1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
/*
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2008 Eric Seidel <eric@webkit.org>
* Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
* Copyright (C) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasPath.h"
// #include "AffineTransform.h"
#include "DOMPointInit.h"
// #include "FloatRect.h"
// #include "FloatRoundedRect.h"
// #include "FloatSize.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
void CanvasPath::closePath()
{
// if (m_path.isEmpty())
// return;
// FloatRect boundRect = m_path.fastBoundingRect();
// if (boundRect.width() || boundRect.height())
// m_path.closeSubpath();
}
void CanvasPath::moveTo(float x, float y)
{
// if (!std::isfinite(x) || !std::isfinite(y))
// return;
// if (!hasInvertibleTransform())
// return;
// m_path.moveTo(FloatPoint(x, y));
}
// void CanvasPath::lineTo(FloatPoint point)
// {
// // lineTo(point.x(), point.y());
// }
void CanvasPath::lineTo(float x, float y)
{
// if (!std::isfinite(x) || !std::isfinite(y))
// return;
// if (!hasInvertibleTransform())
// return;
// FloatPoint p1 = FloatPoint(x, y);
// if (!m_path.hasCurrentPoint())
// m_path.moveTo(p1);
// else if (p1 != m_path.currentPoint())
// m_path.addLineTo(p1);
}
void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
// if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
// return;
// if (!hasInvertibleTransform())
// return;
// if (!m_path.hasCurrentPoint())
// m_path.moveTo(FloatPoint(cpx, cpy));
// FloatPoint p1 = FloatPoint(x, y);
// FloatPoint cp = FloatPoint(cpx, cpy);
// if (p1 != m_path.currentPoint() || p1 != cp)
// m_path.addQuadCurveTo(cp, p1);
}
void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
// if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
// return;
// if (!hasInvertibleTransform())
// return;
// if (!m_path.hasCurrentPoint())
// m_path.moveTo(FloatPoint(cp1x, cp1y));
// FloatPoint p1 = FloatPoint(x, y);
// FloatPoint cp1 = FloatPoint(cp1x, cp1y);
// FloatPoint cp2 = FloatPoint(cp2x, cp2y);
// if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
// m_path.addBezierCurveTo(cp1, cp2, p1);
}
ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r)
{
// if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
// return {};
// if (r < 0)
// return Exception { IndexSizeError };
// if (!hasInvertibleTransform())
// return {};
// FloatPoint p1 = FloatPoint(x1, y1);
// FloatPoint p2 = FloatPoint(x2, y2);
// if (!m_path.hasCurrentPoint())
// m_path.moveTo(p1);
// else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
// lineTo(x1, y1);
// else
// m_path.addArcTo(p1, p2, r);
// return {};
}
static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
{
// float newStartAngle = startAngle;
// if (newStartAngle < 0)
// newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
// else
// newStartAngle = fmodf(newStartAngle, 2 * piFloat);
// float delta = newStartAngle - startAngle;
// startAngle = newStartAngle;
// endAngle = endAngle + delta;
// ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat)));
// if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
// endAngle = startAngle - 2 * piFloat;
// else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
// endAngle = startAngle + 2 * piFloat;
}
ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise)
{
// if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
// return {};
// if (radius < 0)
// return Exception { IndexSizeError };
// if (!hasInvertibleTransform())
// return {};
// normalizeAngles(startAngle, endAngle, anticlockwise);
// if (!radius || startAngle == endAngle) {
// // The arc is empty but we still need to draw the connecting line.
// lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
// return {};
// }
// m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise);
// return {};
}
ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
// if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
// return {};
// if (radiusX < 0 || radiusY < 0)
// return Exception { IndexSizeError };
// if (!hasInvertibleTransform())
// return {};
// normalizeAngles(startAngle, endAngle, anticlockwise);
// if ((!radiusX && !radiusY) || startAngle == endAngle) {
// AffineTransform transform;
// transform.translate(x, y).rotate(rad2deg(rotation));
// lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
// return {};
// }
// if (!radiusX || !radiusY) {
// AffineTransform transform;
// transform.translate(x, y).rotate(rad2deg(rotation));
// lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
// if (!anticlockwise) {
// for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
// lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
// } else {
// for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
// lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
// }
// lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
// return {};
// }
// m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise);
// return {};
}
void CanvasPath::rect(float x, float y, float width, float height)
{
// if (!hasInvertibleTransform())
// return;
// if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
// return;
// if (!width && !height) {
// m_path.moveTo(FloatPoint(x, y));
// return;
// }
// m_path.addRect(FloatRect(x, y, width, height));
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii)
{
// // return roundRect(x, y, width, height, Span { &radii, 1 });
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const Span<const RadiusVariant>& radii)
{
// // // Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
// // // 1. If any of x, y, w, or h are infinite or NaN, then return.
// // if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
// // return { };
// // // 2. If radii is not a list of size one, two, three, or four, then throw a RangeError.
// // if (radii.size() > 4 || radii.empty())
// // return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") };
// // // 3. Let normalizedRadii be an empty list.
// // Vector<FloatPoint, 4> normalizedRadii;
// // // 4. For each radius of radii:
// // for (auto& radius : radii) {
// // auto shouldReturnSilently = false;
// // auto exception = WTF::switchOn(radius,
// // // 4.1 If radius is a DOMPointInit:
// // [&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> {
// // // 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return.
// // if (!std::isfinite(point.x) || !std::isfinite(point.y)) {
// // shouldReturnSilently = true;
// // return { };
// // }
// // // 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError.
// // if (point.x < 0 || point.y < 0)
// // return Exception { RangeError, makeString("radius point coordinates must be positive") };
// // // 4.1.3 Otherwise, append radius to normalizedRadii.
// // normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) });
// // return { };
// // },
// // // 4.2 If radius is a unrestricted double:
// // [&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> {
// // // 4.2.1 If radius is infinite or NaN, then return.
// // if (!std::isfinite(radiusValue)) {
// // shouldReturnSilently = true;
// // return { };
// // }
// // // 4.2.2 If radius is negative, then throw a RangeError.
// // if (radiusValue < 0)
// // return Exception { RangeError, makeString("radius value must be positive") };
// // // 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
// // normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) });
// // return { };
// // }
// // );
// // if (exception.hasException() || shouldReturnSilently)
// // return exception;
// // }
// // // Degenerate case, fall back to regular rect.
// // // We do not do this before parsing the radii in order to make sure the Exceptions can be raised.
// // if (!width || !height) {
// // rect(x, y, width, height);
// // return { };
// // }
// // // 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
// // FloatPoint upperLeft, upperRight, lowerRight, lowerLeft;
// // switch (normalizedRadii.size()) {
// // case 4:
// // // 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
// // upperLeft = normalizedRadii[0];
// // upperRight = normalizedRadii[1];
// // lowerRight = normalizedRadii[2];
// // lowerLeft = normalizedRadii[3];
// // break;
// // case 3:
// // // 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
// // upperLeft = normalizedRadii[0];
// // upperRight = normalizedRadii[1];
// // lowerRight = normalizedRadii[2];
// // lowerLeft = normalizedRadii[1];
// // break;
// // case 2:
// // // 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
// // upperLeft = normalizedRadii[0];
// // upperRight = normalizedRadii[1];
// // lowerRight = normalizedRadii[0];
// // lowerLeft = normalizedRadii[1];
// // break;
// // case 1:
// // // 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
// // upperLeft = normalizedRadii[0];
// // upperRight = normalizedRadii[0];
// // lowerRight = normalizedRadii[0];
// // lowerLeft = normalizedRadii[0];
// // break;
// // default:
// // RELEASE_ASSERT_NOT_REACHED();
// // break;
// // }
// // // Must handle clockwise and counter-clockwise directions properly so path winding works correctly.
// // bool clockwise = true;
// // if (width < 0) {
// // clockwise = !clockwise;
// // width = std::abs(width);
// // x -= width;
// // std::swap(upperLeft, upperRight);
// // std::swap(lowerLeft, lowerRight);
// // }
// // if (height < 0) {
// // clockwise = !clockwise;
// // height = std::abs(height);
// // y -= height;
// // std::swap(upperLeft, lowerLeft);
// // std::swap(upperRight, lowerRight);
// // }
// // // 10. Corner curves must not overlap. Scale all radii to prevent this:
// // // 10.1 Let top be upperLeft["x"] + upperRight["x"].
// // auto top = upperLeft.x() + upperRight.x();
// // // 10.2 Let right be upperRight["y"] + lowerRight["y"].
// // auto right = upperRight.y() + lowerRight.y();
// // // 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"].
// // auto bottom = lowerRight.x() + lowerLeft.x();
// // // 10.4 Let left be upperLeft["y"] + lowerLeft["y"].
// // auto left = upperLeft.y() + lowerLeft.y();
// // // 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
// // auto scale = std::min({ width / top, height / right, width / bottom, height / left });
// // // 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
// // if (scale < 1) {
// // upperLeft.scale(scale);
// // upperRight.scale(scale);
// // lowerLeft.scale(scale);
// // lowerRight.scale(scale);
// // }
// // // 11. Create a new subpath:
// // m_path.moveTo({ x + upperLeft.x(), y });
// // // The 11.x clockwise substeps are handled by Path::addRoundedRect directly.
// // if (clockwise) {
// // m_path.addRoundedRect({ FloatRect(x, y, width, height),
// // { static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) },
// // { static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) },
// // { static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) },
// // { static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) },
// // });
// // } else {
// // // Top Left corner
// // if (upperLeft.x() > 0 || upperLeft.y() > 0) {
// // m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y },
// // { x, y + upperLeft.y() * m_path.circleControlPoint() },
// // { x, y + upperLeft.y() });
// // }
// // // Left edge
// // m_path.addLineTo({ x, y + height - lowerLeft.y() });
// // // Bottom left corner
// // if (lowerLeft.x() > 0 || lowerLeft.y() > 0) {
// // m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() },
// // { x + lowerLeft.x() * m_path.circleControlPoint(), y + height },
// // { x + lowerLeft.x(), y + height });
// // }
// // // Bottom edge
// // m_path.addLineTo({ x + width - lowerRight.x(), y + height });
// // // Bottom right corner
// // if (lowerRight.x() > 0 || lowerRight.y() > 0) {
// // m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height },
// // { x + width, y + height - lowerRight.y() * m_path.circleControlPoint() },
// // { x + width, y + height - lowerRight.y() });
// // }
// // // Right edge
// // m_path.addLineTo({ x + width, y + upperRight.y() });
// // // Top right corner
// // if (upperRight.x() > 0 || upperRight.y() > 0) {
// // m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() },
// // { x + width - upperRight.x() * m_path.circleControlPoint(), y },
// // { x + width - upperRight.x(), y });
// // }
// // // Top edge
// // m_path.addLineTo({ x + upperLeft.x(), y });
// // }
// // // 12. Mark the subpath as closed.
// // m_path.closeSubpath();
// // // 13. Create a new subpath with the point (x, y) as the only point in the subpath.
// // m_path.moveTo({ x, y });
// // return { };
}
float CanvasPath::currentX() const
{
// return m_path.currentPoint().x();
}
float CanvasPath::currentY() const
{
// return m_path.currentPoint().y();
}
}
|