const std = @import("std");
const SourceMap = struct {
const base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const vlq_lookup_table: [256]VLQ = brk: {
var entries: [256]VLQ = undefined;
var i: usize = 0;
var j: i32 = 0;
while (i < 256) : (i += 1) {
entries[i] = encodeVLQ(j);
j += 1;
}
break :brk entries;
};
const vlq_max_in_bytes = 8;
pub const VLQ = struct {
// We only need to worry about i32
// That means the maximum VLQ-encoded value is 8 bytes
// because there are only 4 bits of number inside each VLQ value
// and it expects i32
// therefore, it can never be more than 32 bits long
// I believe the actual number is 7 bytes long, however we can add an extra byte to be more cautious
bytes: [vlq_max_in_bytes]u8,
len: u4 = 0,
};
pub fn encodeVLQWithLookupTable(
value: i32,
) VLQ {
return if (value >= 0 and value <= 255)
vlq_lookup_table[@intCast(usize, value)]
else
encodeVLQ(value);
}
// A single base 64 digit can contain 6 bits of data. For the base 64 variable
// length quantities we use in the source map spec, the first bit is the sign,
// the next four bits are the actual value, and the 6th bit is the continuation
// bit. The continuation bit tells us whether there are more digits in this
// value following this digit.
//
// Continuation
// | Sign
// | |
// V V
// 101011
//
pub fn encodeVLQ(
value: i32,
) VLQ {
var len: u4 = 0;
var bytes: [vlq_max_in_bytes]u8 = undefined;
var vlq: u32 = if (value >= 0)
@bitCast(u32, value << 1)
else
@bitCast(u32, (-value << 1) | 1);
// source mappings are limited to i32
comptime var i: usize = 0;
inline while (i < vlq_max_in_bytes) : (i += 1) {
var digit = vlq & 31;
vlq >>= 5;
// If there are still more digits in this value, we must make sure the
// continuation bit is marked
if (vlq != 0) {
digit |= 32;
}
bytes[len] = base64[digit];
len += 1;
if (vlq == 0) {
return VLQ{
.bytes = bytes,
.len = len,
};
}
}
return .{ .bytes = bytes, .len = 0 };
}
pub const VLQResult = struct {
value: i32 = 0,
start: usize = 0,
};
// base64 stores values up to 7 bits
const base64_lut: [std.math.maxInt(u7)]u7 = brk: {
@setEvalBranchQuota(9999);
var bytes = [_]u7{std.math.maxInt(u7)} ** std.math.maxInt(u7);
for (base64) |c, i| {
bytes[c] = i;
}
break :brk bytes;
};
pub fn decodeVLQ(encoded: []const u8, start: usize) VLQResult {
var shift: u8 = 0;
var vlq: u32 = 0;
// hint to the compiler what the maximum value is
const encoded_ = encoded[start..][0..@minimum(encoded.len - start, comptime (vlq_max_in_bytes + 1))];
// inlining helps for the 1 or 2 byte case, hurts a little for larger
comptime var i: usize = 0;
inline while (i < vlq_max_in_bytes + 1) : (i += 1) {
const index = @as(u32, base64_lut[@truncate(u7, encoded_[i])]);
// decode a byte
vlq |= (index & 31) << @truncate(u5, shift);
shift += 5;
// Stop if there's no continuation bit
if ((index & 32) == 0) {
return VLQResult{
.start = i + start,
.value = if ((vlq & 1) == 0)
@intCast(i32, vlq >> 1)
else
-@intCast(i32, (vlq >> 1)),
};
}
}
return VLQResult{ .start = start + encoded_.len, .value = 0 };
}
};
pub fn main() anyerror!void {
const args = try std.process.argsAlloc(std.heap.c_allocator);
const how_many = try std.fmt.parseInt(u64, args[args.len - 1], 10);
var numbers = try std.heap.c_allocator.alloc(i32, how_many);
var results = try std.heap.c_allocator.alloc(SourceMap.VLQ, how_many);
var leb_buf = try std.heap.c_allocator.alloc(u8, how_many * 8);
const byte_size = std.mem.sliceAsBytes(numbers).len;
var rand = std.rand.DefaultPrng.init(0);
std.debug.print("Random values:\n\n", .{});
for (numbers) |_, i| {
numbers[i] = rand.random().int(i32);
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQ(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQWithLookupTable(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encodeWithLookupTable: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (results) |n, i| {
numbers[i] = SourceMap.decodeVLQ(n.bytes[0..n.len], 0).value;
}
const elapsed = timer.read();
std.debug.print("[{d}] decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var writer = stream.writer();
for (numbers) |n| {
std.leb.writeILEB128(writer, n) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var reader = stream.reader();
for (numbers) |_, i| {
numbers[i] = std.leb.readILEB128(i32, reader) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
std.debug.print("\nNumbers between 0 - 8096:\n\n", .{});
for (numbers) |_, i| {
numbers[i] = rand.random().intRangeAtMost(i32, 0, 8096);
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQ(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQWithLookupTable(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encodeWithLookupTable: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (results) |n, i| {
numbers[i] = SourceMap.decodeVLQ(n.bytes[0..n.len], 0).value;
}
const elapsed = timer.read();
std.debug.print("[{d}] decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var writer = stream.writer();
for (numbers) |n| {
std.leb.writeILEB128(writer, n) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var reader = stream.reader();
for (numbers) |_, i| {
numbers[i] = std.leb.readILEB128(i32, reader) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
std.debug.print("\nNumbers between 0 - 255:\n\n", .{});
for (numbers) |_, i| {
numbers[i] = rand.random().intRangeAtMost(i32, 0, 255);
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQ(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (numbers) |n, i| {
results[i] = SourceMap.encodeVLQWithLookupTable(n);
}
const elapsed = timer.read();
std.debug.print("[{d}] encodeWithLookupTable: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
for (results) |n, i| {
numbers[i] = SourceMap.decodeVLQ(n.bytes[0..n.len], 0).value;
}
const elapsed = timer.read();
std.debug.print("[{d}] decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var writer = stream.writer();
for (numbers) |n| {
std.leb.writeILEB128(writer, n) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 encode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
{
var timer = try std.time.Timer.start();
var stream = std.io.fixedBufferStream(leb_buf);
var reader = stream.reader();
for (numbers) |_, i| {
numbers[i] = std.leb.readILEB128(i32, reader) catch unreachable;
}
const elapsed = timer.read();
std.debug.print("[{d}] ILEB128 decode: {} in {}\n", .{ how_many, std.fmt.fmtIntSizeDec(byte_size), std.fmt.fmtDuration(elapsed) });
}
}
test "encodeVLQ" {
const fixtures = .{
.{ 2_147_483_647, "+/////D" },
.{ -2_147_483_647, "//////D" },
.{ 0, "A" },
.{ 1, "C" },
.{ -1, "D" },
.{ 123, "2H" },
.{ 123456789, "qxmvrH" },
};
inline for (fixtures) |fixture| {
const result = SourceMap.encodeVLQ(fixture[0]);
try std.testing.expectEqualStrings(fixture[1], result.bytes[0..result.len]);
}
}
test "decodeVLQ" {
const fixtures = .{
.{ 2_147_483_647, "+/////D" },
.{ -2_147_483_647, "//////D" },
.{ 0, "A" },
.{ 1, "C" },
.{ -1, "D" },
.{ 123, "2H" },
.{ 123456789, "qxmvrH" },
};
inline for (fixtures) |fixture| {
const result = SourceMap.decodeVLQ(fixture[1], 0);
try std.testing.expectEqual(
result.value,
fixture[0],
);
}
}
Unnamed repository; edit this file 'description' to name the repository. | |