1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
const std = @import("std");
const Environment = @import("./env.zig");
const strings = @import("./string_immutable.zig");
const bun = @import("bun");
/// This is like ArrayList except it stores the length and capacity as u32
/// In practice, it is very unusual to have lengths above 4 GB
///
/// This lets us have array lists which occupy the same amount of space as a slice
pub fn BabyList(comptime Type: type) type {
return struct {
const ListType = @This();
ptr: [*]Type = undefined,
len: u32 = 0,
cap: u32 = 0,
pub fn available(this: *@This()) []Type {
return this.ptr[this.len..this.cap];
}
pub fn deinitWithAllocator(this: *@This(), allocator: std.mem.Allocator) void {
this.listManaged(allocator).deinit();
this.* = .{};
}
pub fn contains(this: @This(), item: []const Type) bool {
return this.len > 0 and @ptrToInt(item.ptr) >= @ptrToInt(this.ptr) and @ptrToInt(item.ptr) < @ptrToInt(this.ptr) + this.len;
}
pub inline fn initConst(items: []const Type) ListType {
return ListType{
// Remove the const qualifier from the items
.ptr = @intToPtr([*]Type, @ptrToInt(items.ptr)),
.len = @truncate(u32, items.len),
.cap = @truncate(u32, items.len),
};
}
pub inline fn init(items: []Type) ListType {
return ListType{
.ptr = items.ptr,
.len = @truncate(u32, items.len),
.cap = @truncate(u32, items.len),
};
}
pub inline fn fromList(list_: anytype) ListType {
if (comptime Environment.allow_assert) {
std.debug.assert(list_.items.len <= list_.capacity);
}
return ListType{
.ptr = list_.items.ptr,
.len = @truncate(u32, list_.items.len),
.cap = @truncate(u32, list_.capacity),
};
}
pub fn update(this: *ListType, list_: anytype) void {
this.* = .{
.ptr = list_.items.ptr,
.len = @truncate(u32, list_.items.len),
.cap = @truncate(u32, list_.capacity),
};
if (comptime Environment.allow_assert) {
std.debug.assert(this.len <= this.cap);
}
}
pub fn list(this: ListType) std.ArrayListUnmanaged(Type) {
return std.ArrayListUnmanaged(Type){
.items = this.ptr[0..this.len],
.capacity = this.cap,
};
}
pub fn listManaged(this: ListType, allocator: std.mem.Allocator) std.ArrayList(Type) {
return std.ArrayList(Type){
.items = this.ptr[0..this.len],
.capacity = this.cap,
.allocator = allocator,
};
}
pub inline fn first(this: ListType) ?*Type {
return if (this.len > 0) this.ptr[0] else @as(?*Type, null);
}
pub inline fn last(this: ListType) ?*Type {
return if (this.len > 0) &this.ptr[this.len - 1] else @as(?*Type, null);
}
pub inline fn first_(this: ListType) Type {
return this.ptr[0];
}
pub fn one(allocator: std.mem.Allocator, value: Type) !ListType {
var items = try allocator.alloc(Type, 1);
items[0] = value;
return ListType{
.ptr = @ptrCast([*]Type, items.ptr),
.len = 1,
.cap = 1,
};
}
pub inline fn @"[0]"(this: ListType) Type {
return this.ptr[0];
}
const OOM = error{OutOfMemory};
pub fn push(this: *ListType, allocator: std.mem.Allocator, value: Type) OOM!void {
var list_ = this.list();
try list_.append(allocator, value);
this.update(list_);
}
pub fn append(this: *ListType, allocator: std.mem.Allocator, value: []const Type) OOM!void {
var list_ = this.list();
try list_.appendSlice(allocator, value);
this.update(list_);
}
pub inline fn slice(this: ListType) []Type {
@setRuntimeSafety(false);
return this.ptr[0..this.len];
}
pub fn write(this: *@This(), allocator: std.mem.Allocator, str: []const u8) !u32 {
if (comptime Type != u8)
@compileError("Unsupported for type " ++ @typeName(Type));
const initial = this.len;
var list_ = this.listManaged(allocator);
try list_.appendSlice(str);
this.update(list_);
return this.len - initial;
}
pub fn writeLatin1(this: *@This(), allocator: std.mem.Allocator, str: []const u8) !u32 {
if (comptime Type != u8)
@compileError("Unsupported for type " ++ @typeName(Type));
const initial = this.len;
const old = this.listManaged(allocator);
const new = try strings.allocateLatin1IntoUTF8WithList(old, old.items.len, []const u8, str);
this.update(new);
return this.len - initial;
}
pub fn writeUTF16(this: *@This(), allocator: std.mem.Allocator, str: []const u16) !u32 {
if (comptime Type != u8)
@compileError("Unsupported for type " ++ @typeName(Type));
var list_ = this.listManaged(allocator);
const initial = this.len;
outer: {
defer this.update(list_);
const trimmed = bun.simdutf.trim.utf16(str);
if (trimmed.len == 0)
break :outer;
const available_len = (list_.capacity - list_.items.len);
// maximum UTF-16 length is 3 times the UTF-8 length + 2
// only do the pass over the input length if we may not have enough space
const out_len = if (available_len <= (trimmed.len * 3 + 2))
bun.simdutf.length.utf8.from.utf16.le(trimmed)
else
str.len;
if (out_len == 0)
break :outer;
// intentionally over-allocate a little
try list_.ensureTotalCapacity(list_.items.len + out_len);
var remain = str;
while (remain.len > 0) {
const orig_len = list_.items.len;
var slice_ = list_.items.ptr[orig_len..list_.capacity];
const result = strings.copyUTF16IntoUTF8WithBuffer(slice_, []const u16, remain, trimmed, out_len);
remain = remain[result.read..];
list_.items.len += @as(usize, result.written);
if (result.read == 0 or result.written == 0) break;
}
}
if (comptime Environment.allow_assert) {
// sanity check that encoding produced a consistent result
var allocated = try strings.toUTF8Alloc(allocator, str);
defer allocator.free(allocated);
const encoded = this.ptr[initial..this.len];
std.testing.expectEqualStrings(allocated, encoded) catch unreachable;
}
return this.len - initial;
}
};
}
|