1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/*
* Copyright (C) 2021 Sony Interactive Entertainment Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CryptoKeyRSA.h"
#if ENABLE(WEB_CRYPTO)
#include "CryptoAlgorithmRegistry.h"
#include "CryptoKeyPair.h"
#include "CryptoKeyRSAComponents.h"
#include "OpenSSLUtilities.h"
#include <JavaScriptCore/TypedArrayInlines.h>
#include <openssl/x509.h>
#include <openssl/evp.h>
namespace WebCore {
static size_t getRSAModulusLength(RSA* rsa)
{
if (!rsa)
return 0;
return RSA_size(rsa) * 8;
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::create(CryptoAlgorithmIdentifier identifier, CryptoAlgorithmIdentifier hash, bool hasHash, const CryptoKeyRSAComponents& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
CryptoKeyType keyType;
switch (keyData.type()) {
case CryptoKeyRSAComponents::Type::Public:
keyType = CryptoKeyType::Public;
break;
case CryptoKeyRSAComponents::Type::Private:
keyType = CryptoKeyType::Private;
break;
default:
return nullptr;
}
// When creating a private key, we require the p and q prime information.
if (keyType == CryptoKeyType::Private && !keyData.hasAdditionalPrivateKeyParameters())
return nullptr;
// But we don't currently support creating keys with any additional prime information.
if (!keyData.otherPrimeInfos().isEmpty())
return nullptr;
// For both public and private keys, we need the public modulus and exponent.
if (keyData.modulus().isEmpty() || keyData.exponent().isEmpty())
return nullptr;
// For private keys, we require the private exponent, as well as p and q prime information.
if (keyType == CryptoKeyType::Private) {
if (keyData.privateExponent().isEmpty() || keyData.firstPrimeInfo().primeFactor.isEmpty() || keyData.secondPrimeInfo().primeFactor.isEmpty())
return nullptr;
}
auto rsa = RSAPtr(RSA_new());
if (!rsa)
return nullptr;
auto n = convertToBigNumber(keyData.modulus());
auto e = convertToBigNumber(keyData.exponent());
if (!n || !e)
return nullptr;
// Calling with d null is fine as long as n and e are not null
if (!RSA_set0_key(rsa.get(), n.get(), e.get(), nullptr))
return nullptr;
// Ownership transferred to OpenSSL
n.release();
e.release();
if (keyType == CryptoKeyType::Private) {
auto d = convertToBigNumber(keyData.privateExponent());
if (!d)
return nullptr;
// Calling with n and e null is fine as long as they were set prior
if (!RSA_set0_key(rsa.get(), nullptr, nullptr, d.get()))
return nullptr;
// Ownership transferred to OpenSSL
d.release();
auto p = convertToBigNumber(keyData.firstPrimeInfo().primeFactor);
auto q = convertToBigNumber(keyData.secondPrimeInfo().primeFactor);
if (!p || !q)
return nullptr;
if (!RSA_set0_factors(rsa.get(), p.get(), q.get()))
return nullptr;
// Ownership transferred to OpenSSL
p.release();
q.release();
// We set dmp1, dmpq1, and iqmp member of the RSA struct if the keyData has corresponding data.
// dmp1 -- d mod (p - 1)
auto dmp1 = (!keyData.firstPrimeInfo().factorCRTExponent.isEmpty()) ? convertToBigNumber(keyData.firstPrimeInfo().factorCRTExponent) : nullptr;
// dmq1 -- d mod (q - 1)
auto dmq1 = (!keyData.secondPrimeInfo().factorCRTExponent.isEmpty()) ? convertToBigNumber(keyData.secondPrimeInfo().factorCRTExponent) : nullptr;
// iqmp -- q^(-1) mod p
auto iqmp = (!keyData.secondPrimeInfo().factorCRTCoefficient.isEmpty()) ? convertToBigNumber(keyData.secondPrimeInfo().factorCRTCoefficient) : nullptr;
if (!RSA_set0_crt_params(rsa.get(), dmp1.get(), dmq1.get(), iqmp.get()))
return nullptr;
// Ownership transferred to OpenSSL
dmp1.release();
dmq1.release();
iqmp.release();
}
auto pkey = EvpPKeyPtr(EVP_PKEY_new());
if (!pkey)
return nullptr;
if (EVP_PKEY_set1_RSA(pkey.get(), rsa.get()) != 1)
return nullptr;
return adoptRef(new CryptoKeyRSA(identifier, hash, hasHash, keyType, WTFMove(pkey), extractable, usages));
}
CryptoKeyRSA::CryptoKeyRSA(CryptoAlgorithmIdentifier identifier, CryptoAlgorithmIdentifier hash, bool hasHash, CryptoKeyType type, PlatformRSAKeyContainer&& platformKey, bool extractable, CryptoKeyUsageBitmap usages)
: CryptoKey(identifier, type, extractable, usages)
, m_platformKey(WTFMove(platformKey))
, m_restrictedToSpecificHash(hasHash)
, m_hash(hash)
{
}
bool CryptoKeyRSA::isRestrictedToHash(CryptoAlgorithmIdentifier& identifier) const
{
if (!m_restrictedToSpecificHash)
return false;
identifier = m_hash;
return true;
}
size_t CryptoKeyRSA::keySizeInBits() const
{
RSA* rsa = EVP_PKEY_get0_RSA(m_platformKey.get());
if (!rsa)
return 0;
return getRSAModulusLength(rsa);
}
// Convert the exponent vector to a 32-bit value, if possible.
static std::optional<uint32_t> exponentVectorToUInt32(const Vector<uint8_t>& exponent)
{
if (exponent.size() > 4) {
if (std::any_of(exponent.begin(), exponent.end() - 4, [](uint8_t element) { return !!element; }))
return std::nullopt;
}
uint32_t result = 0;
for (size_t size = exponent.size(), i = std::min<size_t>(4, size); i > 0; --i) {
result <<= 8;
result += exponent[size - i];
}
return result;
}
void CryptoKeyRSA::generatePair(CryptoAlgorithmIdentifier algorithm, CryptoAlgorithmIdentifier hash, bool hasHash, unsigned modulusLength, const Vector<uint8_t>& publicExponent, bool extractable, CryptoKeyUsageBitmap usages, KeyPairCallback&& callback, VoidCallback&& failureCallback, ScriptExecutionContext*)
{
// OpenSSL doesn't report an error if the exponent is smaller than three or even.
auto e = exponentVectorToUInt32(publicExponent);
if (!e || *e < 3 || !(*e & 0x1)) {
failureCallback();
return;
}
auto exponent = convertToBigNumber(publicExponent);
auto privateRSA = RSAPtr(RSA_new());
if (!exponent || RSA_generate_key_ex(privateRSA.get(), modulusLength, exponent.get(), nullptr) <= 0) {
failureCallback();
return;
}
auto publicRSA = RSAPtr(RSAPublicKey_dup(privateRSA.get()));
if (!publicRSA) {
failureCallback();
return;
}
auto privatePKey = EvpPKeyPtr(EVP_PKEY_new());
if (EVP_PKEY_set1_RSA(privatePKey.get(), privateRSA.get()) <= 0) {
failureCallback();
return;
}
auto publicPKey = EvpPKeyPtr(EVP_PKEY_new());
if (EVP_PKEY_set1_RSA(publicPKey.get(), publicRSA.get()) <= 0) {
failureCallback();
return;
}
auto publicKey = CryptoKeyRSA::create(algorithm, hash, hasHash, CryptoKeyType::Public, WTFMove(publicPKey), true, usages);
auto privateKey = CryptoKeyRSA::create(algorithm, hash, hasHash, CryptoKeyType::Private, WTFMove(privatePKey), extractable, usages);
callback(CryptoKeyPair { WTFMove(publicKey), WTFMove(privateKey) });
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::importSpki(CryptoAlgorithmIdentifier identifier, std::optional<CryptoAlgorithmIdentifier> hash, Vector<uint8_t>&& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
// We need a local pointer variable to pass to d2i (DER to internal) functions().
const uint8_t* ptr = keyData.data();
// We use d2i_PUBKEY() to import a public key.
auto pkey = EvpPKeyPtr(d2i_PUBKEY(nullptr, &ptr, keyData.size()));
if (!pkey || EVP_PKEY_id(pkey.get()) != EVP_PKEY_RSA)
return nullptr;
return adoptRef(new CryptoKeyRSA(identifier, hash.value_or(CryptoAlgorithmIdentifier::SHA_1), !!hash, CryptoKeyType::Public, WTFMove(pkey), extractable, usages));
}
RefPtr<CryptoKeyRSA> CryptoKeyRSA::importPkcs8(CryptoAlgorithmIdentifier identifier, std::optional<CryptoAlgorithmIdentifier> hash, Vector<uint8_t>&& keyData, bool extractable, CryptoKeyUsageBitmap usages)
{
// We need a local pointer variable to pass to d2i (DER to internal) functions().
const uint8_t* ptr = keyData.data();
// We use d2i_PKCS8_PRIV_KEY_INFO() to import a private key.
auto p8inf = PKCS8PrivKeyInfoPtr(d2i_PKCS8_PRIV_KEY_INFO(nullptr, &ptr, keyData.size()));
if (!p8inf)
return nullptr;
auto pkey = EvpPKeyPtr(EVP_PKCS82PKEY(p8inf.get()));
if (!pkey || EVP_PKEY_id(pkey.get()) != EVP_PKEY_RSA)
return nullptr;
return adoptRef(new CryptoKeyRSA(identifier, hash.value_or(CryptoAlgorithmIdentifier::SHA_1), !!hash, CryptoKeyType::Private, WTFMove(pkey), extractable, usages));
}
ExceptionOr<Vector<uint8_t>> CryptoKeyRSA::exportSpki() const
{
if (type() != CryptoKeyType::Public)
return Exception { InvalidAccessError };
int len = i2d_PUBKEY(platformKey(), nullptr);
if (len < 0)
return Exception { OperationError };
Vector<uint8_t> keyData(len);
auto ptr = keyData.data();
if (i2d_PUBKEY(platformKey(), &ptr) < 0)
return Exception { OperationError };
return keyData;
}
ExceptionOr<Vector<uint8_t>> CryptoKeyRSA::exportPkcs8() const
{
if (type() != CryptoKeyType::Private)
return Exception { InvalidAccessError };
auto p8inf = PKCS8PrivKeyInfoPtr(EVP_PKEY2PKCS8(platformKey()));
if (!p8inf)
return Exception { OperationError };
int len = i2d_PKCS8_PRIV_KEY_INFO(p8inf.get(), nullptr);
if (len < 0)
return Exception { OperationError };
Vector<uint8_t> keyData(len);
auto ptr = keyData.data();
if (i2d_PKCS8_PRIV_KEY_INFO(p8inf.get(), &ptr) < 0)
return Exception { OperationError };
return keyData;
}
auto CryptoKeyRSA::algorithm() const -> KeyAlgorithm
{
RSA* rsa = EVP_PKEY_get0_RSA(platformKey());
auto modulusLength = getRSAModulusLength(rsa);
Vector<uint8_t> publicExponent;
if (rsa) {
const BIGNUM* e;
RSA_get0_key(rsa, nullptr, &e, nullptr);
publicExponent = convertToBytes(e);
}
if (m_restrictedToSpecificHash) {
CryptoRsaHashedKeyAlgorithm result;
result.name = CryptoAlgorithmRegistry::singleton().name(algorithmIdentifier());
result.modulusLength = modulusLength;
result.publicExponent = Uint8Array::tryCreate(publicExponent.data(), publicExponent.size());
result.hash.name = CryptoAlgorithmRegistry::singleton().name(m_hash);
return result;
}
CryptoRsaKeyAlgorithm result;
result.name = CryptoAlgorithmRegistry::singleton().name(algorithmIdentifier());
result.modulusLength = modulusLength;
result.publicExponent = Uint8Array::tryCreate(publicExponent.data(), publicExponent.size());
return result;
}
std::unique_ptr<CryptoKeyRSAComponents> CryptoKeyRSA::exportData() const
{
RSA* rsa = EVP_PKEY_get0_RSA(platformKey());
if (!rsa)
return nullptr;
const BIGNUM* n;
const BIGNUM* e;
const BIGNUM* d;
RSA_get0_key(rsa, &n, &e, &d);
switch (type()) {
case CryptoKeyType::Public:
// We need the public modulus and exponent for the public key.
if (!n || !e)
return nullptr;
return CryptoKeyRSAComponents::createPublic(convertToBytes(n), convertToBytes(e));
case CryptoKeyType::Private: {
// We need the public modulus, exponent, and private exponent, as well as p and q prime information.
const BIGNUM* p;
const BIGNUM* q;
RSA_get0_factors(rsa, &p, &q);
if (!n || !e || !d || !p || !q)
return nullptr;
CryptoKeyRSAComponents::PrimeInfo firstPrimeInfo;
firstPrimeInfo.primeFactor = convertToBytes(p);
CryptoKeyRSAComponents::PrimeInfo secondPrimeInfo;
secondPrimeInfo.primeFactor = convertToBytes(q);
auto context = BNCtxPtr(BN_CTX_new());
const BIGNUM* dmp1;
const BIGNUM* dmq1;
const BIGNUM* iqmp;
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
// dmp1 -- d mod (p - 1)
if (dmp1)
firstPrimeInfo.factorCRTExponent = convertToBytes(dmp1);
else {
auto dmp1New = BIGNUMPtr(BN_new());
auto pm1 = BIGNUMPtr(BN_dup(p));
if (BN_sub_word(pm1.get(), 1) == 1 && BN_mod(dmp1New.get(), d, pm1.get(), context.get()) == 1)
firstPrimeInfo.factorCRTExponent = convertToBytes(dmp1New.get());
}
// dmq1 -- d mod (q - 1)
if (dmq1)
secondPrimeInfo.factorCRTExponent = convertToBytes(dmq1);
else {
auto dmq1New = BIGNUMPtr(BN_new());
auto qm1 = BIGNUMPtr(BN_dup(q));
if (BN_sub_word(qm1.get(), 1) == 1 && BN_mod(dmq1New.get(), d, qm1.get(), context.get()) == 1)
secondPrimeInfo.factorCRTExponent = convertToBytes(dmq1New.get());
}
// iqmp -- q^(-1) mod p
if (iqmp)
secondPrimeInfo.factorCRTCoefficient = convertToBytes(iqmp);
else {
auto iqmpNew = BIGNUMPtr(BN_mod_inverse(nullptr, q, p, context.get()));
if (iqmpNew)
secondPrimeInfo.factorCRTCoefficient = convertToBytes(iqmpNew.get());
}
return CryptoKeyRSAComponents::createPrivateWithAdditionalData(
convertToBytes(n), convertToBytes(e), convertToBytes(d),
WTFMove(firstPrimeInfo), WTFMove(secondPrimeInfo), Vector<CryptoKeyRSAComponents::PrimeInfo> { });
}
default:
ASSERT_NOT_REACHED();
return nullptr;
}
}
} // namespace WebCore
#endif // ENABLE(WEB_CRYPTO)
|