1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
|
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKVX_DEFINED
#define SKVX_DEFINED
// skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>.
//
// This time we're leaning a bit less on platform-specific intrinsics and a bit
// more on Clang/GCC vector extensions, but still keeping the option open to
// drop in platform-specific intrinsics, actually more easily than before.
//
// We've also fixed a few of the caveats that used to make SkNx awkward to work
// with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size
// and alignment and is safe to use across translation units freely.
// (Ideally we'd only align to T, but that tanks ARMv7 NEON codegen.)
// Please try to keep this file independent of Skia headers.
#include <algorithm> // std::min, std::max
#include <cassert> // assert()
#include <cmath> // ceilf, floorf, truncf, roundf, sqrtf, etc.
#include <cstdint> // intXX_t
#include <cstring> // memcpy()
#include <initializer_list> // std::initializer_list
#include <utility> // std::index_sequence
// Users may disable SIMD with SKNX_NO_SIMD, which may be set via compiler flags.
// The gn build has no option which sets SKNX_NO_SIMD.
// Use SKVX_USE_SIMD internally to avoid confusing double negation.
// Do not use 'defined' in a macro expansion.
#if !defined(SKNX_NO_SIMD)
#define SKVX_USE_SIMD 1
#else
#define SKVX_USE_SIMD 0
#endif
#if SKVX_USE_SIMD
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__)
#include <immintrin.h>
#elif defined(__ARM_NEON)
#include <arm_neon.h>
#elif defined(__wasm_simd128__)
#include <wasm_simd128.h>
#endif
#endif
// To avoid ODR violations, all methods must be force-inlined...
#if defined(_MSC_VER)
#define SKVX_ALWAYS_INLINE __forceinline
#else
#define SKVX_ALWAYS_INLINE __attribute__((always_inline))
#endif
// ... and all standalone functions must be static. Please use these helpers:
#define SI static inline
#define SIT template < typename T> SI
#define SIN template <int N > SI
#define SINT template <int N, typename T> SI
#define SINTU template <int N, typename T, typename U, \
typename=std::enable_if_t<std::is_convertible<U,T>::value>> SI
namespace skvx {
template <int N, typename T>
struct alignas(N*sizeof(T)) Vec;
template <int... Ix, int N, typename T>
SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>&);
template <typename D, typename S>
SI D bit_pun(const S&);
// All Vec have the same simple memory layout, the same as `T vec[N]`.
template <int N, typename T>
struct alignas(N*sizeof(T)) VecStorage {
SKVX_ALWAYS_INLINE VecStorage() = default;
SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {}
Vec<N/2,T> lo, hi;
};
template <typename T>
struct VecStorage<4,T> {
SKVX_ALWAYS_INLINE VecStorage() = default;
SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {}
SKVX_ALWAYS_INLINE VecStorage(T x, T y, T z, T w) : lo(x,y), hi(z, w) {}
SKVX_ALWAYS_INLINE VecStorage(Vec<2,T> xy, T z, T w) : lo(xy), hi(z,w) {}
SKVX_ALWAYS_INLINE VecStorage(T x, T y, Vec<2,T> zw) : lo(x,y), hi(zw) {}
SKVX_ALWAYS_INLINE VecStorage(Vec<2,T> xy, Vec<2,T> zw) : lo(xy), hi(zw) {}
SKVX_ALWAYS_INLINE Vec<2,T>& xy() { return lo; }
SKVX_ALWAYS_INLINE Vec<2,T>& zw() { return hi; }
SKVX_ALWAYS_INLINE T& x() { return lo.lo.val; }
SKVX_ALWAYS_INLINE T& y() { return lo.hi.val; }
SKVX_ALWAYS_INLINE T& z() { return hi.lo.val; }
SKVX_ALWAYS_INLINE T& w() { return hi.hi.val; }
SKVX_ALWAYS_INLINE Vec<2,T> xy() const { return lo; }
SKVX_ALWAYS_INLINE Vec<2,T> zw() const { return hi; }
SKVX_ALWAYS_INLINE T x() const { return lo.lo.val; }
SKVX_ALWAYS_INLINE T y() const { return lo.hi.val; }
SKVX_ALWAYS_INLINE T z() const { return hi.lo.val; }
SKVX_ALWAYS_INLINE T w() const { return hi.hi.val; }
// Exchange-based swizzles. These should take 1 cycle on NEON and 3 (pipelined) cycles on SSE.
SKVX_ALWAYS_INLINE Vec<4,T> yxwz() const { return shuffle<1,0,3,2>(bit_pun<Vec<4,T>>(*this)); }
SKVX_ALWAYS_INLINE Vec<4,T> zwxy() const { return shuffle<2,3,0,1>(bit_pun<Vec<4,T>>(*this)); }
Vec<2,T> lo, hi;
};
template <typename T>
struct VecStorage<2,T> {
SKVX_ALWAYS_INLINE VecStorage() = default;
SKVX_ALWAYS_INLINE VecStorage(T s) : lo(s), hi(s) {}
SKVX_ALWAYS_INLINE VecStorage(T x, T y) : lo(x), hi(y) {}
SKVX_ALWAYS_INLINE T& x() { return lo.val; }
SKVX_ALWAYS_INLINE T& y() { return hi.val; }
SKVX_ALWAYS_INLINE T x() const { return lo.val; }
SKVX_ALWAYS_INLINE T y() const { return hi.val; }
// This exchange-based swizzle should take 1 cycle on NEON and 3 (pipelined) cycles on SSE.
SKVX_ALWAYS_INLINE Vec<2,T> yx() const { return shuffle<1,0>(bit_pun<Vec<2,T>>(*this)); }
SKVX_ALWAYS_INLINE Vec<4,T> xyxy() const {
return Vec<4,T>(bit_pun<Vec<2,T>>(*this), bit_pun<Vec<2,T>>(*this));
}
Vec<1,T> lo, hi;
};
template <int N, typename T>
struct alignas(N*sizeof(T)) Vec : public VecStorage<N,T> {
static_assert((N & (N-1)) == 0, "N must be a power of 2.");
static_assert(sizeof(T) >= alignof(T), "What kind of unusual T is this?");
// Methods belong here in the class declaration of Vec only if:
// - they must be here, like constructors or operator[];
// - they'll definitely never want a specialized implementation.
// Other operations on Vec should be defined outside the type.
SKVX_ALWAYS_INLINE Vec() = default;
using VecStorage<N,T>::VecStorage;
SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) {
T vals[N] = {0};
memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T));
this->lo = Vec<N/2,T>::Load(vals + 0);
this->hi = Vec<N/2,T>::Load(vals + N/2);
}
SKVX_ALWAYS_INLINE T operator[](int i) const { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; }
SKVX_ALWAYS_INLINE T& operator[](int i) { return i<N/2 ? this->lo[i] : this->hi[i-N/2]; }
SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
Vec v;
memcpy(&v, ptr, sizeof(Vec));
return v;
}
SKVX_ALWAYS_INLINE void store(void* ptr) const {
memcpy(ptr, this, sizeof(Vec));
}
};
template <typename T>
struct Vec<1,T> {
T val;
SKVX_ALWAYS_INLINE Vec() = default;
Vec(T s) : val(s) {}
SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {}
SKVX_ALWAYS_INLINE T operator[](int) const { return val; }
SKVX_ALWAYS_INLINE T& operator[](int) { return val; }
SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) {
Vec v;
memcpy(&v, ptr, sizeof(Vec));
return v;
}
SKVX_ALWAYS_INLINE void store(void* ptr) const {
memcpy(ptr, this, sizeof(Vec));
}
};
// Ideally we'd only use bit_pun(), but until this file is always built as C++17 with constexpr if,
// we'll sometimes find need to use unchecked_bit_pun(). Please do check the call sites yourself!
template <typename D, typename S>
SI D unchecked_bit_pun(const S& s) {
D d;
memcpy(&d, &s, sizeof(D));
return d;
}
template <typename D, typename S>
SI D bit_pun(const S& s) {
static_assert(sizeof(D) == sizeof(S), "");
return unchecked_bit_pun<D>(s);
}
// Translate from a value type T to its corresponding Mask, the result of a comparison.
template <typename T> struct Mask { using type = T; };
template <> struct Mask<float > { using type = int32_t; };
template <> struct Mask<double> { using type = int64_t; };
template <typename T> using M = typename Mask<T>::type;
// Join two Vec<N,T> into one Vec<2N,T>.
SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) {
Vec<2*N,T> v;
v.lo = lo;
v.hi = hi;
return v;
}
// We have three strategies for implementing Vec operations:
// 1) lean on Clang/GCC vector extensions when available;
// 2) use map() to apply a scalar function lane-wise;
// 3) recurse on lo/hi to scalar portable implementations.
// We can slot in platform-specific implementations as overloads for particular Vec<N,T>,
// or often integrate them directly into the recursion of style 3), allowing fine control.
#if SKVX_USE_SIMD && (defined(__clang__) || defined(__GNUC__))
// VExt<N,T> types have the same size as Vec<N,T> and support most operations directly.
#if defined(__clang__)
template <int N, typename T>
using VExt = T __attribute__((ext_vector_type(N)));
#elif defined(__GNUC__)
template <int N, typename T>
struct VExtHelper {
typedef T __attribute__((vector_size(N*sizeof(T)))) type;
};
template <int N, typename T>
using VExt = typename VExtHelper<N,T>::type;
// For some reason some (new!) versions of GCC cannot seem to deduce N in the generic
// to_vec<N,T>() below for N=4 and T=float. This workaround seems to help...
SI Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); }
#endif
SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return bit_pun<VExt<N,T>>(v); }
SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return bit_pun<Vec <N,T>>(v); }
SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) + to_vext(y));
}
SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) - to_vext(y));
}
SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) * to_vext(y));
}
SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) / to_vext(y));
}
SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) ^ to_vext(y));
}
SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) & to_vext(y));
}
SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) {
return to_vec<N,T>(to_vext(x) | to_vext(y));
}
SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); }
SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); }
SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); }
SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) << k); }
SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return to_vec<N,T>(to_vext(x) >> k); }
SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y));
}
SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y));
}
SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y));
}
SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y));
}
SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y));
}
SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) {
return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y));
}
#else
// Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available.
// We'll implement things portably with N==1 scalar implementations and recursion onto them.
// N == 1 scalar implementations.
SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; }
SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; }
SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; }
SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; }
SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; }
SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; }
SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; }
SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; }
SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; }
SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; }
SIT Vec<1,T> operator<<(const Vec<1,T>& x, int k) { return x.val << k; }
SIT Vec<1,T> operator>>(const Vec<1,T>& x, int k) { return x.val >> k; }
SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val == y.val ? ~0 : 0;
}
SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val != y.val ? ~0 : 0;
}
SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val <= y.val ? ~0 : 0;
}
SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val >= y.val ? ~0 : 0;
}
SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val < y.val ? ~0 : 0;
}
SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) {
return x.val > y.val ? ~0 : 0;
}
// Recurse on lo/hi down to N==1 scalar implementations.
SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo + y.lo, x.hi + y.hi);
}
SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo - y.lo, x.hi - y.hi);
}
SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo * y.lo, x.hi * y.hi);
}
SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo / y.lo, x.hi / y.hi);
}
SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo ^ y.lo, x.hi ^ y.hi);
}
SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo & y.lo, x.hi & y.hi);
}
SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo | y.lo, x.hi | y.hi);
}
SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); }
SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); }
SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); }
SINT Vec<N,T> operator<<(const Vec<N,T>& x, int k) { return join(x.lo << k, x.hi << k); }
SINT Vec<N,T> operator>>(const Vec<N,T>& x, int k) { return join(x.lo >> k, x.hi >> k); }
SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo == y.lo, x.hi == y.hi);
}
SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo != y.lo, x.hi != y.hi);
}
SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo <= y.lo, x.hi <= y.hi);
}
SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo >= y.lo, x.hi >= y.hi);
}
SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo < y.lo, x.hi < y.hi);
}
SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) {
return join(x.lo > y.lo, x.hi > y.hi);
}
#endif
// Scalar/vector operations splat the scalar to a vector.
SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; }
SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; }
SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; }
SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; }
SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; }
SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; }
SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; }
SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; }
SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; }
SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; }
SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; }
SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; }
SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; }
SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); }
SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); }
SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); }
SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); }
SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); }
SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); }
SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); }
SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); }
SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); }
SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); }
SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); }
SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); }
SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); }
SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); }
SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); }
SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); }
SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); }
SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); }
SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); }
SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); }
SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); }
SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); }
SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); }
SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); }
// Some operations we want are not expressible with Clang/GCC vector extensions.
// Clang can reason about naive_if_then_else() and optimize through it better
// than if_then_else(), so it's sometimes useful to call it directly when we
// think an entire expression should optimize away, e.g. min()/max().
SINT Vec<N,T> naive_if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) {
return bit_pun<Vec<N,T>>(( cond & bit_pun<Vec<N, M<T>>>(t)) |
(~cond & bit_pun<Vec<N, M<T>>>(e)) );
}
SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) {
// In practice this scalar implementation is unlikely to be used. See next if_then_else().
return bit_pun<Vec<1,T>>(( cond & bit_pun<Vec<1, M<T>>>(t)) |
(~cond & bit_pun<Vec<1, M<T>>>(e)) );
}
SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) {
// Specializations inline here so they can generalize what types the apply to.
// (This header is used in C++14 contexts, so we have to kind of fake constexpr if.)
#if SKVX_USE_SIMD && defined(__AVX2__)
if /*constexpr*/ (N*sizeof(T) == 32) {
return unchecked_bit_pun<Vec<N,T>>(_mm256_blendv_epi8(unchecked_bit_pun<__m256i>(e),
unchecked_bit_pun<__m256i>(t),
unchecked_bit_pun<__m256i>(cond)));
}
#endif
#if SKVX_USE_SIMD && defined(__SSE4_1__)
if /*constexpr*/ (N*sizeof(T) == 16) {
return unchecked_bit_pun<Vec<N,T>>(_mm_blendv_epi8(unchecked_bit_pun<__m128i>(e),
unchecked_bit_pun<__m128i>(t),
unchecked_bit_pun<__m128i>(cond)));
}
#endif
#if SKVX_USE_SIMD && defined(__ARM_NEON)
if /*constexpr*/ (N*sizeof(T) == 16) {
return unchecked_bit_pun<Vec<N,T>>(vbslq_u8(unchecked_bit_pun<uint8x16_t>(cond),
unchecked_bit_pun<uint8x16_t>(t),
unchecked_bit_pun<uint8x16_t>(e)));
}
#endif
// Recurse for large vectors to try to hit the specializations above.
if /*constexpr*/ (N*sizeof(T) > 16) {
return join(if_then_else(cond.lo, t.lo, e.lo),
if_then_else(cond.hi, t.hi, e.hi));
}
// This default can lead to better code than the recursing onto scalars.
return naive_if_then_else(cond, t, e);
}
SIT bool any(const Vec<1,T>& x) { return x.val != 0; }
SINT bool any(const Vec<N,T>& x) {
#if SKVX_USE_SIMD && defined(__wasm_simd128__)
if constexpr (N == 4 && sizeof(T) == 4) {
return wasm_i32x4_any_true(unchecked_bit_pun<VExt<4,int>>(x));
}
#endif
return any(x.lo)
|| any(x.hi);
}
SIT bool all(const Vec<1,T>& x) { return x.val != 0; }
SINT bool all(const Vec<N,T>& x) {
#if SKVX_USE_SIMD && defined(__AVX2__)
if /*constexpr*/ (N*sizeof(T) == 32) {
return _mm256_testc_si256(unchecked_bit_pun<__m256i>(x),
_mm256_set1_epi32(-1));
}
#endif
#if SKVX_USE_SIMD && defined(__SSE4_1__)
if /*constexpr*/ (N*sizeof(T) == 16) {
return _mm_testc_si128(unchecked_bit_pun<__m128i>(x),
_mm_set1_epi32(-1));
}
#endif
#if SKVX_USE_SIMD && defined(__wasm_simd128__)
if /*constexpr*/ (N == 4 && sizeof(T) == 4) {
return wasm_i32x4_all_true(unchecked_bit_pun<VExt<4,int>>(x));
}
#endif
return all(x.lo)
&& all(x.hi);
}
// cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane.
// TODO: implement with map()?
template <typename D, typename S>
SI Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; }
template <typename D, int N, typename S>
SI Vec<N,D> cast(const Vec<N,S>& src) {
#if SKVX_USE_SIMD && defined(__clang__)
return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>));
#else
return join(cast<D>(src.lo), cast<D>(src.hi));
#endif
}
// min/max match logic of std::min/std::max, which is important when NaN is involved.
SIT T min(const Vec<1,T>& x) { return x.val; }
SIT T max(const Vec<1,T>& x) { return x.val; }
SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); }
SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); }
SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(y < x, y, x); }
SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return naive_if_then_else(x < y, y, x); }
SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); }
SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); }
SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); }
SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); }
// pin matches the logic of SkTPin, which is important when NaN is involved. It always returns
// values in the range lo..hi, and if x is NaN, it returns lo.
SINT Vec<N,T> pin(const Vec<N,T>& x, const Vec<N,T>& lo, const Vec<N,T>& hi) {
return max(lo, min(x, hi));
}
// Shuffle values from a vector pretty arbitrarily:
// skvx::Vec<4,float> rgba = {R,G,B,A};
// shuffle<2,1,0,3> (rgba) ~> {B,G,R,A}
// shuffle<2,1> (rgba) ~> {B,G}
// shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G}
// shuffle<3,3,3,3> (rgba) ~> {A,A,A,A}
// The only real restriction is that the output also be a legal N=power-of-two sknx::Vec.
template <int... Ix, int N, typename T>
SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) {
#if SKVX_USE_SIMD && defined(__clang__)
// TODO: can we just always use { x[Ix]... }?
return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...));
#else
return { x[Ix]... };
#endif
}
// Call map(fn, x) for a vector with fn() applied to each lane of x, { fn(x[0]), fn(x[1]), ... },
// or map(fn, x,y) for a vector of fn(x[i], y[i]), etc.
template <typename Fn, typename... Args, size_t... I>
SI auto map(std::index_sequence<I...>,
Fn&& fn, const Args&... args) -> skvx::Vec<sizeof...(I), decltype(fn(args[0]...))> {
auto lane = [&](size_t i)
#if defined(__clang__)
// CFI, specifically -fsanitize=cfi-icall, seems to give a false positive here,
// with errors like "control flow integrity check for type 'float (float)
// noexcept' failed during indirect function call... note: sqrtf.cfi_jt defined
// here". But we can be quite sure fn is the right type: it's all inferred!
// So, stifle CFI in this function.
__attribute__((no_sanitize("cfi")))
#endif
{ return fn(args[i]...); };
return { lane(I)... };
}
template <typename Fn, int N, typename T, typename... Rest>
auto map(Fn&& fn, const Vec<N,T>& first, const Rest&... rest) {
// Derive an {0...N-1} index_sequence from the size of the first arg: N lanes in, N lanes out.
return map(std::make_index_sequence<N>{}, fn, first,rest...);
}
SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map( ceilf, x); }
SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(floorf, x); }
SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(truncf, x); }
SIN Vec<N,float> round(const Vec<N,float>& x) { return map(roundf, x); }
SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map( sqrtf, x); }
SIN Vec<N,float> abs(const Vec<N,float>& x) { return map( fabsf, x); }
SIN Vec<N,float> fma(const Vec<N,float>& x,
const Vec<N,float>& y,
const Vec<N,float>& z) {
// I don't understand why Clang's codegen is terrible if we write map(fmaf, x,y,z) directly.
auto fn = [](float x, float y, float z) { return fmaf(x,y,z); };
return map(fn, x,y,z);
}
SI Vec<1,int> lrint(const Vec<1,float>& x) {
return (int)lrintf(x.val);
}
SIN Vec<N,int> lrint(const Vec<N,float>& x) {
#if SKVX_USE_SIMD && defined(__AVX__)
if /*constexpr*/ (N == 8) {
return unchecked_bit_pun<Vec<N,int>>(_mm256_cvtps_epi32(unchecked_bit_pun<__m256>(x)));
}
#endif
#if SKVX_USE_SIMD && defined(__SSE__)
if /*constexpr*/ (N == 4) {
return unchecked_bit_pun<Vec<N,int>>(_mm_cvtps_epi32(unchecked_bit_pun<__m128>(x)));
}
#endif
return join(lrint(x.lo),
lrint(x.hi));
}
SIN Vec<N,float> fract(const Vec<N,float>& x) { return x - floor(x); }
// The default logic for to_half/from_half is borrowed from skcms,
// and assumes inputs are finite and treat/flush denorm half floats as/to zero.
// Key constants to watch for:
// - a float is 32-bit, 1-8-23 sign-exponent-mantissa, with 127 exponent bias;
// - a half is 16-bit, 1-5-10 sign-exponent-mantissa, with 15 exponent bias.
SIN Vec<N,uint16_t> to_half_finite_ftz(const Vec<N,float>& x) {
Vec<N,uint32_t> sem = bit_pun<Vec<N,uint32_t>>(x),
s = sem & 0x8000'0000,
em = sem ^ s,
is_denorm = em < 0x3880'0000;
return cast<uint16_t>(if_then_else(is_denorm, Vec<N,uint32_t>(0)
, (s>>16) + (em>>13) - ((127-15)<<10)));
}
SIN Vec<N,float> from_half_finite_ftz(const Vec<N,uint16_t>& x) {
Vec<N,uint32_t> wide = cast<uint32_t>(x),
s = wide & 0x8000,
em = wide ^ s;
auto is_denorm = bit_pun<Vec<N,int32_t>>(em < 0x0400);
return if_then_else(is_denorm, Vec<N,float>(0)
, bit_pun<Vec<N,float>>( (s<<16) + (em<<13) + ((127-15)<<23) ));
}
// Like if_then_else(), these N=1 base cases won't actually be used unless explicitly called.
SI Vec<1,uint16_t> to_half(const Vec<1,float>& x) { return to_half_finite_ftz(x); }
SI Vec<1,float> from_half(const Vec<1,uint16_t>& x) { return from_half_finite_ftz(x); }
SIN Vec<N,uint16_t> to_half(const Vec<N,float>& x) {
#if SKVX_USE_SIMD && defined(__F16C__)
if /*constexpr*/ (N == 8) {
return unchecked_bit_pun<Vec<N,uint16_t>>(_mm256_cvtps_ph(unchecked_bit_pun<__m256>(x),
_MM_FROUND_CUR_DIRECTION));
}
#endif
#if SKVX_USE_SIMD && defined(__aarch64__)
if /*constexpr*/ (N == 4) {
return unchecked_bit_pun<Vec<N,uint16_t>>(vcvt_f16_f32(unchecked_bit_pun<float32x4_t>(x)));
}
#endif
if /*constexpr*/ (N > 4) {
return join(to_half(x.lo),
to_half(x.hi));
}
return to_half_finite_ftz(x);
}
SIN Vec<N,float> from_half(const Vec<N,uint16_t>& x) {
#if SKVX_USE_SIMD && defined(__F16C__)
if /*constexpr*/ (N == 8) {
return unchecked_bit_pun<Vec<N,float>>(_mm256_cvtph_ps(unchecked_bit_pun<__m128i>(x)));
}
#endif
#if SKVX_USE_SIMD && defined(__aarch64__)
if /*constexpr*/ (N == 4) {
return unchecked_bit_pun<Vec<N,float>>(vcvt_f32_f16(unchecked_bit_pun<float16x4_t>(x)));
}
#endif
if /*constexpr*/ (N > 4) {
return join(from_half(x.lo),
from_half(x.hi));
}
return from_half_finite_ftz(x);
}
// div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit.
SIN Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) {
return cast<uint8_t>( (x+127)/255 );
}
// approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit,
// and is always perfect when x or y is 0 or 255.
SIN Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) {
// All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above.
// We happen to have historically picked (x*y+x)/256.
auto X = cast<uint16_t>(x),
Y = cast<uint16_t>(y);
return cast<uint8_t>( (X*Y+X)/256 );
}
// The ScaledDividerU32 takes a divisor > 1, and creates a function divide(numerator) that
// calculates a numerator / denominator. For this to be rounded properly, numerator should have
// half added in:
// divide(numerator + half) == floor(numerator/denominator + 1/2).
//
// This gives an answer within +/- 1 from the true value.
//
// Derivation of half:
// numerator/denominator + 1/2 = (numerator + half) / d
// numerator + denominator / 2 = numerator + half
// half = denominator / 2.
//
// Because half is divided by 2, that division must also be rounded.
// half == denominator / 2 = (denominator + 1) / 2.
//
// The divisorFactor is just a scaled value:
// divisorFactor = (1 / divisor) * 2 ^ 32.
// The maximum that can be divided and rounded is UINT_MAX - half.
class ScaledDividerU32 {
public:
explicit ScaledDividerU32(uint32_t divisor)
: fDivisorFactor{(uint32_t)(std::round((1.0 / divisor) * (1ull << 32)))}
, fHalf{(divisor + 1) >> 1} {
assert(divisor > 1);
}
Vec<4, uint32_t> divide(const Vec<4, uint32_t>& numerator) const {
#if SKVX_USE_SIMD && defined(__ARM_NEON)
uint64x2_t hi = vmull_n_u32(vget_high_u32(to_vext(numerator)), fDivisorFactor);
uint64x2_t lo = vmull_n_u32(vget_low_u32(to_vext(numerator)), fDivisorFactor);
return to_vec<4, uint32_t>(vcombine_u32(vshrn_n_u64(lo,32), vshrn_n_u64(hi,32)));
#else
return cast<uint32_t>((cast<uint64_t>(numerator) * fDivisorFactor) >> 32);
#endif
}
uint32_t half() const { return fHalf; }
private:
const uint32_t fDivisorFactor;
const uint32_t fHalf;
};
#if SKVX_USE_SIMD && defined(__ARM_NEON)
// With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long).
SI Vec<8,uint16_t> mull(const Vec<8,uint8_t>& x,
const Vec<8,uint8_t>& y) {
return to_vec<8,uint16_t>(vmull_u8(to_vext(x),
to_vext(y)));
}
SIN std::enable_if_t<(N < 8), Vec<N,uint16_t>> mull(const Vec<N,uint8_t>& x,
const Vec<N,uint8_t>& y) {
// N < 8 --> double up data until N == 8, returning the part we need.
return mull(join(x,x),
join(y,y)).lo;
}
SIN std::enable_if_t<(N > 8), Vec<N,uint16_t>> mull(const Vec<N,uint8_t>& x,
const Vec<N,uint8_t>& y) {
// N > 8 --> usual join(lo,hi) strategy to recurse down to N == 8.
return join(mull(x.lo, y.lo),
mull(x.hi, y.hi));
}
#else
// Nothing special when we don't have NEON... just cast up to 16-bit and multiply.
SIN Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x,
const Vec<N,uint8_t>& y) {
return cast<uint16_t>(x)
* cast<uint16_t>(y);
}
#endif
// Allow floating point contraction. e.g., allow a*x + y to be compiled to a single FMA even though
// it introduces LSB differences on platforms that don't have an FMA instruction.
#if defined(__clang__)
#pragma STDC FP_CONTRACT ON
#endif
// Approximates the inverse cosine of x within 0.96 degrees using the rational polynomial:
//
// acos(x) ~= (bx^3 + ax) / (dx^4 + cx^2 + 1) + pi/2
//
// See: https://stackoverflow.com/a/36387954
//
// For a proof of max error, see the "SkVx_approx_acos" unit test.
//
// NOTE: This function deviates immediately from pi and 0 outside -1 and 1. (The derivatives are
// infinite at -1 and 1). So the input must still be clamped between -1 and 1.
#define SKVX_APPROX_ACOS_MAX_ERROR SkDegreesToRadians(.96f)
SIN Vec<N,float> approx_acos(Vec<N,float> x) {
constexpr static float a = -0.939115566365855f;
constexpr static float b = 0.9217841528914573f;
constexpr static float c = -1.2845906244690837f;
constexpr static float d = 0.295624144969963174f;
constexpr static float pi_over_2 = 1.5707963267948966f;
auto xx = x*x;
auto numer = b*xx + a;
auto denom = xx*(d*xx + c) + 1;
return x * (numer/denom) + pi_over_2;
}
#if defined(__clang__)
#pragma STDC FP_CONTRACT DEFAULT
#endif
// De-interleaving load of 4 vectors.
//
// WARNING: These are really only supported well on NEON. Consider restructuring your data before
// resorting to these methods.
SIT void strided_load4(const T* v,
skvx::Vec<1,T>& a,
skvx::Vec<1,T>& b,
skvx::Vec<1,T>& c,
skvx::Vec<1,T>& d) {
a.val = v[0];
b.val = v[1];
c.val = v[2];
d.val = v[3];
}
SINT void strided_load4(const T* v,
skvx::Vec<N,T>& a,
skvx::Vec<N,T>& b,
skvx::Vec<N,T>& c,
skvx::Vec<N,T>& d) {
strided_load4(v, a.lo, b.lo, c.lo, d.lo);
strided_load4(v + 4*(N/2), a.hi, b.hi, c.hi, d.hi);
}
#if SKVX_USE_SIMD && defined(__ARM_NEON)
#define IMPL_LOAD4_TRANSPOSED(N, T, VLD) \
SI void strided_load4(const T* v, \
skvx::Vec<N,T>& a, \
skvx::Vec<N,T>& b, \
skvx::Vec<N,T>& c, \
skvx::Vec<N,T>& d) { \
auto mat = VLD(v); \
a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \
b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \
c = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[2]); \
d = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[3]); \
}
IMPL_LOAD4_TRANSPOSED(2, uint32_t, vld4_u32);
IMPL_LOAD4_TRANSPOSED(4, uint16_t, vld4_u16);
IMPL_LOAD4_TRANSPOSED(8, uint8_t, vld4_u8);
IMPL_LOAD4_TRANSPOSED(2, int32_t, vld4_s32);
IMPL_LOAD4_TRANSPOSED(4, int16_t, vld4_s16);
IMPL_LOAD4_TRANSPOSED(8, int8_t, vld4_s8);
IMPL_LOAD4_TRANSPOSED(2, float, vld4_f32);
IMPL_LOAD4_TRANSPOSED(4, uint32_t, vld4q_u32);
IMPL_LOAD4_TRANSPOSED(8, uint16_t, vld4q_u16);
IMPL_LOAD4_TRANSPOSED(16, uint8_t, vld4q_u8);
IMPL_LOAD4_TRANSPOSED(4, int32_t, vld4q_s32);
IMPL_LOAD4_TRANSPOSED(8, int16_t, vld4q_s16);
IMPL_LOAD4_TRANSPOSED(16, int8_t, vld4q_s8);
IMPL_LOAD4_TRANSPOSED(4, float, vld4q_f32);
#undef IMPL_LOAD4_TRANSPOSED
#elif SKVX_USE_SIMD && defined(__SSE__)
SI void strided_load4(const float* v,
Vec<4,float>& a,
Vec<4,float>& b,
Vec<4,float>& c,
Vec<4,float>& d) {
using skvx::bit_pun;
__m128 a_ = _mm_loadu_ps(v);
__m128 b_ = _mm_loadu_ps(v+4);
__m128 c_ = _mm_loadu_ps(v+8);
__m128 d_ = _mm_loadu_ps(v+12);
_MM_TRANSPOSE4_PS(a_, b_, c_, d_);
a = bit_pun<Vec<4,float>>(a_);
b = bit_pun<Vec<4,float>>(b_);
c = bit_pun<Vec<4,float>>(c_);
d = bit_pun<Vec<4,float>>(d_);
}
#endif
// De-interleaving load of 2 vectors.
//
// WARNING: These are really only supported well on NEON. Consider restructuring your data before
// resorting to these methods.
SIT void strided_load2(const T* v, skvx::Vec<1,T>& a, skvx::Vec<1,T>& b) {
a.val = v[0];
b.val = v[1];
}
SINT void strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) {
strided_load2(v, a.lo, b.lo);
strided_load2(v + 2*(N/2), a.hi, b.hi);
}
#if SKVX_USE_SIMD && defined(__ARM_NEON)
#define IMPL_LOAD2_TRANSPOSED(N, T, VLD) \
SI void strided_load2(const T* v, skvx::Vec<N,T>& a, skvx::Vec<N,T>& b) { \
auto mat = VLD(v); \
a = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[0]); \
b = skvx::bit_pun<skvx::Vec<N,T>>(mat.val[1]); \
}
IMPL_LOAD2_TRANSPOSED(2, uint32_t, vld2_u32);
IMPL_LOAD2_TRANSPOSED(4, uint16_t, vld2_u16);
IMPL_LOAD2_TRANSPOSED(8, uint8_t, vld2_u8);
IMPL_LOAD2_TRANSPOSED(2, int32_t, vld2_s32);
IMPL_LOAD2_TRANSPOSED(4, int16_t, vld2_s16);
IMPL_LOAD2_TRANSPOSED(8, int8_t, vld2_s8);
IMPL_LOAD2_TRANSPOSED(2, float, vld2_f32);
IMPL_LOAD2_TRANSPOSED(4, uint32_t, vld2q_u32);
IMPL_LOAD2_TRANSPOSED(8, uint16_t, vld2q_u16);
IMPL_LOAD2_TRANSPOSED(16, uint8_t, vld2q_u8);
IMPL_LOAD2_TRANSPOSED(4, int32_t, vld2q_s32);
IMPL_LOAD2_TRANSPOSED(8, int16_t, vld2q_s16);
IMPL_LOAD2_TRANSPOSED(16, int8_t, vld2q_s8);
IMPL_LOAD2_TRANSPOSED(4, float, vld2q_f32);
#undef IMPL_LOAD2_TRANSPOSED
#endif
} // namespace skvx
#undef SINTU
#undef SINT
#undef SIN
#undef SIT
#undef SI
#undef SKVX_ALWAYS_INLINE
#undef SKVX_USE_SIMD
#endif//SKVX_DEFINED
|