScalar dy);
+
+ /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
+ (px, py), multiplied by SkMatrix.
+ This can be thought of as scaling about a pivot point after applying SkMatrix.
+
+ Given:
+
+ | J K L | | sx 0 dx |
+ Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy |
+ | P Q R | | 0 0 1 |
+
+ where
+
+ dx = px - sx * px
+ dy = py - sy * py
+
+ sets SkMatrix to:
+
+ | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R |
+ S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R |
+ | 0 0 1 | | P Q R | | P Q R |
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point
+ (0, 0), multiplied by SkMatrix.
+ This can be thought of as scaling about the origin after applying SkMatrix.
+
+ Given:
+
+ | J K L | | sx 0 0 |
+ Matrix = | M N O |, S(sx, sy) = | 0 sy 0 |
+ | P Q R | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | sx 0 0 | | J K L | | sx*J sx*K sx*L |
+ S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O |
+ | 0 0 1 | | P Q R | | P Q R |
+
+ @param sx horizontal scale factor
+ @param sy vertical scale factor
+ */
+ SkMatrix& postScale(SkScalar sx, SkScalar sy);
+
+ /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
+ (px, py), multiplied by SkMatrix.
+ This can be thought of as rotating about a pivot point after applying SkMatrix.
+
+ Positive degrees rotates clockwise.
+
+ Given:
+
+ | J K L | | c -s dx |
+ Matrix = | M N O |, R(degrees, px, py) = | s c dy |
+ | P Q R | | 0 0 1 |
+
+ where
+
+ c = cos(degrees)
+ s = sin(degrees)
+ dx = s * py + (1 - c) * px
+ dy = -s * px + (1 - c) * py
+
+ sets SkMatrix to:
+
+ |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R|
+ R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R|
+ |0 0 1| |P Q R| | P Q R|
+
+ @param degrees angle of axes relative to upright axes
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point
+ (0, 0), multiplied by SkMatrix.
+ This can be thought of as rotating about the origin after applying SkMatrix.
+
+ Positive degrees rotates clockwise.
+
+ Given:
+
+ | J K L | | c -s 0 |
+ Matrix = | M N O |, R(degrees, px, py) = | s c 0 |
+ | P Q R | | 0 0 1 |
+
+ where
+
+ c = cos(degrees)
+ s = sin(degrees)
+
+ sets SkMatrix to:
+
+ | c -s dx | | J K L | | cJ-sM cK-sN cL-sO |
+ R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO |
+ | 0 0 1 | | P Q R | | P Q R |
+
+ @param degrees angle of axes relative to upright axes
+ */
+ SkMatrix& postRotate(SkScalar degrees);
+
+ /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
+ (px, py), multiplied by SkMatrix.
+ This can be thought of as skewing about a pivot point after applying SkMatrix.
+
+ Given:
+
+ | J K L | | 1 kx dx |
+ Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy |
+ | P Q R | | 0 0 1 |
+
+ where
+
+ dx = -kx * py
+ dy = -ky * px
+
+ sets SkMatrix to:
+
+ | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R|
+ K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R|
+ | 0 0 1| |P Q R| | P Q R|
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ @param px pivot on x-axis
+ @param py pivot on y-axis
+ */
+ SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
+
+ /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point
+ (0, 0), multiplied by SkMatrix.
+ This can be thought of as skewing about the origin after applying SkMatrix.
+
+ Given:
+
+ | J K L | | 1 kx 0 |
+ Matrix = | M N O |, K(kx, ky) = | ky 1 0 |
+ | P Q R | | 0 0 1 |
+
+ sets SkMatrix to:
+
+ | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O |
+ K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O |
+ | 0 0 1 | | P Q R | | P Q R |
+
+ @param kx horizontal skew factor
+ @param ky vertical skew factor
+ */
+ SkMatrix& postSkew(SkScalar kx, SkScalar ky);
+
+ /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix.
+ This can be thought of mapping by other after applying SkMatrix.
+
+ Given:
+
+ | J K L | | A B C |
+ Matrix = | M N O |, other = | D E F |
+ | P Q R | | G H I |
+
+ sets SkMatrix to:
+
+ | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
+ other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
+ | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
+
+ @param other SkMatrix on left side of multiply expression
+ */
+ SkMatrix& postConcat(const SkMatrix& other);
+
+#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
+private:
+#endif
+ /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether
+ mapping completely fills dst or preserves the aspect ratio, and how to align
+ src within dst. Returns false if src is empty, and sets SkMatrix to identity.
+ Returns true if dst is empty, and sets SkMatrix to:
+
+ | 0 0 0 |
+ | 0 0 0 |
+ | 0 0 1 |
+
+ @param src SkRect to map from
+ @param dst SkRect to map to
+ @return true if SkMatrix can represent SkRect mapping
+
+ example: https://fiddle.skia.org/c/@Matrix_setRectToRect
+ */
+ bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
+
+ /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects
+ whether mapping completely fills dst or preserves the aspect ratio, and how to
+ align src within dst. Returns the identity SkMatrix if src is empty. If dst is
+ empty, returns SkMatrix set to:
+
+ | 0 0 0 |
+ | 0 0 0 |
+ | 0 0 1 |
+
+ @param src SkRect to map from
+ @param dst SkRect to map to
+ @return SkMatrix mapping src to dst
+ */
+ static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
+ SkMatrix m;
+ m.setRectToRect(src, dst, stf);
+ return m;
+ }
+#ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT
+public:
+#endif
+
+ /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less.
+
+ If count is zero, sets SkMatrix to identity and returns true.
+ If count is one, sets SkMatrix to translate and returns true.
+ If count is two or more, sets SkMatrix to map SkPoint if possible; returns false
+ if SkMatrix cannot be constructed. If count is four, SkMatrix may include
+ perspective.
+
+ @param src SkPoint to map from
+ @param dst SkPoint to map to
+ @param count number of SkPoint in src and dst
+ @return true if SkMatrix was constructed successfully
+
+ example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly
+ */
+ bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
+
+ /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted.
+ Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix
+ maps from destination to source. If SkMatrix can not be inverted, inverse is
+ unchanged.
+
+ @param inverse storage for inverted SkMatrix; may be nullptr
+ @return true if SkMatrix can be inverted
+ */
+ bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
+ // Allow the trivial case to be inlined.
+ if (this->isIdentity()) {
+ if (inverse) {
+ inverse->reset();
+ }
+ return true;
+ }
+ return this->invertNonIdentity(inverse);
+ }
+
+ /** Fills affine with identity values in column major order.
+ Sets affine to:
+
+ | 1 0 0 |
+ | 0 1 0 |
+
+ Affine 3 by 2 matrices in column major order are used by OpenGL and XPS.
+
+ @param affine storage for 3 by 2 affine matrix
+
+ example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity
+ */
+ static void SetAffineIdentity(SkScalar affine[6]);
+
+ /** Fills affine in column major order. Sets affine to:
+
+ | scale-x skew-x translate-x |
+ | skew-y scale-y translate-y |
+
+ If SkMatrix contains perspective, returns false and leaves affine unchanged.
+
+ @param affine storage for 3 by 2 affine matrix; may be nullptr
+ @return true if SkMatrix does not contain perspective
+ */
+ bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
+
+ /** Sets SkMatrix to affine values, passed in column major order. Given affine,
+ column, then row, as:
+
+ | scale-x skew-x translate-x |
+ | skew-y scale-y translate-y |
+
+ SkMatrix is set, row, then column, to:
+
+ | scale-x skew-x translate-x |
+ | skew-y scale-y translate-y |
+ | 0 0 1 |
+
+ @param affine 3 by 2 affine matrix
+ */
+ SkMatrix& setAffine(const SkScalar affine[6]);
+
+ /**
+ * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1].
+ * However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a
+ * non-perspective matrix, though it will be categorized as perspective. Calling
+ * normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X],
+ * it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X.
+ *
+ * | A B C | | A/X B/X C/X |
+ * | D E F | -> | D/X E/X F/X | for X != 0
+ * | 0 0 X | | 0 0 1 |
+ */
+ void normalizePerspective() {
+ if (fMat[8] != 1) {
+ this->doNormalizePerspective();
+ }
+ }
+
+ /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater
+ length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ where
+
+ for (i = 0; i < count; ++i) {
+ x = src[i].fX
+ y = src[i].fY
+ }
+
+ each dst SkPoint is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ src and dst may point to the same storage.
+
+ @param dst storage for mapped SkPoint
+ @param src SkPoint to transform
+ @param count number of SkPoint to transform
+
+ example: https://fiddle.skia.org/c/@Matrix_mapPoints
+ */
+ void mapPoints(SkPoint dst[], const SkPoint src[], int count) const;
+
+ /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying
+ each SkPoint by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ where
+
+ for (i = 0; i < count; ++i) {
+ x = pts[i].fX
+ y = pts[i].fY
+ }
+
+ each resulting pts SkPoint is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param pts storage for mapped SkPoint
+ @param count number of SkPoint to transform
+ */
+ void mapPoints(SkPoint pts[], int count) const {
+ this->mapPoints(pts, pts, count);
+ }
+
+ /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or
+ greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, src = | y |
+ | G H I | | z |
+
+ each resulting dst SkPoint is computed as:
+
+ |A B C| |x|
+ Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz|
+ |G H I| |z|
+
+ @param dst storage for mapped SkPoint3 array
+ @param src SkPoint3 array to transform
+ @param count items in SkPoint3 array to transform
+
+ example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints
+ */
+ void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const;
+
+ /**
+ * Returns homogeneous points, starting with 2D src points (with implied w = 1).
+ */
+ void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const;
+
+ /** Returns SkPoint pt multiplied by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ result is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param p SkPoint to map
+ @return mapped SkPoint
+ */
+ SkPoint mapPoint(SkPoint pt) const {
+ SkPoint result;
+ this->mapXY(pt.x(), pt.y(), &result);
+ return result;
+ }
+
+ /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ result is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param x x-axis value of SkPoint to map
+ @param y y-axis value of SkPoint to map
+ @param result storage for mapped SkPoint
+
+ example: https://fiddle.skia.org/c/@Matrix_mapXY
+ */
+ void mapXY(SkScalar x, SkScalar y, SkPoint* result) const;
+
+ /** Returns SkPoint (x, y) multiplied by SkMatrix. Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ result is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param x x-axis value of SkPoint to map
+ @param y y-axis value of SkPoint to map
+ @return mapped SkPoint
+ */
+ SkPoint mapXY(SkScalar x, SkScalar y) const {
+ SkPoint result;
+ this->mapXY(x,y, &result);
+ return result;
+ }
+
+
+ /** Returns (0, 0) multiplied by SkMatrix. Given:
+
+ | A B C | | 0 |
+ Matrix = | D E F |, pt = | 0 |
+ | G H I | | 1 |
+
+ result is computed as:
+
+ |A B C| |0| C F
+ Matrix * pt = |D E F| |0| = |C F I| = - , -
+ |G H I| |1| I I
+
+ @return mapped (0, 0)
+ */
+ SkPoint mapOrigin() const {
+ SkScalar x = this->getTranslateX(),
+ y = this->getTranslateY();
+ if (this->hasPerspective()) {
+ SkScalar w = fMat[kMPersp2];
+ if (w) { w = 1 / w; }
+ x *= w;
+ y *= w;
+ }
+ return {x, y};
+ }
+
+ /** Maps src vector array of length count to vector SkPoint array of equal or greater
+ length. Vectors are mapped by multiplying each vector by SkMatrix, treating
+ SkMatrix translation as zero. Given:
+
+ | A B 0 | | x |
+ Matrix = | D E 0 |, src = | y |
+ | G H I | | 1 |
+
+ where
+
+ for (i = 0; i < count; ++i) {
+ x = src[i].fX
+ y = src[i].fY
+ }
+
+ each dst vector is computed as:
+
+ |A B 0| |x| Ax+By Dx+Ey
+ Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ src and dst may point to the same storage.
+
+ @param dst storage for mapped vectors
+ @param src vectors to transform
+ @param count number of vectors to transform
+
+ example: https://fiddle.skia.org/c/@Matrix_mapVectors
+ */
+ void mapVectors(SkVector dst[], const SkVector src[], int count) const;
+
+ /** Maps vecs vector array of length count in place, multiplying each vector by
+ SkMatrix, treating SkMatrix translation as zero. Given:
+
+ | A B 0 | | x |
+ Matrix = | D E 0 |, vec = | y |
+ | G H I | | 1 |
+
+ where
+
+ for (i = 0; i < count; ++i) {
+ x = vecs[i].fX
+ y = vecs[i].fY
+ }
+
+ each result vector is computed as:
+
+ |A B 0| |x| Ax+By Dx+Ey
+ Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param vecs vectors to transform, and storage for mapped vectors
+ @param count number of vectors to transform
+ */
+ void mapVectors(SkVector vecs[], int count) const {
+ this->mapVectors(vecs, vecs, count);
+ }
+
+ /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix,
+ treating SkMatrix translation as zero. Given:
+
+ | A B 0 | | dx |
+ Matrix = | D E 0 |, vec = | dy |
+ | G H I | | 1 |
+
+ each result vector is computed as:
+
+ |A B 0| |dx| A*dx+B*dy D*dx+E*dy
+ Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
+ |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
+
+ @param dx x-axis value of vector to map
+ @param dy y-axis value of vector to map
+ @param result storage for mapped vector
+ */
+ void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
+ SkVector vec = { dx, dy };
+ this->mapVectors(result, &vec, 1);
+ }
+
+ /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero.
+ Given:
+
+ | A B 0 | | dx |
+ Matrix = | D E 0 |, vec = | dy |
+ | G H I | | 1 |
+
+ each result vector is computed as:
+
+ |A B 0| |dx| A*dx+B*dy D*dx+E*dy
+ Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , -----------
+ |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I
+
+ @param dx x-axis value of vector to map
+ @param dy y-axis value of vector to map
+ @return mapped vector
+ */
+ SkVector mapVector(SkScalar dx, SkScalar dy) const {
+ SkVector vec = { dx, dy };
+ this->mapVectors(&vec, &vec, 1);
+ return vec;
+ }
+
+ /** Sets dst to bounds of src corners mapped by SkMatrix.
+ Returns true if mapped corners are dst corners.
+
+ Returned value is the same as calling rectStaysRect().
+
+ @param dst storage for bounds of mapped SkPoint
+ @param src SkRect to map
+ @param pc whether to apply perspective clipping
+ @return true if dst is equivalent to mapped src
+
+ example: https://fiddle.skia.org/c/@Matrix_mapRect
+ */
+ bool mapRect(SkRect* dst, const SkRect& src,
+ SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const;
+
+ /** Sets rect to bounds of rect corners mapped by SkMatrix.
+ Returns true if mapped corners are computed rect corners.
+
+ Returned value is the same as calling rectStaysRect().
+
+ @param rect rectangle to map, and storage for bounds of mapped corners
+ @param pc whether to apply perspective clipping
+ @return true if result is equivalent to mapped rect
+ */
+ bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const {
+ return this->mapRect(rect, *rect, pc);
+ }
+
+ /** Returns bounds of src corners mapped by SkMatrix.
+
+ @param src rectangle to map
+ @return mapped bounds
+ */
+ SkRect mapRect(const SkRect& src,
+ SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const {
+ SkRect dst;
+ (void)this->mapRect(&dst, src, pc);
+ return dst;
+ }
+
+ /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each
+ rect corner by SkMatrix. rect corner is processed in this order:
+ (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom),
+ (rect.fLeft, rect.fBottom).
+
+ rect may be empty: rect.fLeft may be greater than or equal to rect.fRight;
+ rect.fTop may be greater than or equal to rect.fBottom.
+
+ Given:
+
+ | A B C | | x |
+ Matrix = | D E F |, pt = | y |
+ | G H I | | 1 |
+
+ where pt is initialized from each of (rect.fLeft, rect.fTop),
+ (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom),
+ each dst SkPoint is computed as:
+
+ |A B C| |x| Ax+By+C Dx+Ey+F
+ Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , -------
+ |G H I| |1| Gx+Hy+I Gx+Hy+I
+
+ @param dst storage for mapped corner SkPoint
+ @param rect SkRect to map
+
+ Note: this does not perform perspective clipping (as that might result in more than
+ 4 points, so results are suspect if the matrix contains perspective.
+ */
+ void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
+ // This could potentially be faster if we only transformed each x and y of the rect once.
+ rect.toQuad(dst);
+ this->mapPoints(dst, 4);
+ }
+
+ /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains
+ elements other than scale or translate: asserts if SK_DEBUG is defined;
+ otherwise, results are undefined.
+
+ @param dst storage for bounds of mapped SkPoint
+ @param src SkRect to map
+
+ example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate
+ */
+ void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const;
+
+ /** Returns geometric mean radius of ellipse formed by constructing circle of
+ size radius, and mapping constructed circle with SkMatrix. The result squared is
+ equal to the major axis length times the minor axis length.
+ Result is not meaningful if SkMatrix contains perspective elements.
+
+ @param radius circle size to map
+ @return average mapped radius
+
+ example: https://fiddle.skia.org/c/@Matrix_mapRadius
+ */
+ SkScalar mapRadius(SkScalar radius) const;
+
+ /** Compares a and b; returns true if a and b are numerically equal. Returns true
+ even if sign of zero values are different. Returns false if either SkMatrix
+ contains NaN, even if the other SkMatrix also contains NaN.
+
+ @param a SkMatrix to compare
+ @param b SkMatrix to compare
+ @return true if SkMatrix a and SkMatrix b are numerically equal
+ */
+ friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
+
+ /** Compares a and b; returns true if a and b are not numerically equal. Returns false
+ even if sign of zero values are different. Returns true if either SkMatrix
+ contains NaN, even if the other SkMatrix also contains NaN.
+
+ @param a SkMatrix to compare
+ @param b SkMatrix to compare
+ @return true if SkMatrix a and SkMatrix b are numerically not equal
+ */
+ friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
+ return !(a == b);
+ }
+
+ /** Writes text representation of SkMatrix to standard output. Floating point values
+ are written with limited precision; it may not be possible to reconstruct
+ original SkMatrix from output.
+
+ example: https://fiddle.skia.org/c/@Matrix_dump
+ */
+ void dump() const;
+
+ /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and
+ skewing elements.
+ Returns -1 if scale factor overflows or SkMatrix contains perspective.
+
+ @return minimum scale factor
+
+ example: https://fiddle.skia.org/c/@Matrix_getMinScale
+ */
+ SkScalar getMinScale() const;
+
+ /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and
+ skewing elements.
+ Returns -1 if scale factor overflows or SkMatrix contains perspective.
+
+ @return maximum scale factor
+
+ example: https://fiddle.skia.org/c/@Matrix_getMaxScale
+ */
+ SkScalar getMaxScale() const;
+
+ /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the
+ maximum scaling factor. Scaling factors are computed by decomposing
+ the SkMatrix scaling and skewing elements.
+
+ Returns true if scaleFactors are found; otherwise, returns false and sets
+ scaleFactors to undefined values.
+
+ @param scaleFactors storage for minimum and maximum scale factors
+ @return true if scale factors were computed correctly
+ */
+ bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;
+
+ /** Decomposes SkMatrix into scale components and whatever remains. Returns false if
+ SkMatrix could not be decomposed.
+
+ Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix
+ with scaling factored out. remaining may be passed as nullptr
+ to determine if SkMatrix can be decomposed without computing remainder.
+
+ Returns true if scale components are found. scale and remaining are
+ unchanged if SkMatrix contains perspective; scale factors are not finite, or
+ are nearly zero.
+
+ On success: Matrix = Remaining * scale.
+
+ @param scale axes scaling factors; may be nullptr
+ @param remaining SkMatrix without scaling; may be nullptr
+ @return true if scale can be computed
+
+ example: https://fiddle.skia.org/c/@Matrix_decomposeScale
+ */
+ bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const;
+
+ /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to:
+
+ | 1 0 0 |
+ | 0 1 0 |
+ | 0 0 1 |
+
+ @return const identity SkMatrix
+
+ example: https://fiddle.skia.org/c/@Matrix_I
+ */
+ static const SkMatrix& I();
+
+ /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set
+ to:
+
+ | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
+ | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
+ | SK_ScalarMax SK_ScalarMax SK_ScalarMax |
+
+ @return const invalid SkMatrix
+
+ example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix
+ */
+ static const SkMatrix& InvalidMatrix();
+
+ /** Returns SkMatrix a multiplied by SkMatrix b.
+
+ Given:
+
+ | A B C | | J K L |
+ a = | D E F |, b = | M N O |
+ | G H I | | P Q R |
+
+ sets SkMatrix to:
+
+ | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR |
+ a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR |
+ | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR |
+
+ @param a SkMatrix on left side of multiply expression
+ @param b SkMatrix on right side of multiply expression
+ @return SkMatrix computed from a times b
+ */
+ static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
+ SkMatrix result;
+ result.setConcat(a, b);
+ return result;
+ }
+
+ friend SkMatrix operator*(const SkMatrix& a, const SkMatrix& b) {
+ return Concat(a, b);
+ }
+
+ /** Sets internal cache to unknown state. Use to force update after repeated
+ modifications to SkMatrix element reference returned by operator[](int index).
+ */
+ void dirtyMatrixTypeCache() {
+ this->setTypeMask(kUnknown_Mask);
+ }
+
+ /** Initializes SkMatrix with scale and translate elements.
+
+ | sx 0 tx |
+ | 0 sy ty |
+ | 0 0 1 |
+
+ @param sx horizontal scale factor to store
+ @param sy vertical scale factor to store
+ @param tx horizontal translation to store
+ @param ty vertical translation to store
+ */
+ void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
+ fMat[kMScaleX] = sx;
+ fMat[kMSkewX] = 0;
+ fMat[kMTransX] = tx;
+
+ fMat[kMSkewY] = 0;
+ fMat[kMScaleY] = sy;
+ fMat[kMTransY] = ty;
+
+ fMat[kMPersp0] = 0;
+ fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = 1;
+
+ int mask = 0;
+ if (sx != 1 || sy != 1) {
+ mask |= kScale_Mask;
+ }
+ if (tx != 0.0f || ty != 0.0f) {
+ mask |= kTranslate_Mask;
+ }
+ this->setTypeMask(mask | kRectStaysRect_Mask);
+ }
+
+ /** Returns true if all elements of the matrix are finite. Returns false if any
+ element is infinity, or NaN.
+
+ @return true if matrix has only finite elements
+ */
+ bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }
+
+private:
+ /** Set if the matrix will map a rectangle to another rectangle. This
+ can be true if the matrix is scale-only, or rotates a multiple of
+ 90 degrees.
+
+ This bit will be set on identity matrices
+ */
+ static constexpr int kRectStaysRect_Mask = 0x10;
+
+ /** Set if the perspective bit is valid even though the rest of
+ the matrix is Unknown.
+ */
+ static constexpr int kOnlyPerspectiveValid_Mask = 0x40;
+
+ static constexpr int kUnknown_Mask = 0x80;
+
+ static constexpr int kORableMasks = kTranslate_Mask |
+ kScale_Mask |
+ kAffine_Mask |
+ kPerspective_Mask;
+
+ static constexpr int kAllMasks = kTranslate_Mask |
+ kScale_Mask |
+ kAffine_Mask |
+ kPerspective_Mask |
+ kRectStaysRect_Mask;
+
+ SkScalar fMat[9];
+ mutable int32_t fTypeMask;
+
+ constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx,
+ SkScalar ky, SkScalar sy, SkScalar ty,
+ SkScalar p0, SkScalar p1, SkScalar p2, int typeMask)
+ : fMat{sx, kx, tx,
+ ky, sy, ty,
+ p0, p1, p2}
+ , fTypeMask(typeMask) {}
+
+ static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);
+
+ uint8_t computeTypeMask() const;
+ uint8_t computePerspectiveTypeMask() const;
+
+ void setTypeMask(int mask) {
+ // allow kUnknown or a valid mask
+ SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
+ ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
+ == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
+ fTypeMask = mask;
+ }
+
+ void orTypeMask(int mask) {
+ SkASSERT((mask & kORableMasks) == mask);
+ fTypeMask |= mask;
+ }
+
+ void clearTypeMask(int mask) {
+ // only allow a valid mask
+ SkASSERT((mask & kAllMasks) == mask);
+ fTypeMask &= ~mask;
+ }
+
+ TypeMask getPerspectiveTypeMaskOnly() const {
+ if ((fTypeMask & kUnknown_Mask) &&
+ !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
+ fTypeMask = this->computePerspectiveTypeMask();
+ }
+ return (TypeMask)(fTypeMask & 0xF);
+ }
+
+ /** Returns true if we already know that the matrix is identity;
+ false otherwise.
+ */
+ bool isTriviallyIdentity() const {
+ if (fTypeMask & kUnknown_Mask) {
+ return false;
+ }
+ return ((fTypeMask & 0xF) == 0);
+ }
+
+ inline void updateTranslateMask() {
+ if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
+ fTypeMask |= kTranslate_Mask;
+ } else {
+ fTypeMask &= ~kTranslate_Mask;
+ }
+ }
+
+ typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
+ SkPoint* result);
+
+ static MapXYProc GetMapXYProc(TypeMask mask) {
+ SkASSERT((mask & ~kAllMasks) == 0);
+ return gMapXYProcs[mask & kAllMasks];
+ }
+
+ MapXYProc getMapXYProc() const {
+ return GetMapXYProc(this->getType());
+ }
+
+ typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
+ const SkPoint src[], int count);
+
+ static MapPtsProc GetMapPtsProc(TypeMask mask) {
+ SkASSERT((mask & ~kAllMasks) == 0);
+ return gMapPtsProcs[mask & kAllMasks];
+ }
+
+ MapPtsProc getMapPtsProc() const {
+ return GetMapPtsProc(this->getType());
+ }
+
+ bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
+
+ static bool Poly2Proc(const SkPoint[], SkMatrix*);
+ static bool Poly3Proc(const SkPoint[], SkMatrix*);
+ static bool Poly4Proc(const SkPoint[], SkMatrix*);
+
+ static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+ static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
+
+ static const MapXYProc gMapXYProcs[];
+
+ static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
+ static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
+ static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
+ static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
+ int count);
+ static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
+
+ static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
+
+ static const MapPtsProc gMapPtsProcs[];
+
+ // return the number of bytes written, whether or not buffer is null
+ size_t writeToMemory(void* buffer) const;
+ /**
+ * Reads data from the buffer parameter
+ *
+ * @param buffer Memory to read from
+ * @param length Amount of memory available in the buffer
+ * @return number of bytes read (must be a multiple of 4) or
+ * 0 if there was not enough memory available
+ */
+ size_t readFromMemory(const void* buffer, size_t length);
+
+ // legacy method -- still needed? why not just postScale(1/divx, ...)?
+ bool postIDiv(int divx, int divy);
+ void doNormalizePerspective();
+
+ friend class SkPerspIter;
+ friend class SkMatrixPriv;
+ friend class SerializationTest;
+};
+SK_END_REQUIRE_DENSE
+
+#endif