1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
const std = @import("std");
const logger = @import("logger.zig");
const js_lexer = @import("js_lexer.zig");
const importRecord = @import("import_record.zig");
const js_ast = @import("js_ast.zig");
const options = @import("options.zig");
const alloc = @import("alloc.zig");
usingnamespace @import("strings.zig");
const Comment = js_ast._Comment;
const locModuleScope = logger.Loc.Empty;
const TempRef = struct {
ref: js_ast.Ref,
value: *js_ast.Expr,
};
const ImportNamespaceCallOrConstruct = struct {
ref: js_ast.Ref,
is_construct: bool = false,
};
const ThenCatchChain = struct {
next_target: js_ast.E,
has_multiple_args: bool = false,
has_catch: bool = false,
};
const Map = std.AutoHashMap;
const List = std.ArrayList;
const SymbolUseMap = Map(js_ast.Ref, js_ast.Symbol.Use);
const StringRefMap = std.StringHashMap(js_ast.Ref);
const StringBoolMap = std.StringHashMap(bool);
const RefBoolMap = Map(js_ast.Ref, bool);
const RefRefMap = Map(js_ast.Ref, js_ast.Ref);
const ImportRecord = importRecord.ImportRecord;
const ScopeOrder = struct {
loc: logger.Loc,
scope: *js_ast.Scope,
};
// This is function-specific information used during parsing. It is saved and
// restored on the call stack around code that parses nested functions and
// arrow expressions.
const FnOrArrowDataParse = struct {
async_range: logger.Range,
arrow_arg_errors: void,
allow_await: bool = false,
allow_yield: bool = false,
allow_super_call: bool = false,
is_top_level: bool = false,
is_constructor: bool = false,
is_type_script_declare: bool = false,
// In TypeScript, forward declarations of functions have no bodies
allow_missing_body_for_type_script: bool = false,
// Allow TypeScript decorators in function arguments
allow_ts_decorators: bool = false,
};
// This is function-specific information used during visiting. It is saved and
// restored on the call stack around code that parses nested functions and
// arrow expressions.
const FnOrArrowDataVisit = struct {
super_index_ref: *js_ast.Ref,
is_arrow: bool = false,
is_async: bool = false,
is_inside_loop: bool = false,
is_inside_switch: bool = false,
is_outside_fn_or_arrow: bool = false,
// This is used to silence unresolvable imports due to "require" calls inside
// a try/catch statement. The assumption is that the try/catch statement is
// there to handle the case where the reference to "require" crashes.
try_body_count: i32 = 0,
};
// This is function-specific information used during visiting. It is saved and
// restored on the call stack around code that parses nested functions (but not
// nested arrow functions).
const FnOnlyDataVisit = struct {
// This is a reference to the magic "arguments" variable that exists inside
// functions in JavaScript. It will be non-nil inside functions and nil
// otherwise.
arguments_ref: *js_ast.Ref,
// Arrow functions don't capture the value of "this" and "arguments". Instead,
// the values are inherited from the surrounding context. If arrow functions
// are turned into regular functions due to lowering, we will need to generate
// local variables to capture these values so they are preserved correctly.
this_capture_ref: *js_ast.Ref,
arguments_capture_ref: *js_ast.Ref,
// Inside a static class property initializer, "this" expressions should be
// replaced with the class name.
this_class_static_ref: *js_ast.Ref,
// If we're inside an async arrow function and async functions are not
// supported, then we will have to convert that arrow function to a generator
// function. That means references to "arguments" inside the arrow function
// will have to reference a captured variable instead of the real variable.
is_inside_async_arrow_fn: bool = false,
// If false, the value for "this" is the top-level module scope "this" value.
// That means it's "undefined" for ECMAScript modules and "exports" for
// CommonJS modules. We track this information so that we can substitute the
// correct value for these top-level "this" references at compile time instead
// of passing the "this" expression through to the output and leaving the
// interpretation up to the run-time behavior of the generated code.
//
// If true, the value for "this" is nested inside something (either a function
// or a class declaration). That means the top-level module scope "this" value
// has been shadowed and is now inaccessible.
is_this_nested: bool = false,
};
const ModuleType = enum { esm };
const PropertyOpts = struct {
async_range: ?logger.Range,
is_async: bool = false,
is_generator: bool = false,
// Class-related options
is_static: bool = false,
is_class: bool = false,
class_has_extends: bool = false,
allow_ts_decorators: bool = false,
ts_decorators: []js_ast.Expr,
};
pub const Parser = struct {
options: Options,
lexer: js_lexer.Lexer,
log: logger.Log,
source: logger.Source,
allocator: *std.mem.Allocator,
p: ?*P,
pub const Result = struct { ast: js_ast.Ast, ok: bool = false };
pub const Options = struct {
jsx: options.JSX,
ascii_only: bool = true,
keep_names: bool = true,
mangle_syntax: bool = false,
mange_identifiers: bool = false,
omit_runtime_for_tests: bool = false,
ignore_dce_annotations: bool = true,
preserve_unused_imports_ts: bool = false,
use_define_for_class_fields: bool = false,
suppress_warnings_about_weird_code: bool = true,
moduleType: ModuleType = ModuleType.esm,
};
pub fn parse(self: *Parser) !Result {
if (self.p == null) {
self.p = try P.init(self.allocator, self.log, self.source, self.lexer, self.options);
}
var result: Result = undefined;
if (self.p) |p| {
// Parse the file in the first pass, but do not bind symbols
var opts = ParseStatementOptions{ .is_module_scope = true };
const stmts = try p.parseStmtsUpTo(js_lexer.T.t_end_of_file, &opts);
try p.prepareForVisitPass();
}
return result;
}
pub fn init(transform: options.TransformOptions, allocator: *std.mem.Allocator) !Parser {
const log = logger.Log{ .msgs = List(logger.Msg).init(allocator) };
const source = logger.Source.initFile(transform.entry_point, allocator);
const lexer = try js_lexer.Lexer.init(log, source, allocator);
return Parser{
.options = Options{
.jsx = options.JSX{
.parse = true,
.factory = transform.jsx_factory,
.fragment = transform.jsx_fragment,
},
},
.allocator = allocator,
.lexer = lexer,
.source = source,
.log = log,
.p = null,
};
}
};
const DeferredTsDecorators = struct { values: []js_ast.Expr,
// If this turns out to be a "declare class" statement, we need to undo the
// scopes that were potentially pushed while parsing the decorator arguments.
scopeIndex: usize };
const LexicalDecl = enum(u8) { forbid, allow_all, allow_fn_inside_if, allow_fn_inside_label };
const ParseStatementOptions = struct {
ts_decorators: ?DeferredTsDecorators = null,
lexical_decl: LexicalDecl = .forbid,
is_module_scope: bool = false,
is_namespace_scope: bool = false,
is_export: bool = false,
is_name_optional: bool = false, // For "export default" pseudo-statements,
is_typescript_declare: bool = false,
};
// P is for Parser!
const P = struct {
allocator: *std.mem.Allocator,
options: Parser.Options,
log: logger.Log,
source: logger.Source,
lexer: js_lexer.Lexer,
allow_in: bool = false,
allow_private_identifiers: bool = false,
has_top_level_return: bool = false,
latest_return_had_semicolon: bool = false,
has_import_meta: bool = false,
has_es_module_syntax: bool = false,
top_level_await_keyword: logger.Range,
fn_or_arrow_data_parse: FnOrArrowDataParse,
fn_or_arrow_data_visit: FnOrArrowDataVisit,
fn_only_data_visit: FnOnlyDataVisit,
allocated_names: List(string),
latest_arrow_arg_loc: logger.Loc = logger.Loc.Empty,
forbid_suffix_after_as_loc: logger.Loc = logger.Loc.Empty,
current_scope: *js_ast.Scope,
scopes_for_current_part: List(*js_ast.Scope),
symbols: List(js_ast.Symbol),
ts_use_counts: List(u32),
exports_ref: js_ast.Ref = js_ast.Ref.None,
require_ref: js_ast.Ref = js_ast.Ref.None,
module_ref: js_ast.Ref = js_ast.Ref.None,
import_meta_ref: js_ast.Ref = js_ast.Ref.None,
promise_ref: ?js_ast.Ref = null,
injected_define_symbols: []js_ast.Ref,
symbol_uses: SymbolUseMap,
declared_symbols: List(js_ast.DeclaredSymbol),
runtime_imports: StringRefMap,
duplicate_case_checker: void,
non_bmp_identifiers: StringBoolMap,
legacy_octal_literals: void,
// legacy_octal_literals: map[js_ast.E]logger.Range,
// For strict mode handling
hoistedRefForSloppyModeBlockFn: void,
// For lowering private methods
weak_map_ref: ?js_ast.Ref,
weak_set_ref: ?js_ast.Ref,
private_getters: RefRefMap,
private_setters: RefRefMap,
// These are for TypeScript
should_fold_numeric_constants: bool = false,
emitted_namespace_vars: RefBoolMap,
is_exported_inside_namespace: RefRefMap,
known_enum_values: Map(js_ast.Ref, std.StringHashMap(f64)),
local_type_names: StringBoolMap,
// This is the reference to the generated function argument for the namespace,
// which is different than the reference to the namespace itself:
//
// namespace ns {
// }
//
// The code above is transformed into something like this:
//
// var ns1;
// (function(ns2) {
// })(ns1 || (ns1 = {}));
//
// This variable is "ns2" not "ns1". It is only used during the second
// "visit" pass.
enclosing_namespace_arg_ref: ?js_ast.Ref = null,
// Imports (both ES6 and CommonJS) are tracked at the top level
import_records: List(ImportRecord),
import_records_for_current_part: List(u32),
export_star_import_records: List(u32),
// These are for handling ES6 imports and exports
es6_import_keyword: logger.Range = logger.Range.None,
es6_export_keyword: logger.Range = logger.Range.None,
enclosing_class_keyword: logger.Range = logger.Range.None,
import_items_for_namespace: Map(js_ast.Ref, std.StringHashMap(js_ast.LocRef)),
is_import_item: RefBoolMap,
named_imports: Map(js_ast.Ref, js_ast.NamedImport),
named_exports: std.StringHashMap(js_ast.NamedExport),
top_level_symbol_to_parts: Map(js_ast.Ref, List(u32)),
import_namespace_cc_map: Map(ImportNamespaceCallOrConstruct, bool),
// The parser does two passes and we need to pass the scope tree information
// from the first pass to the second pass. That's done by tracking the calls
// to pushScopeForParsePass() and popScope() during the first pass in
// scopesInOrder.
//
// Then, when the second pass calls pushScopeForVisitPass() and popScope(),
// we consume entries from scopesInOrder and make sure they are in the same
// order. This way the second pass can efficiently use the same scope tree
// as the first pass without having to attach the scope tree to the AST.
//
// We need to split this into two passes because the pass that declares the
// symbols must be separate from the pass that binds identifiers to declared
// symbols to handle declaring a hoisted "var" symbol in a nested scope and
// binding a name to it in a parent or sibling scope.
scopes_in_order: List(ScopeOrder),
// These properties are for the visit pass, which runs after the parse pass.
// The visit pass binds identifiers to declared symbols, does constant
// folding, substitutes compile-time variable definitions, and lowers certain
// syntactic constructs as appropriate.
stmt_expr_value: js_ast.E,
call_target: js_ast.E,
delete_target: js_ast.E,
loop_body: js_ast.S,
module_scope: *js_ast.Scope = undefined,
is_control_flow_dead: bool = false,
// Inside a TypeScript namespace, an "export declare" statement can be used
// to cause a namespace to be emitted even though it has no other observable
// effect. This flag is used to implement this feature.
//
// Specifically, namespaces should be generated for all of the following
// namespaces below except for "f", which should not be generated:
//
// namespace a { export declare const a }
// namespace b { export declare let [[b]] }
// namespace c { export declare function c() }
// namespace d { export declare class d {} }
// namespace e { export declare enum e {} }
// namespace f { export declare namespace f {} }
//
// The TypeScript compiler compiles this into the following code (notice "f"
// is missing):
//
// var a; (function (a_1) {})(a || (a = {}));
// var b; (function (b_1) {})(b || (b = {}));
// var c; (function (c_1) {})(c || (c = {}));
// var d; (function (d_1) {})(d || (d = {}));
// var e; (function (e_1) {})(e || (e = {}));
//
// Note that this should not be implemented by declaring symbols for "export
// declare" statements because the TypeScript compiler doesn't generate any
// code for these statements, so these statements are actually references to
// global variables. There is one exception, which is that local variables
// *should* be declared as symbols because they are replaced with. This seems
// like very arbitrary behavior but it's what the TypeScript compiler does,
// so we try to match it.
//
// Specifically, in the following code below "a" and "b" should be declared
// and should be substituted with "ns.a" and "ns.b" but the other symbols
// shouldn't. References to the other symbols actually refer to global
// variables instead of to symbols that are exported from the namespace.
// This is the case as of TypeScript 4.3. I assume this is a TypeScript bug:
//
// namespace ns {
// export declare const a
// export declare let [[b]]
// export declare function c()
// export declare class d { }
// export declare enum e { }
// console.log(a, b, c, d, e)
// }
//
// The TypeScript compiler compiles this into the following code:
//
// var ns;
// (function (ns) {
// console.log(ns.a, ns.b, c, d, e);
// })(ns || (ns = {}));
//
// Relevant issue: https://github.com/evanw/esbuild/issues/1158
has_non_local_export_declare_inside_namespace: bool = false,
// This helps recognize the "await import()" pattern. When this is present,
// warnings about non-string import paths will be omitted inside try blocks.
await_target: ?js_ast.E = null,
// This helps recognize the "import().catch()" pattern. We also try to avoid
// warning about this just like the "try { await import() }" pattern.
then_catch_chain: ThenCatchChain,
// Temporary variables used for lowering
temp_refs_to_declare: List(TempRef),
temp_ref_count: i32 = 0,
// When bundling, hoisted top-level local variables declared with "var" in
// nested scopes are moved up to be declared in the top-level scope instead.
// The old "var" statements are turned into regular assignments instead. This
// makes it easier to quickly scan the top-level statements for "var" locals
// with the guarantee that all will be found.
relocated_top_level_vars: List(js_ast.LocRef),
// ArrowFunction is a special case in the grammar. Although it appears to be
// a PrimaryExpression, it's actually an AssignmentExpression. This means if
// a AssignmentExpression ends up producing an ArrowFunction then nothing can
// come after it other than the comma operator, since the comma operator is
// the only thing above AssignmentExpression under the Expression rule:
//
// AssignmentExpression:
// ArrowFunction
// ConditionalExpression
// LeftHandSideExpression = AssignmentExpression
// LeftHandSideExpression AssignmentOperator AssignmentExpression
//
// Expression:
// AssignmentExpression
// Expression , AssignmentExpression
//
after_arrow_body_loc: logger.Loc = logger.Loc.Empty,
pub fn deinit(parser: *P) void {
parser.allocated_names.deinit();
parser.scopes_for_current_part.deinit();
parser.symbols.deinit();
parser.ts_use_counts.deinit();
parser.declared_symbols.deinit();
parser.known_enum_values.deinit();
parser.import_records.deinit();
parser.import_records_for_current_part.deinit();
parser.export_star_import_records.deinit();
parser.import_items_for_namespace.deinit();
parser.named_imports.deinit();
parser.top_level_symbol_to_parts.deinit();
parser.import_namespace_cc_map.deinit();
parser.scopes_in_order.deinit();
parser.temp_refs_to_declare.deinit();
parser.relocated_top_level_vars.deinit();
}
pub fn findSymbol(self: *P, loc: logger.Loc, name: string) ?js_ast.Symbol {
return null;
}
pub fn recordUsage(self: *P, ref: *js_ast.Ref) void {
// The use count stored in the symbol is used for generating symbol names
// during minification. These counts shouldn't include references inside dead
// code regions since those will be culled.
if (!p.is_control_flow_dead) {
p.symbols[ref.InnerIndex].use_count_estimate += 1;
var use = p.symbolUses[ref];
use.count_estimate += 1;
p.symbolUses.put(ref, use);
}
// The correctness of TypeScript-to-JavaScript conversion relies on accurate
// symbol use counts for the whole file, including dead code regions. This is
// tracked separately in a parser-only data structure.
if (p.options.ts.parse) {
p.tsUseCounts.items[ref.inner_index] += 1;
}
}
pub fn findSymbolHelper(self: *P, loc: logger.Loc, name: string) ?js_ast.Ref {
if (self.findSymbol(loc, name)) |sym| {
return sym.ref;
}
return null;
}
pub fn symbolForDefineHelper(self: *P, i: usize) ?js_ast.Ref {
if (self.injected_define_symbols.items.len > i) {
return self.injected_define_symbols.items[i];
}
return null;
}
pub fn keyNameForError(p: *P, key: js_ast.Expr) string {
switch (key.data) {
js_ast.E.String => {
return p.lexer.raw();
},
js_ast.E.PrivateIdentifier => {
return p.lexer.raw();
// return p.loadNameFromRef()
},
else => {
return "property";
},
}
}
pub fn prepareForVisitPass(p: *P) !void {
try p.pushScopeForVisitPass(js_ast.Scope.Kind.entry, locModuleScope);
p.fn_or_arrow_data_visit.is_outside_fn_or_arrow = true;
p.module_scope = p.current_scope;
p.has_es_module_syntax = p.es6_import_keyword.len > 0 or p.es6_export_keyword.len > 0 or p.top_level_await_keyword.len > 0;
// ECMAScript modules are always interpreted as strict mode. This has to be
// done before "hoistSymbols" because strict mode can alter hoisting (!).
if (p.es6_import_keyword.len > 0) {
p.module_scope.recursiveSetStrictMode(js_ast.StrictModeKind.implicit_strict_mode_import);
} else if (p.es6_export_keyword.len > 0) {
p.module_scope.recursiveSetStrictMode(js_ast.StrictModeKind.implicit_strict_mode_export);
} else if (p.top_level_await_keyword.len > 0) {
p.module_scope.recursiveSetStrictMode(js_ast.StrictModeKind.implicit_strict_mode_top_level_await);
}
p.hoistSymbols(p.module_scope);
}
pub fn hoistSymbols(p: *P, scope: *js_ast.Scope) void {
if (!scope.kindStopsHoisting()) {
var iter = scope.members.iterator();
nextMember: while (iter.next()) |res| {
var symbol = p.symbols.items[res.value.ref.inner_index];
if (!symbol.isHoisted()) {
continue :nextMember;
}
}
}
}
pub fn unshiftScopeOrder(self: *P) !ScopeOrder {
if (self.scopes_in_order.items.len == 0) {
var scope = try js_ast.Scope.initPtr(self.allocator);
return ScopeOrder{
.scope = scope,
.loc = logger.Loc.Empty,
};
} else {
return self.scopes_in_order.orderedRemove(0);
}
}
pub fn pushScopeForVisitPass(p: *P, kind: js_ast.Scope.Kind, loc: logger.Loc) !void {
const order = try p.unshiftScopeOrder();
// Sanity-check that the scopes generated by the first and second passes match
if (nql(order.loc, loc) or nql(order.scope.kind, kind)) {
std.debug.panic("Expected scope ({s}, {d}) in {s}, found scope ({s}, {d})", .{ kind, loc.start, p.source.path.pretty, order.scope.kind, order.loc.start });
}
p.current_scope = order.scope;
try p.scopes_for_current_part.append(order.scope);
}
pub fn pushScopeForParsePass(p: *P, kind: js_ast.Scope.Kind, loc: logger.Loc) !int {
var parent = p.current_scope;
var scope = js_ast.Scope.initPtr(p.allocator);
scope.kind = kind;
scope.parent = parent;
scope.label_ref = null;
if (parent) |_parent| {
try _parent.children.append(scope);
scope.strict_mode = _parent.strict_mode;
}
p.current_scope = scope;
// Enforce that scope locations are strictly increasing to help catch bugs
// where the pushed scopes are mistmatched between the first and second passes
if (p.scopes_in_order.items.len > 0) {
const prev_start = p.scopes_in_order.items[p.scopes_in_order.items.len - 1].loc.start;
if (prev_start >= loc.start) {
std.debug.panic("Scope location {i} must be greater than {i}", .{ loc.start, prev_start });
}
}
// Copy down function arguments into the function body scope. That way we get
// errors if a statement in the function body tries to re-declare any of the
// arguments.
if (kind == js_ast.ScopeFunctionBody) {
if (scope.parent.kind != js_ast.ScopeFunctionArgs) {
std.debug.panic("Internal error");
}
// for name, member := range scope.parent.members {
// // Don't copy down the optional function expression name. Re-declaring
// // the name of a function expression is allowed.
// kind := p.symbols[member.Ref.InnerIndex].Kind
// if kind != js_ast.SymbolHoistedFunction {
// scope.Members[name] = member
// }
// }
}
}
pub fn parseStmtsUpTo(p: *P, eend: js_lexer.T, opts: *ParseStatementOptions) ![]js_ast.Stmt {
var stmts = List(js_ast.Stmt).init(p.allocator);
try stmts.ensureCapacity(1);
var returnWithoutSemicolonStart: i32 = -1;
opts.lexical_decl = .allow_all;
var isDirectivePrologue = true;
while (true) {
// var comments = p.lexer
}
return stmts.toOwnedSlice();
}
pub fn init(allocator: *std.mem.Allocator, log: logger.Log, source: logger.Source, lexer: js_lexer.Lexer, opts: Parser.Options) !*P {
var parser = try allocator.create(P);
parser.allocated_names = @TypeOf(parser.allocated_names).init(allocator);
parser.scopes_for_current_part = @TypeOf(parser.scopes_for_current_part).init(allocator);
parser.symbols = @TypeOf(parser.symbols).init(allocator);
parser.ts_use_counts = @TypeOf(parser.ts_use_counts).init(allocator);
parser.declared_symbols = @TypeOf(parser.declared_symbols).init(allocator);
parser.known_enum_values = @TypeOf(parser.known_enum_values).init(allocator);
parser.import_records = @TypeOf(parser.import_records).init(allocator);
parser.import_records_for_current_part = @TypeOf(parser.import_records_for_current_part).init(allocator);
parser.export_star_import_records = @TypeOf(parser.export_star_import_records).init(allocator);
parser.import_items_for_namespace = @TypeOf(parser.import_items_for_namespace).init(allocator);
parser.named_imports = @TypeOf(parser.named_imports).init(allocator);
parser.top_level_symbol_to_parts = @TypeOf(parser.top_level_symbol_to_parts).init(allocator);
parser.import_namespace_cc_map = @TypeOf(parser.import_namespace_cc_map).init(allocator);
parser.scopes_in_order = @TypeOf(parser.scopes_in_order).init(allocator);
parser.temp_refs_to_declare = @TypeOf(parser.temp_refs_to_declare).init(allocator);
parser.relocated_top_level_vars = @TypeOf(parser.relocated_top_level_vars).init(allocator);
parser.log = log;
parser.allocator = allocator;
parser.options = opts;
parser.source = source;
parser.lexer = lexer;
return parser;
}
};
test "js_parser.init" {
try alloc.setup(std.heap.page_allocator);
const entryPointName = "/bacon/hello.js";
const code = "for (let i = 0; i < 100; i++) { console.log(\"hi\");\n}";
var parser = try Parser.init(try options.TransformOptions.initUncached(alloc.dynamic, entryPointName, code), alloc.dynamic);
const res = try parser.parse();
}
|