/* * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved. * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2007 Alp Toker * Copyright (C) 2008 Eric Seidel * Copyright (C) 2008 Dirk Schulze * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. * Copyright (C) 2012 Intel Corporation. All rights reserved. * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "config.h" #include "CanvasPath.h" // #include "AffineTransform.h" #include "DOMPointInit.h" // #include "FloatRect.h" // #include "FloatRoundedRect.h" // #include "FloatSize.h" #include #include namespace WebCore { void CanvasPath::closePath() { // if (m_path.isEmpty()) // return; // FloatRect boundRect = m_path.fastBoundingRect(); // if (boundRect.width() || boundRect.height()) // m_path.closeSubpath(); } void CanvasPath::moveTo(float x, float y) { // if (!std::isfinite(x) || !std::isfinite(y)) // return; // if (!hasInvertibleTransform()) // return; // m_path.moveTo(FloatPoint(x, y)); } // void CanvasPath::lineTo(FloatPoint point) // { // // lineTo(point.x(), point.y()); // } void CanvasPath::lineTo(float x, float y) { // if (!std::isfinite(x) || !std::isfinite(y)) // return; // if (!hasInvertibleTransform()) // return; // FloatPoint p1 = FloatPoint(x, y); // if (!m_path.hasCurrentPoint()) // m_path.moveTo(p1); // else if (p1 != m_path.currentPoint()) // m_path.addLineTo(p1); } void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y) { // if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y)) // return; // if (!hasInvertibleTransform()) // return; // if (!m_path.hasCurrentPoint()) // m_path.moveTo(FloatPoint(cpx, cpy)); // FloatPoint p1 = FloatPoint(x, y); // FloatPoint cp = FloatPoint(cpx, cpy); // if (p1 != m_path.currentPoint() || p1 != cp) // m_path.addQuadCurveTo(cp, p1); } void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y) { // if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y)) // return; // if (!hasInvertibleTransform()) // return; // if (!m_path.hasCurrentPoint()) // m_path.moveTo(FloatPoint(cp1x, cp1y)); // FloatPoint p1 = FloatPoint(x, y); // FloatPoint cp1 = FloatPoint(cp1x, cp1y); // FloatPoint cp2 = FloatPoint(cp2x, cp2y); // if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2) // m_path.addBezierCurveTo(cp1, cp2, p1); } ExceptionOr CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r) { // if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r)) // return {}; // if (r < 0) // return Exception { IndexSizeError }; // if (!hasInvertibleTransform()) // return {}; // FloatPoint p1 = FloatPoint(x1, y1); // FloatPoint p2 = FloatPoint(x2, y2); // if (!m_path.hasCurrentPoint()) // m_path.moveTo(p1); // else if (p1 == m_path.currentPoint() || p1 == p2 || !r) // lineTo(x1, y1); // else // m_path.addArcTo(p1, p2, r); // return {}; } static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise) { // float newStartAngle = startAngle; // if (newStartAngle < 0) // newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat)); // else // newStartAngle = fmodf(newStartAngle, 2 * piFloat); // float delta = newStartAngle - startAngle; // startAngle = newStartAngle; // endAngle = endAngle + delta; // ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual(newStartAngle, 2 * piFloat))); // if (anticlockwise && startAngle - endAngle >= 2 * piFloat) // endAngle = startAngle - 2 * piFloat; // else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat) // endAngle = startAngle + 2 * piFloat; } ExceptionOr CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise) { // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) // return {}; // if (radius < 0) // return Exception { IndexSizeError }; // if (!hasInvertibleTransform()) // return {}; // normalizeAngles(startAngle, endAngle, anticlockwise); // if (!radius || startAngle == endAngle) { // // The arc is empty but we still need to draw the connecting line. // lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle)); // return {}; // } // m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise); // return {}; } ExceptionOr CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise) { // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) // return {}; // if (radiusX < 0 || radiusY < 0) // return Exception { IndexSizeError }; // if (!hasInvertibleTransform()) // return {}; // normalizeAngles(startAngle, endAngle, anticlockwise); // if ((!radiusX && !radiusY) || startAngle == endAngle) { // AffineTransform transform; // transform.translate(x, y).rotate(rad2deg(rotation)); // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); // return {}; // } // if (!radiusX || !radiusY) { // AffineTransform transform; // transform.translate(x, y).rotate(rad2deg(rotation)); // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); // if (!anticlockwise) { // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat) // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); // } else { // for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat) // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); // } // lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle)))); // return {}; // } // m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise); // return {}; } void CanvasPath::rect(float x, float y, float width, float height) { // if (!hasInvertibleTransform()) // return; // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) // return; // if (!width && !height) { // m_path.moveTo(FloatPoint(x, y)); // return; // } // m_path.addRect(FloatRect(x, y, width, height)); } ExceptionOr CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii) { // // return roundRect(x, y, width, height, Span { &radii, 1 }); } ExceptionOr CanvasPath::roundRect(float x, float y, float width, float height, const Span& radii) { // // // Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect // // // 1. If any of x, y, w, or h are infinite or NaN, then return. // // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) // // return { }; // // // 2. If radii is not a list of size one, two, three, or four, then throw a RangeError. // // if (radii.size() > 4 || radii.empty()) // // return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") }; // // // 3. Let normalizedRadii be an empty list. // // Vector normalizedRadii; // // // 4. For each radius of radii: // // for (auto& radius : radii) { // // auto shouldReturnSilently = false; // // auto exception = WTF::switchOn(radius, // // // 4.1 If radius is a DOMPointInit: // // [&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr { // // // 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return. // // if (!std::isfinite(point.x) || !std::isfinite(point.y)) { // // shouldReturnSilently = true; // // return { }; // // } // // // 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError. // // if (point.x < 0 || point.y < 0) // // return Exception { RangeError, makeString("radius point coordinates must be positive") }; // // // 4.1.3 Otherwise, append radius to normalizedRadii. // // normalizedRadii.append({ static_cast(point.x), static_cast(point.y) }); // // return { }; // // }, // // // 4.2 If radius is a unrestricted double: // // [&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr { // // // 4.2.1 If radius is infinite or NaN, then return. // // if (!std::isfinite(radiusValue)) { // // shouldReturnSilently = true; // // return { }; // // } // // // 4.2.2 If radius is negative, then throw a RangeError. // // if (radiusValue < 0) // // return Exception { RangeError, makeString("radius value must be positive") }; // // // 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii. // // normalizedRadii.append({ static_cast(radiusValue), static_cast(radiusValue) }); // // return { }; // // } // // ); // // if (exception.hasException() || shouldReturnSilently) // // return exception; // // } // // // Degenerate case, fall back to regular rect. // // // We do not do this before parsing the radii in order to make sure the Exceptions can be raised. // // if (!width || !height) { // // rect(x, y, width, height); // // return { }; // // } // // // 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null. // // FloatPoint upperLeft, upperRight, lowerRight, lowerLeft; // // switch (normalizedRadii.size()) { // // case 4: // // // 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3]. // // upperLeft = normalizedRadii[0]; // // upperRight = normalizedRadii[1]; // // lowerRight = normalizedRadii[2]; // // lowerLeft = normalizedRadii[3]; // // break; // // case 3: // // // 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2]. // // upperLeft = normalizedRadii[0]; // // upperRight = normalizedRadii[1]; // // lowerRight = normalizedRadii[2]; // // lowerLeft = normalizedRadii[1]; // // break; // // case 2: // // // 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1]. // // upperLeft = normalizedRadii[0]; // // upperRight = normalizedRadii[1]; // // lowerRight = normalizedRadii[0]; // // lowerLeft = normalizedRadii[1]; // // break; // // case 1: // // // 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0]. // // upperLeft = normalizedRadii[0]; // // upperRight = normalizedRadii[0]; // // lowerRight = normalizedRadii[0]; // // lowerLeft = normalizedRadii[0]; // // break; // // default: // // RELEASE_ASSERT_NOT_REACHED(); // // break; // // } // // // Must handle clockwise and counter-clockwise directions properly so path winding works correctly. // // bool clockwise = true; // // if (width < 0) { // // clockwise = !clockwise; // // width = std::abs(width); // // x -= width; // // std::swap(upperLeft, upperRight); // // std::swap(lowerLeft, lowerRight); // // } // // if (height < 0) { // // clockwise = !clockwise; // // height = std::abs(height); // // y -= height; // // std::swap(upperLeft, lowerLeft); // // std::swap(upperRight, lowerRight); // // } // // // 10. Corner curves must not overlap. Scale all radii to prevent this: // // // 10.1 Let top be upperLeft["x"] + upperRight["x"]. // // auto top = upperLeft.x() + upperRight.x(); // // // 10.2 Let right be upperRight["y"] + lowerRight["y"]. // // auto right = upperRight.y() + lowerRight.y(); // // // 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"]. // // auto bottom = lowerRight.x() + lowerLeft.x(); // // // 10.4 Let left be upperLeft["y"] + lowerLeft["y"]. // // auto left = upperLeft.y() + lowerLeft.y(); // // // 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left. // // auto scale = std::min({ width / top, height / right, width / bottom, height / left }); // // // 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale. // // if (scale < 1) { // // upperLeft.scale(scale); // // upperRight.scale(scale); // // lowerLeft.scale(scale); // // lowerRight.scale(scale); // // } // // // 11. Create a new subpath: // // m_path.moveTo({ x + upperLeft.x(), y }); // // // The 11.x clockwise substeps are handled by Path::addRoundedRect directly. // // if (clockwise) { // // m_path.addRoundedRect({ FloatRect(x, y, width, height), // // { static_cast(upperLeft.x()), static_cast(upperLeft.y()) }, // // { static_cast(upperRight.x()), static_cast(upperRight.y()) }, // // { static_cast(lowerLeft.x()), static_cast(lowerLeft.y()) }, // // { static_cast(lowerRight.x()), static_cast(lowerRight.y()) }, // // }); // // } else { // // // Top Left corner // // if (upperLeft.x() > 0 || upperLeft.y() > 0) { // // m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y }, // // { x, y + upperLeft.y() * m_path.circleControlPoint() }, // // { x, y + upperLeft.y() }); // // } // // // Left edge // // m_path.addLineTo({ x, y + height - lowerLeft.y() }); // // // Bottom left corner // // if (lowerLeft.x() > 0 || lowerLeft.y() > 0) { // // m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() }, // // { x + lowerLeft.x() * m_path.circleControlPoint(), y + height }, // // { x + lowerLeft.x(), y + height }); // // } // // // Bottom edge // // m_path.addLineTo({ x + width - lowerRight.x(), y + height }); // // // Bottom right corner // // if (lowerRight.x() > 0 || lowerRight.y() > 0) { // // m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height }, // // { x + width, y + height - lowerRight.y() * m_path.circleControlPoint() }, // // { x + width, y + height - lowerRight.y() }); // // } // // // Right edge // // m_path.addLineTo({ x + width, y + upperRight.y() }); // // // Top right corner // // if (upperRight.x() > 0 || upperRight.y() > 0) { // // m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() }, // // { x + width - upperRight.x() * m_path.circleControlPoint(), y }, // // { x + width - upperRight.x(), y }); // // } // // // Top edge // // m_path.addLineTo({ x + upperLeft.x(), y }); // // } // // // 12. Mark the subpath as closed. // // m_path.closeSubpath(); // // // 13. Create a new subpath with the point (x, y) as the only point in the subpath. // // m_path.moveTo({ x, y }); // // return { }; } float CanvasPath::currentX() const { // return m_path.currentPoint().x(); } float CanvasPath::currentY() const { // return m_path.currentPoint().y(); } }