/// TODO: delete this once we've upgraded Zig and https://github.com/ziglang/zig/pull/15985 is merged. const std = @import("std"); const assert = std.debug.assert; const mem = std.mem; const Allocator = std.mem.Allocator; /// This allocator takes an existing allocator, wraps it, and provides an interface /// where you can allocate without freeing, and then free it all together. pub const ArenaAllocator = struct { child_allocator: Allocator, state: State, /// Inner state of ArenaAllocator. Can be stored rather than the entire ArenaAllocator /// as a memory-saving optimization. pub const State = struct { buffer_list: std.SinglyLinkedList(usize) = .{}, end_index: usize = 0, pub fn promote(self: State, child_allocator: Allocator) ArenaAllocator { return .{ .child_allocator = child_allocator, .state = self, }; } }; pub fn allocator(self: *ArenaAllocator) Allocator { return .{ .ptr = self, .vtable = &.{ .alloc = alloc, .resize = resize, .free = free, }, }; } const BufNode = std.SinglyLinkedList(usize).Node; pub fn init(child_allocator: Allocator) ArenaAllocator { return (State{}).promote(child_allocator); } pub fn deinit(self: ArenaAllocator) void { // NOTE: When changing this, make sure `reset()` is adjusted accordingly! var it = self.state.buffer_list.first; while (it) |node| { // this has to occur before the free because the free frees node const next_it = node.next; const align_bits = std.math.log2_int(usize, @alignOf(BufNode)); const alloc_buf = @as([*]u8, @ptrCast(node))[0..node.data]; self.child_allocator.rawFree(alloc_buf, align_bits, @returnAddress()); it = next_it; } } pub const ResetMode = union(enum) { /// Releases all allocated memory in the arena. free_all, /// This will pre-heat the arena for future allocations by allocating a /// large enough buffer for all previously done allocations. /// Preheating will speed up the allocation process by invoking the backing allocator /// less often than before. If `reset()` is used in a loop, this means that after the /// biggest operation, no memory allocations are performed anymore. retain_capacity, /// This is the same as `retain_capacity`, but the memory will be shrunk to /// this value if it exceeds the limit. retain_with_limit: usize, }; /// Queries the current memory use of this arena. /// This will **not** include the storage required for internal keeping. pub fn queryCapacity(self: ArenaAllocator) usize { var size: usize = 0; var it = self.state.buffer_list.first; while (it) |node| : (it = node.next) { // Compute the actually allocated size excluding the // linked list node. size += node.data - @sizeOf(BufNode); } return size; } /// Resets the arena allocator and frees all allocated memory. /// /// `mode` defines how the currently allocated memory is handled. /// See the variant documentation for `ResetMode` for the effects of each mode. /// /// The function will return whether the reset operation was successful or not. /// If the reallocation failed `false` is returned. The arena will still be fully /// functional in that case, all memory is released. Future allocations just might /// be slower. /// /// NOTE: If `mode` is `free_mode`, the function will always return `true`. pub fn reset(self: *ArenaAllocator, mode: ResetMode) bool { // Some words on the implementation: // The reset function can be implemented with two basic approaches: // - Counting how much bytes were allocated since the last reset, and storing that // information in State. This will make reset fast and alloc only a teeny tiny bit // slower. // - Counting how much bytes were allocated by iterating the chunk linked list. This // will make reset slower, but alloc() keeps the same speed when reset() as if reset() // would not exist. // // The second variant was chosen for implementation, as with more and more calls to reset(), // the function will get faster and faster. At one point, the complexity of the function // will drop to amortized O(1), as we're only ever having a single chunk that will not be // reallocated, and we're not even touching the backing allocator anymore. // // Thus, only the first hand full of calls to reset() will actually need to iterate the linked // list, all future calls are just taking the first node, and only resetting the `end_index` // value. const requested_capacity = switch (mode) { .retain_capacity => self.queryCapacity(), .retain_with_limit => |limit| @min(limit, self.queryCapacity()), .free_all => 0, }; if (requested_capacity == 0) { // just reset when we don't have anything to reallocate self.deinit(); self.state = State{}; return true; } const total_size = requested_capacity + @sizeOf(BufNode); const align_bits = std.math.log2_int(usize, @alignOf(BufNode)); // Free all nodes except for the last one var it = self.state.buffer_list.first; const maybe_first_node = while (it) |node| { // this has to occur before the free because the free frees node const next_it = node.next; if (next_it == null) break node; const alloc_buf = @as([*]u8, @ptrCast(node))[0..node.data]; self.child_allocator.rawFree(alloc_buf, align_bits, @returnAddress()); it = next_it; } else null; std.debug.assert(maybe_first_node == null or maybe_first_node.?.next == null); // reset the state before we try resizing the buffers, so we definitely have reset the arena to 0. self.state.end_index = 0; if (maybe_first_node) |first_node| { self.state.buffer_list.first = first_node; // perfect, no need to invoke the child_allocator if (first_node.data == total_size) return true; const first_alloc_buf = @as([*]u8, @ptrCast(first_node))[0..first_node.data]; if (self.child_allocator.rawResize(first_alloc_buf, align_bits, total_size, @returnAddress())) { // successful resize first_node.data = total_size; } else { // manual realloc const new_ptr = self.child_allocator.rawAlloc(total_size, align_bits, @returnAddress()) orelse { // we failed to preheat the arena properly, signal this to the user. return false; }; self.child_allocator.rawFree(first_alloc_buf, align_bits, @returnAddress()); const node = @as(*BufNode, @ptrCast(@alignCast(new_ptr))); node.* = .{ .data = total_size }; self.state.buffer_list.first = node; } } return true; } fn createNode(self: *ArenaAllocator, prev_len: usize, minimum_size: usize) ?*BufNode { const actual_min_size = minimum_size + (@sizeOf(BufNode) + 16); const big_enough_len = prev_len + actual_min_size; const len = big_enough_len + big_enough_len / 2; const log2_align = comptime std.math.log2_int(usize, @alignOf(BufNode)); const ptr = self.child_allocator.rawAlloc(len, log2_align, @returnAddress()) orelse return null; const buf_node = @as(*BufNode, @ptrCast(@alignCast(ptr))); buf_node.* = .{ .data = len }; self.state.buffer_list.prepend(buf_node); self.state.end_index = 0; return buf_node; } fn alloc(ctx: *anyopaque, n: usize, log2_ptr_align: u8, ra: usize) ?[*]u8 { const self = @as(*ArenaAllocator, @ptrCast(@alignCast(ctx))); _ = ra; const ptr_align = @as(usize, 1) << @as(Allocator.Log2Align, @intCast(log2_ptr_align)); var cur_node = if (self.state.buffer_list.first) |first_node| first_node else (self.createNode(0, n + ptr_align) orelse return null); while (true) { const cur_alloc_buf = @as([*]u8, @ptrCast(cur_node))[0..cur_node.data]; const cur_buf = cur_alloc_buf[@sizeOf(BufNode)..]; const addr = @intFromPtr(cur_buf.ptr) + self.state.end_index; const adjusted_addr = mem.alignForward(usize, addr, ptr_align); const adjusted_index = self.state.end_index + (adjusted_addr - addr); const new_end_index = adjusted_index + n; if (new_end_index <= cur_buf.len) { const result = cur_buf[adjusted_index..new_end_index]; self.state.end_index = new_end_index; return result.ptr; } const bigger_buf_size = @sizeOf(BufNode) + new_end_index; const log2_align = comptime std.math.log2_int(usize, @alignOf(BufNode)); if (self.child_allocator.rawResize(cur_alloc_buf, log2_align, bigger_buf_size, @returnAddress())) { cur_node.data = bigger_buf_size; } else { // Allocate a new node if that's not possible cur_node = self.createNode(cur_buf.len, n + ptr_align) orelse return null; } } } fn resize(ctx: *anyopaque, buf: []u8, log2_buf_align: u8, new_len: usize, ret_addr: usize) bool { const self = @as(*ArenaAllocator, @ptrCast(@alignCast(ctx))); _ = log2_buf_align; _ = ret_addr; const cur_node = self.state.buffer_list.first orelse return false; const cur_buf = @as([*]u8, @ptrCast(cur_node))[@sizeOf(BufNode)..cur_node.data]; if (@intFromPtr(cur_buf.ptr) + self.state.end_index != @intFromPtr(buf.ptr) + buf.len) { // It's not the most recent allocation, so it cannot be expanded, // but it's fine if they want to make it smaller. return new_len <= buf.len; } if (buf.len >= new_len) { self.state.end_index -= buf.len - new_len; return true; } else if (cur_buf.len - self.state.end_index >= new_len - buf.len) { self.state.end_index += new_len - buf.len; return true; } else { return false; } } fn free(ctx: *anyopaque, buf: []u8, log2_buf_align: u8, ret_addr: usize) void { _ = log2_buf_align; _ = ret_addr; const self = @as(*ArenaAllocator, @ptrCast(@alignCast(ctx))); const cur_node = self.state.buffer_list.first orelse return; const cur_buf = @as([*]u8, @ptrCast(cur_node))[@sizeOf(BufNode)..cur_node.data]; if (@intFromPtr(cur_buf.ptr) + self.state.end_index == @intFromPtr(buf.ptr) + buf.len) { self.state.end_index -= buf.len; } } }; test "ArenaAllocator (reset with preheating)" { var arena_allocator = ArenaAllocator.init(std.testing.allocator); defer arena_allocator.deinit(); // provides some variance in the allocated data var rng_src = std.rand.DefaultPrng.init(19930913); const random = rng_src.random(); var rounds: usize = 25; while (rounds > 0) { rounds -= 1; _ = arena_allocator.reset(.retain_capacity); var alloced_bytes: usize = 0; var total_size: usize = random.intRangeAtMost(usize, 256, 16384); while (alloced_bytes < total_size) { const size = random.intRangeAtMost(usize, 16, 256); const alignment = 32; const slice = try arena_allocator.allocator().alignedAlloc(u8, alignment, size); try std.testing.expect(std.mem.isAligned(@intFromPtr(slice.ptr), alignment)); try std.testing.expectEqual(size, slice.len); alloced_bytes += slice.len; } } } test "ArenaAllocator (reset while retaining a buffer)" { var arena_allocator = ArenaAllocator.init(std.testing.allocator); defer arena_allocator.deinit(); const a = arena_allocator.allocator(); // Create two internal buffers _ = try a.alloc(u8, 1); _ = try a.alloc(u8, 1000); // Check that we have at least two buffers try std.testing.expect(arena_allocator.state.buffer_list.first.?.next != null); // This retains the first allocated buffer try std.testing.expect(arena_allocator.reset(.{ .retain_with_limit = 1 })); }