aboutsummaryrefslogtreecommitdiff
path: root/cortex-m-rt/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'cortex-m-rt/src/lib.rs')
-rw-r--r--cortex-m-rt/src/lib.rs1131
1 files changed, 685 insertions, 446 deletions
diff --git a/cortex-m-rt/src/lib.rs b/cortex-m-rt/src/lib.rs
index 7028cce..eaefbbc 100644
--- a/cortex-m-rt/src/lib.rs
+++ b/cortex-m-rt/src/lib.rs
@@ -1,615 +1,854 @@
//! Minimal startup / runtime for Cortex-M microcontrollers
//!
+//! This crate contains all the required parts to build a `no_std` application (binary crate) that
+//! targets a Cortex-M microcontroller.
+//!
//! # Features
//!
-//! This crate provides
+//! This crates takes care of:
+//!
+//! - The memory layout of the program. In particular, it populates the vector table so the device
+//! can boot correctly, and properly dispatch exceptions and interrupts.
+//!
+//! - Initializing `static` variables before the program entry point.
+//!
+//! - Enabling the FPU before the program entry point if the target is `thumbv7em-none-eabihf`.
//!
-//! - Before main initialization of the `.bss` and `.data` sections.
+//! This crate also provides a mechanism to set exception handlers: see the [`exception!`] macro.
//!
-//! - Before main initialization of the FPU (for targets that have a FPU).
+//! [`exception!`]: macro.exception.html
//!
-//! - A minimal `start` lang item to support the standard `fn main()`
-//! interface. (The processor goes to sleep (`loop { asm!("wfi") }`) after
-//! returning from `main`)
+//! # Requirements
//!
-//! - A linker script that encodes the memory layout of a generic Cortex-M
-//! microcontroller. This linker script is missing some information that must
-//! be supplied through a `memory.x` file (see example below).
+//! ## `arm-none-eabi-gcc`
//!
-//! - A default exception handler tailored for debugging that lets you inspect
-//! what was the state of the processor at the time of the exception. By
-//! default, all exceptions are serviced by this handler but each exception
-//! can be individually overridden using the
-//! [`exception!`](macro.exception.html) macro. The default exception handler
-//! itself can also be overridden using the
-//! [`default_handler!`](macro.default_handler.html) macro.
+//! This crate requires `arm-none-eabi-gcc` to be installed and available in `$PATH`.
//!
-//! - A `_sheap` symbol at whose address you can locate a heap.
+//! ## `memory.x`
+//!
+//! This crate expects the user, or some other crate, to provide the memory layout of the target
+//! device via a linker script named `memory.x`. This section covers the contents of `memory.x`
//!
-//! # Example
+//! ### `MEMORY`
//!
-//! Creating a new bare metal project. (I recommend you use the
-//! [`cortex-m-quickstart`](https://docs.rs/cortex-m-quickstart/0.2.0/cortex_m_quickstart/) template
-//! as it takes of all the boilerplate shown here)
+//! The linker script must specify the memory available in the device as, at least, two `MEMORY`
+//! regions: one named `FLASH` and one named `RAM`. The `.text` and `.rodata` sections of the
+//! program will be placed in the `FLASH` region, whereas the `.bss` and `.data` sections, as well
+//! as the heap,will be placed in the `RAM` region.
//!
//! ``` text
-//! $ cargo new --bin app && cd $_
+//! /* Linker script for the STM32F103C8T6 */
+//! MEMORY
+//! {
+//! FLASH : ORIGIN = 0x08000000, LENGTH = 64K
+//! RAM : ORIGIN = 0x20000000, LENGTH = 20K
+//! }
+//! ```
//!
-//! $ # add this crate as a dependency
-//! $ cargo add cortex-m-rt --vers 0.4.0
+//! ### `_stack_start`
//!
-//! $ # select a panicking behavior (look for the panic-impl keyword on crates.io)
-//! $ cargo add panic-abort
+//! This optional symbol can be used to indicate where the call stack of the program should be
+//! placed. If this symbol is not used then the stack will be placed at the *end* of the `RAM`
+//! region -- the stack grows downwards towards smaller address. This symbol can be used to place
+//! the stack in a different memory region, for example:
//!
-//! $ # memory layout of the device
-//! $ $EDITOR memory.x && cat $_
+//! ``` text
+//! /* Linker script for the STM32F303VCT6 */
//! MEMORY
//! {
-//! /* NOTE K = KiBi = 1024 bytes */
-//! FLASH : ORIGIN = 0x08000000, LENGTH = 128K
-//! RAM : ORIGIN = 0x20000000, LENGTH = 8K
+//! FLASH : ORIGIN = 0x08000000, LENGTH = 256K
+//!
+//! /* .bss, .data and the heap go in this region */
+//! RAM : ORIGIN = 0x20000000, LENGTH = 40K
+//!
+//! /* Core coupled (faster) RAM dedicated to hold the stack */
+//! CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
//! }
//!
-//! $ $EDITOR src/main.rs && cat $_
+//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
+//! ```
+//!
+//! ### `_stext`
+//!
+//! This optional symbol can be used to control where the `.text` section is placed. If omitted the
+//! `.text` section will be placed right after the vector table, which is placed at the beginning of
+//! `FLASH`. Some devices store settings like Flash configuration right after the vector table;
+//! for these devices one must place the `.text` section after this configuration section --
+//! `_stext` can be used for this purpose.
+//!
+//! ``` text
+//! MEMORY
+//! {
+//! /* .. */
+//! }
+//!
+//! /* The device stores Flash configuration in 0x400-0x40C so we place .text after that */
+//! _stext = ORIGIN(FLASH) + 0x40C
//! ```
//!
-//! ``` ignore,no_run
-//! #![feature(used)]
+//! # An example
+//!
+//! This section presents a minimal application built on top of `cortex-m-rt`. Apart from the
+//! mandatory `memory.x` linker script describing the memory layout of the device, the hard fault
+//! handler and the default exception handler must also be defined somewhere in the dependency
+//! graph (cf. [`exception!`]). In this example we define them in the binary crate:
+//!
+//! ``` ignore
+//! // IMPORTANT the standard `main` interface is not used because it requires nightly
+//! #![no_main]
//! #![no_std]
//!
-//! extern crate cortex_m_rt;
-//! extern crate panic_abort; // panicking behavior
+//! #[macro_use(entry, exception)]
+//! extern crate cortex_m_rt as rt;
//!
-//! fn main() {
-//! // do something here
+//! // makes `panic!` print messages to the host stderr using semihosting
+//! extern crate panic_semihosting;
+//!
+//! use rt::ExceptionFrame;
+//!
+//! // use `main` as the entry point of this application
+//! entry!(main);
+//!
+//! // `main` is not allowed to return
+//! fn main() -> ! {
+//! // initialization
+//!
+//! loop {
+//! // application logic
+//! }
//! }
//!
-//! // As we are not using interrupts, we just register a dummy catch all
-//! // handler
-//! #[link_section = ".vector_table.interrupts"]
-//! #[used]
-//! static INTERRUPTS: [extern "C" fn(); 240] = [default_handler; 240];
+//! // define the hard fault handler
+//! exception!(HardFault, hard_fault);
//!
-//! extern "C" fn default_handler() {
-//! loop {}
+//! fn hard_fault(ef: &ExceptionFrame) -> ! {
+//! panic!("{:#?}", ef);
+//! }
+//!
+//! // define the default exception handler
+//! exception!(*, default_handler);
+//!
+//! fn default_handler(irqn: i16) {
+//! panic!("unhandled exception (IRQn={})", irqn);
//! }
//! ```
//!
+//! To actually build this program you need to place a `memory.x` linker script somewhere the linker
+//! can find it, e.g. in the current directory; and then link the program using `cortex-m-rt`'s
+//! linker script: `link.x`. The required steps are shown below:
+//!
//! ``` text
-//! $ rustup target add thumbv7m-none-eabi
+//! $ cat > memory.x <<EOF
+//! /* Linker script for the STM32F103C8T6 */
+//! MEMORY
+//! {
+//! FLASH : ORIGIN = 0x08000000, LENGTH = 64K
+//! RAM : ORIGIN = 0x20000000, LENGTH = 20K
+//! }
+//! EOF
//!
//! $ cargo rustc --target thumbv7m-none-eabi -- \
-//! -C link-arg=-Tlink.x -C linker=arm-none-eabi-ld -Z linker-flavor=ld
+//! -C link-arg=-nostartfiles -C link-arg=-Tlink.x
//!
-//! $ arm-none-eabi-objdump -Cd $(find target -name app) | head
+//! $ file target/thumbv7m-none-eabi/debug/app
+//! app: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, (..)
+//! ```
//!
-//! Disassembly of section .text:
+//! # Optional features
//!
-//! 08000400 <cortex_m_rt::reset_handler>:
-//! 8000400: b580 push {r7, lr}
-//! 8000402: 466f mov r7, sp
-//! 8000404: b084 sub sp, #8
+//! ## `device`
//!
+//! If this feature is disabled then this crate populates the whole vector table. All the interrupts
+//! in the vector table, even the ones unused by the target device, will be bound to the default
+//! exception handler. This makes the final application device agnostic: you will be able to run it
+//! on any Cortex-M device -- provided that you correctly specified its memory layout in `memory.x`
+//! -- without hitting undefined behavior.
//!
-//! $ arm-none-eabi-size -Ax $(find target -name app) | head
-//! target/thumbv7m-none-eabi/debug/app :
-//! section size addr
-//! .vector_table 0x400 0x8000000
-//! .text 0x24a 0x8000400
-//! .rodata 0x0 0x800064c
-//! .bss 0x0 0x20000000
-//! .data 0x0 0x20000000
-//! ```
+//! If this feature is enabled then the interrupts section of the vector table is left unpopulated
+//! and some other crate, or the user, will have to populate it. This mode is meant to be used in
+//! conjunction with crates generated using `svd2rust`. Those *device crates* will populate the
+//! missing part of the vector table when their `"rt"` feature is enabled.
//!
-//! # Symbol interfaces
+//! # Inspection
//!
-//! This crate makes heavy use of symbols, linker sections and linker scripts to
-//! provide most of its functionality. Below are described the main symbol
-//! interfaces.
+//! This section covers how to inspect a binary that builds on top of `cortex-m-rt`.
//!
-//! ## `DEFAULT_HANDLER`
+//! ## Sections (`size`)
//!
-//! This weak symbol can be overridden to override the default exception handler
-//! that this crate provides. It's recommended that you use the
-//! `default_handler!` to do the override, but below is shown how to manually
-//! override the symbol:
+//! `cortex-m-rt` uses standard sections like `.text`, `.rodata`, `.bss` and `.data` as one would
+//! expect. `cortex-m-rt` separates the vector table in its own section, named `.vector_table`. This
+//! lets you distinguish how much space is taking the vector table in Flash vs how much is being
+//! used by actual instructions (`.text`) and constants (`.rodata`).
//!
-//! ``` ignore,no_run
-//! #[no_mangle]
-//! pub extern "C" fn DEFAULT_HANDLER() {
-//! // do something here
-//! }
+//! ```
+//! $ size -Ax target/thumbv7m-none-eabi/examples/app
+//! target/thumbv7m-none-eabi/release/examples/app :
+//! section size addr
+//! .vector_table 0x400 0x8000000
+//! .text 0x88 0x8000400
+//! .rodata 0x0 0x8000488
+//! .data 0x0 0x20000000
+//! .bss 0x0 0x20000000
//! ```
//!
-//! ## `.vector_table.interrupts`
+//! Without the `-A` argument `size` reports the sum of the sizes of `.text`, `.rodata` and
+//! `.vector_table` under "text".
//!
-//! This linker section is used to register interrupt handlers in the vector
-//! table. The recommended way to use this section is to populate it, once, with
-//! an array of *weak* functions that just call the `DEFAULT_HANDLER` symbol.
-//! Then the user can override them by name.
+//! ```
+//! $ size target/thumbv7m-none-eabi/examples/app
+//! text data bss dec hex filename
+//! 1160 0 0 1660 67c target/thumbv7m-none-eabi/release/app
+//! ```
//!
-//! ### Example
+//! ## Symbols (`objdump`, `nm`)
//!
-//! Populating the vector table
+//! One will always find the following (unmangled) symbols in `cortex-m-rt` applications:
//!
-//! ``` ignore,no_run
-//! // Number of interrupts the device has
-//! const N: usize = 60;
+//! - `Reset`. This is the reset handler. The microcontroller will executed this function upon
+//! booting. This function will call the user program entry point (cf. [`entry!`]) using the `main`
+//! symbol so you may also find that symbol in your program; if you do, `main` will contain your
+//! application code. Some other times `main` gets inlined into `Reset` so you won't find it.
//!
-//! // Default interrupt handler that just calls the `DEFAULT_HANDLER`
-//! #[linkage = "weak"]
-//! #[naked]
-//! #[no_mangle]
-//! extern "C" fn WWDG() {
-//! unsafe {
-//! asm!("b DEFAULT_HANDLER" :::: "volatile");
-//! core::intrinsics::unreachable();
-//! }
-//! }
+//! [`entry!`]: macro.entry.html
//!
-//! // You need one function per interrupt handler
-//! #[linkage = "weak"]
-//! #[naked]
-//! #[no_mangle]
-//! extern "C" fn PVD() {
-//! unsafe {
-//! asm!("b DEFAULT_HANDLER" :::: "volatile");
-//! core::intrinsics::unreachable();
-//! }
-//! }
+//! - `DefaultHandler`. This is the default handler. This function will contain, or call, the
+//! function you declared in the second argument of `exception!(*, ..)`.
//!
-//! // ..
+//! - `HardFault`. This is the hard fault handler. This function is simply a trampoline that jumps
+//! into the user defined hard fault handler: `UserHardFault`. The trampoline is required to set up
+//! the pointer to the stacked exception frame.
//!
-//! // Use `None` for reserved spots in the vector table
-//! #[link_section = ".vector_table.interrupts"]
-//! #[no_mangle]
-//! #[used]
-//! static INTERRUPTS: [Option<extern "C" fn()>; N] = [
-//! Some(WWDG),
-//! Some(PVD),
-//! // ..
-//! ];
-//! ```
+//! - `UserHardFault`. This is the user defined hard fault handler. This function will contain, or
+//! call, the function you declared in the second argument of `exception!(HardFault, ..)`
//!
-//! Overriding an interrupt (this can be in a different crate)
+//! - `__STACK_START`. This is the first entry in the `.vector_table` section. This symbol contains
+//! the initial value of the stack pointer; this is where the stack will be located -- the stack
+//! grows downwards towards smaller addresses.
//!
-//! ``` ignore,no_run
-//! // the name must match the name of one of the weak functions used to
-//! // populate the vector table.
-//! #[no_mangle]
-//! pub extern "C" fn WWDG() {
-//! // do something here
-//! }
-//! ```
+//! - `__RESET_VECTOR`. This is the reset vector, a pointer into the `Reset` handler. This vector is
+//! located in the `.vector_table` section after `__STACK_START`.
//!
-//! ## `memory.x`
+//! - `__EXCEPTIONS`. This is the core exceptions portion of the vector table; it's an array of 14
+//! exception vectors, which includes exceptions like `HardFault` and `SysTick`. This array is
+//! located after `__RESET_VECTOR` in the `.vector_table` section.
//!
-//! This file supplies the information about the device to the linker.
+//! - `__EXCEPTIONS`. This is the device specific interrupt portion of the vector table; its exact
+//! size depends on the target device but if the `"device"` feature has not been enabled it will
+//! have a size of 32 vectors (on ARMv6-M) or 240 vectors (on ARMv7-M). This array is located after
+//! `__EXCEPTIONS` in the `.vector_table` section.
//!
-//! ### `MEMORY`
+//! If you override any exception handler you'll find it as an unmangled symbol, e.g. `SysTick` or
+//! `SVCall`, in the output of `objdump`,
//!
-//! The main information that this file must provide is the memory layout of
-//! the device in the form of the `MEMORY` command. The command is documented
-//! [here](https://sourceware.org/binutils/docs/ld/MEMORY.html), but at a minimum you'll want to
-//! create two memory regions: one for Flash memory and another for RAM.
+//! If you are targeting the `thumbv7em-none-eabihf` target you'll also see a `ResetTrampoline`
+//! symbol in the output. To avoid the compiler placing FPU instructions before the FPU has been
+//! enabled (cf. `vpush`) `Reset` calls the function `ResetTrampoline` which is marked as
+//! `#[inline(never)]` and `ResetTrampoline` calls `main`. The compiler is free to inline `main`
+//! into `ResetTrampoline` but it can't inline `ResetTrampoline` into `Reset` -- the FPU is enabled
+//! in `Reset`.
//!
-//! The program instructions (the `.text` section) will be stored in the memory
-//! region named FLASH, and the program `static` variables (the sections `.bss`
-//! and `.data`) will be allocated in the memory region named RAM.
+//! # Advanced usage
//!
-//! ### `_stack_start`
+//! ## Setting the program entry point
//!
-//! This symbol provides the address at which the call stack will be allocated.
-//! The call stack grows downwards so this address is usually set to the highest
-//! valid RAM address plus one (this *is* an invalid address but the processor
-//! will decrement the stack pointer *before* using its value as an address).
+//! This section describes how `entry!` is implemented. This information is useful to developers who
+//! want to provide an alternative to `entry!` that provides extra guarantees.
//!
-//! If omitted this symbol value will default to `ORIGIN(RAM) + LENGTH(RAM)`.
+//! The `Reset` handler will call a symbol named `main` (unmangled) *after* initializing `.bss` and
+//! `.data`, and enabling the FPU (if the target is `thumbv7em-none-eabihf`). `entry!` provides this
+//! symbol in its expansion:
//!
-//! #### Example
+//! ``` ignore
+//! entry!(path::to::main);
//!
-//! Allocating the call stack on a different RAM region.
+//! // expands into
//!
-//! ``` ignore
-//! MEMORY
-//! {
-//! /* call stack will go here */
-//! CCRAM : ORIGIN = 0x10000000, LENGTH = 8K
-//! FLASH : ORIGIN = 0x08000000, LENGTH = 256K
-//! /* static variables will go here */
-//! RAM : ORIGIN = 0x20000000, LENGTH = 40K
-//! }
+//! #[export_name = "main"]
+//! pub extern "C" fn __impl_main() -> ! {
+//! // validate the signature of the program entry point
+//! let f: fn() -> ! = path::to::main;
//!
-//! _stack_start = ORIGIN(CCRAM) + LENGTH(CCRAM);
+//! f()
+//! }
//! ```
//!
-//! ### `_stext`
+//! The unmangled `main` symbol must have signature `extern "C" fn() -> !` or its invocation from
+//! `Reset` will result in undefined behavior.
//!
-//! This symbol indicates where the `.text` section will be located. If not
-//! specified in the `memory.x` file it will default to right after the vector
-//! table -- the vector table is always located at the start of the FLASH
-//! region.
+//! ## Incorporating device specific interrupts
//!
-//! The main use of this symbol is leaving some space between the vector table
-//! and the `.text` section unused. This is required on some microcontrollers
-//! that store some configuration information right after the vector table.
+//! This section covers how an external crate can insert device specific interrupt handlers into the
+//! vector table. Most users don't need to concern themselves with these details, but if you are
+//! interested in how device crates generated using `svd2rust` integrate with `cortex-m-rt` read on.
//!
-//! #### Example
+//! The information in this section applies when the `"device"` feature has been enabled.
//!
-//! Locate the `.text` section 1024 bytes after the start of the FLASH region.
+//! ### `__INTERRUPTS`
//!
-//! ``` ignore
-//! _stext = ORIGIN(FLASH) + 0x400;
-//! ```
+//! The external crate must provide the interrupts portion of the vector table via a `static`
+//! variable named`__INTERRUPTS` (unmangled) that must be placed in the `.vector_table.interrupts`
+//! section of its object file.
//!
-//! ### `_sheap`
+//! This `static` variable will be placed at `ORIGIN(FLASH) + 0x40`. This address corresponds to the
+//! spot where IRQ0 (IRQ number 0) is located.
//!
-//! This symbol is located in RAM right after the `.bss` and `.data` sections.
-//! You can use the address of this symbol as the start address of a heap
-//! region. This symbol is 4 byte aligned so that address will be a multiple of 4.
+//! To conform to the Cortex-M ABI `__INTERRUPTS` must be an array of function pointers; some spots
+//! in this array may need to be set to 0 if they are marked as *reserved* in the data sheet /
+//! reference manual. We recommend using a `union` to set the reserved spots to `0`; `None`
+//! (`Option<fn()>`) may also work but it's not guaranteed that the `None` variant will *always* be
+//! represented by the value `0`.
//!
-//! #### Example
+//! Let's illustrate with an artificial example where a device only has two interrupt: `Foo`, with
+//! IRQ number = 2, and `Bar`, with IRQ number = 4.
//!
//! ``` ignore
-//! extern crate some_allocator;
-//!
-//! // Size of the heap in bytes
-//! const SIZE: usize = 1024;
+//! union Vector {
+//! handler: extern "C" fn(),
+//! reserved: usize,
+//! }
//!
//! extern "C" {
-//! static mut _sheap: u8;
+//! fn Foo();
+//! fn Bar();
//! }
//!
+//! #[link_section = ".vector_table.interrupts"]
+//! #[no_mangle]
+//! pub static __INTERRUPTS: [Vector; 5] = [
+//! // 0-1: Reserved
+//! Vector { reserved: 0 },
+//! Vector { reserved: 0 },
+//!
+//! // 2: Foo
+//! Vector { handler: Foo },
+//!
+//! // 3: Reserved
+//! Vector { reserved: 0 },
+//!
+//! // 4: Bar
+//! Vector { handler: Bar },
+//! ];
+//! ```
+//!
+//! ### `device.x`
+//!
+//! Linking in `__INTERRUPTS` creates a bunch of undefined references. If the user doesn't set a
+//! handler for *all* the device specific interrupts then linking will fail with `"undefined
+//! reference"` errors.
+//!
+//! We want to provide a default handler for all the interrupts while still letting the user
+//! individually override each interrupt handler. In C projects, this is usually accomplished using
+//! weak aliases declared in external assembly files. In Rust, we could achieve something similar
+//! using `global_asm!`, but that's an unstable feature.
+//!
+//! A solution that doesn't require `global_asm!` or external assembly files is to use the `PROVIDE`
+//! command in a linker script to create the weak aliases. This is the approach that `cortex-m-rt`
+//! uses; when the `"device"` feature is enabled `cortex-m-rt`'s linker script (`link.x`) depends on
+//! a linker script named `device.x`. The crate that provides `__INTERRUPTS` must also provide this
+//! file.
+//!
+//! For our running example the `device.x` linker script looks like this:
+//!
+//! ``` text
+//! /* device.x */
+//! PROVIDE(Foo = DefaultHandler);
+//! PROVIDE(Bar = DefaultHandler);
+//! ```
+//!
+//! This weakly aliases both `Foo` and `Bar`. `DefaultHandler` is the default exception handler that
+//! the user provides via `exception!(*, ..)` and that the core exceptions use unless overridden.
+//!
+//! Because this linker script is provided by a dependency of the final application the dependency
+//! must contain build script that puts `device.x` somewhere the linker can find. An example of such
+//! build script is shown below:
+//!
+//! ``` ignore
+//! use std::env;
+//! use std::fs::File;
+//! use std::io::Write;
+//! use std::path::PathBuf;
+//!
//! fn main() {
-//! unsafe {
-//! let start_address = &mut _sheap as *mut u8;
-//! some_allocator::initialize(start_address, SIZE);
-//! }
+//! // Put the linker script somewhere the linker can find it
+//! let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
+//! File::create(out.join("device.x"))
+//! .unwrap()
+//! .write_all(include_bytes!("device.x"))
+//! .unwrap();
+//! println!("cargo:rustc-link-search={}", out.display());
//! }
//! ```
-//!
-//! [1]: https://doc.rust-lang.org/unstable-book/language-features/lang-items.html
-//! [qs]: https://docs.rs/cortex-m-quickstart/0.2.0/cortex_m_quickstart/
-//! [2]: https://sourceware.org/binutils/docs/ld/MEMORY.html
+
+// # Developer notes
+//
+// - `link_section` is used to place symbols in specific places of the final binary. The names used
+// here will appear in the linker script (`link.x`) in conjunction with the `KEEP` command.
#![deny(missing_docs)]
#![deny(warnings)]
-#![feature(asm)]
-#![feature(core_intrinsics)]
-#![feature(global_asm)]
-#![feature(lang_items)]
-#![feature(linkage)]
-#![feature(naked_functions)]
-#![feature(used)]
#![no_std]
-#[cfg(target_arch = "arm")]
-extern crate cortex_m;
-#[cfg(target_arch = "arm")]
extern crate r0;
-#[cfg(not(test))]
-mod lang_items;
+use core::fmt;
-#[cfg(target_arch = "arm")]
-use core::intrinsics;
+/// Registers stacked (pushed into the stack) during an exception
+#[derive(Clone, Copy)]
+#[repr(C)]
+pub struct ExceptionFrame {
+ /// (General purpose) Register 0
+ pub r0: u32,
-#[cfg(target_arch = "arm")]
-use cortex_m::asm;
-#[cfg(target_arch = "arm")]
-use cortex_m::exception::ExceptionFrame;
+ /// (General purpose) Register 1
+ pub r1: u32,
-extern "C" {
- // NOTE `rustc` forces this signature on us. See `src/lang_items.rs`
- #[cfg(target_arch = "arm")]
- fn main(argc: isize, argv: *const *const u8) -> isize;
+ /// (General purpose) Register 2
+ pub r2: u32,
+
+ /// (General purpose) Register 3
+ pub r3: u32,
- // Boundaries of the .bss section
- static mut _ebss: u32;
- static mut _sbss: u32;
+ /// (General purpose) Register 12
+ pub r12: u32,
- // Boundaries of the .data section
- static mut _edata: u32;
- static mut _sdata: u32;
+ /// Linker Register
+ pub lr: u32,
- // Initial values of the .data section (stored in Flash)
- static _sidata: u32;
+ /// Program Counter
+ pub pc: u32,
+
+ /// Program Status Register
+ pub xpsr: u32,
}
-#[cfg(target_arch = "arm")]
-#[link_section = ".vector_table.reset_vector"]
-#[used]
-static RESET_VECTOR: unsafe extern "C" fn() -> ! = reset_handler;
+impl fmt::Debug for ExceptionFrame {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ struct Hex(u32);
+ impl fmt::Debug for Hex {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "0x{:08x}", self.0)
+ }
+ }
+ f.debug_struct("ExceptionFrame")
+ .field("r0", &Hex(self.r0))
+ .field("r1", &Hex(self.r1))
+ .field("r2", &Hex(self.r2))
+ .field("r3", &Hex(self.r3))
+ .field("r12", &Hex(self.r12))
+ .field("lr", &Hex(self.lr))
+ .field("pc", &Hex(self.pc))
+ .field("xpsr", &Hex(self.xpsr))
+ .finish()
+ }
+}
-/// The reset handler
+/// Returns a pointer to the start of the heap
///
-/// This is the entry point of all programs
-#[cfg(target_arch = "arm")]
-#[link_section = ".reset_handler"]
-unsafe extern "C" fn reset_handler() -> ! {
- r0::zero_bss(&mut _sbss, &mut _ebss);
- r0::init_data(&mut _sdata, &mut _edata, &_sidata);
+/// The returned pointer is guaranteed to be 4-byte aligned.
+#[inline]
+pub fn heap_start() -> *mut u32 {
+ extern "C" {
+ static mut __sheap: u32;
+ }
+
+ unsafe { &mut __sheap }
+}
+
+/* Entry point */
+#[doc(hidden)]
+#[link_section = ".vector_table.reset_vector"]
+#[no_mangle]
+pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;
+
+#[doc(hidden)]
+#[no_mangle]
+pub unsafe extern "C" fn Reset() -> ! {
+ extern "C" {
+ // This symbol will be provided by the user via the `entry!` macro
+ fn main() -> !;
+
+ // These symbols come from `link.x`
+ static mut __sbss: u32;
+ static mut __ebss: u32;
+
+ static mut __sdata: u32;
+ static mut __edata: u32;
+ static __sidata: u32;
+ }
+
+ // Initialize RAM
+ r0::zero_bss(&mut __sbss, &mut __ebss);
+ r0::init_data(&mut __sdata, &mut __edata, &__sidata);
match () {
#[cfg(not(has_fpu))]
- () => {
- // Neither `argc` or `argv` make sense in bare metal context so we
- // just stub them
- main(0, ::core::ptr::null());
- }
+ () => main(),
#[cfg(has_fpu)]
() => {
- // NOTE(safe) no exception / interrupt that also accesses the FPU
- // can occur here
- let scb = &*cortex_m::peripheral::SCB.get();
- scb.enable_fpu();
-
- // Make sure the user main function never gets inlined into this
- // function as that may cause FPU related instructions like vpush to
- // be executed *before* enabling the FPU and that would generate an
- // exception
+ // We redefine these here to avoid pulling the `cortex-m` crate as a dependency
+ const SCB_CPACR: *mut u32 = 0xE000_ED88 as *mut u32;
+ const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
+ const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;
+
+ // enable the FPU
+ core::ptr::write_volatile(
+ SCB_CPACR,
+ *SCB_CPACR | SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
+ );
+
+ // this is used to prevent the compiler from inlining the user `main` into the reset
+ // handler. Inlining can cause the FPU instructions in the user `main` to be executed
+ // before enabling the FPU, and that would produce a hard to diagnose hard fault at
+ // runtime.
#[inline(never)]
- fn main() {
- unsafe {
- ::main(0, ::core::ptr::null());
- }
+ #[export_name = "ResetTrampoline"]
+ fn trampoline() -> ! {
+ unsafe { main() }
}
- main()
+ trampoline()
}
}
+}
- // If `main` returns, then we go into "reactive" mode and simply attend
- // interrupts as they occur.
- loop {
- asm!("wfi" :::: "volatile");
- }
+/// Macro to define the entry point of the program
+///
+/// **NOTE** This macro must be invoked once and must be invoked from an accessible module, ideally
+/// from the root of the crate.
+///
+/// Usage: `entry!(path::to::entry::point)`
+///
+/// The specified function will be called by the reset handler *after* RAM has been initialized. In
+/// the case of the `thumbv7em-none-eabihf` target the FPU will also be enabled before the function
+/// is called.
+///
+/// The signature of the specified function must be `fn() -> !` (never ending function)
+#[macro_export]
+macro_rules! entry {
+ ($path:path) => {
+ #[export_name = "main"]
+ pub extern "C" fn __impl_main() -> ! {
+ // validate the signature of the program entry point
+ let f: fn() -> ! = $path;
+
+ f()
+ }
+ };
}
-#[cfg(target_arch = "arm")]
-global_asm!(
- r#"
-.weak NMI
-NMI = DEFAULT_HANDLER
+/* Exceptions */
+#[doc(hidden)]
+pub enum Exception {
+ NonMaskableInt,
-.weak HARD_FAULT
-HARD_FAULT = DEFAULT_HANDLER
+ // Not overridable
+ // HardFault,
+ #[cfg(not(armv6m))]
+ MemoryManagement,
-.weak MEM_MANAGE
-MEM_MANAGE = DEFAULT_HANDLER
+ #[cfg(not(armv6m))]
+ BusFault,
-.weak BUS_FAULT
-BUS_FAULT = DEFAULT_HANDLER
+ #[cfg(not(armv6m))]
+ UsageFault,
-.weak USAGE_FAULT
-USAGE_FAULT = DEFAULT_HANDLER
+ #[cfg(armv8m)]
+ SecureFault,
-.weak SVCALL
-SVCALL = DEFAULT_HANDLER
+ SVCall,
-.weak PENDSV
-PENDSV = DEFAULT_HANDLER
+ #[cfg(not(armv6m))]
+ DebugMonitor,
-.weak SYS_TICK
-SYS_TICK = DEFAULT_HANDLER
-"#
-);
+ PendSV,
-#[cfg(not(armv6m))]
-global_asm!(
- r#"
-.weak DEBUG_MONITOR
-DEBUG_MONITOR = DEFAULT_HANDLER
-"#
-);
+ SysTick,
+}
-#[cfg(target_arch = "arm")]
extern "C" {
- fn NMI();
- fn HARD_FAULT();
- fn MEM_MANAGE();
- fn BUS_FAULT();
- fn USAGE_FAULT();
- fn SVCALL();
+ fn NonMaskableInt();
+
+ fn HardFault();
+
+ #[cfg(not(armv6m))]
+ fn MemoryManagement();
+
+ #[cfg(not(armv6m))]
+ fn BusFault();
+
+ #[cfg(not(armv6m))]
+ fn UsageFault();
+
+ #[cfg(armv8m)]
+ fn SecureFault();
+
+ fn SVCall();
+
#[cfg(not(armv6m))]
- fn DEBUG_MONITOR();
- fn PENDSV();
- fn SYS_TICK();
+ fn DebugMonitor();
+
+ fn PendSV();
+
+ fn SysTick();
+}
+
+#[doc(hidden)]
+pub union Vector {
+ handler: unsafe extern "C" fn(),
+ reserved: usize,
}
-#[allow(private_no_mangle_statics)]
-#[cfg(target_arch = "arm")]
#[doc(hidden)]
#[link_section = ".vector_table.exceptions"]
#[no_mangle]
-#[used]
-pub static EXCEPTIONS: [Option<unsafe extern "C" fn()>; 14] = [
- Some(NMI),
- Some(HARD_FAULT),
- Some(MEM_MANAGE),
- Some(BUS_FAULT),
- Some(USAGE_FAULT),
- None,
- None,
- None,
- None,
- Some(SVCALL),
+pub static __EXCEPTIONS: [Vector; 14] = [
+ // Exception 2: Non Maskable Interrupt.
+ Vector {
+ handler: NonMaskableInt,
+ },
+ // Exception 3: Hard Fault Interrupt.
+ Vector { handler: HardFault },
+ // Exception 4: Memory Management Interrupt [not on Cortex-M0 variants].
+ #[cfg(not(armv6m))]
+ Vector {
+ handler: MemoryManagement,
+ },
+ #[cfg(armv6m)]
+ Vector { reserved: 0 },
+ // Exception 5: Bus Fault Interrupt [not on Cortex-M0 variants].
+ #[cfg(not(armv6m))]
+ Vector { handler: BusFault },
#[cfg(armv6m)]
- None,
+ Vector { reserved: 0 },
+ // Exception 6: Usage Fault Interrupt [not on Cortex-M0 variants].
#[cfg(not(armv6m))]
- Some(DEBUG_MONITOR),
- None,
- Some(PENDSV),
- Some(SYS_TICK),
+ Vector {
+ handler: UsageFault,
+ },
+ #[cfg(armv6m)]
+ Vector { reserved: 0 },
+ // Exception 7: Secure Fault Interrupt [only on Armv8-M].
+ #[cfg(armv8m)]
+ Vector {
+ handler: SecureFault,
+ },
+ #[cfg(not(armv8m))]
+ Vector { reserved: 0 },
+ // 8-10: Reserved
+ Vector { reserved: 0 },
+ Vector { reserved: 0 },
+ Vector { reserved: 0 },
+ // Exception 11: SV Call Interrupt.
+ Vector { handler: SVCall },
+ // Exception 12: Debug Monitor Interrupt [not on Cortex-M0 variants].
+ #[cfg(not(armv6m))]
+ Vector {
+ handler: DebugMonitor,
+ },
+ #[cfg(armv6m)]
+ Vector { reserved: 0 },
+ // 13: Reserved
+ Vector { reserved: 0 },
+ // Exception 14: Pend SV Interrupt [not on Cortex-M0 variants].
+ Vector { handler: PendSV },
+ // Exception 15: System Tick Interrupt.
+ Vector { handler: SysTick },
];
-/// `ef` points to the exception frame
-///
-/// That exception frame is a snapshot of the program state right before the
-/// exception occurred.
-#[allow(unused_variables)]
-#[cfg(target_arch = "arm")]
-extern "C" fn default_handler(ef: &ExceptionFrame) -> ! {
- asm::bkpt();
-
- loop {}
-
- #[export_name = "DEFAULT_HANDLER"]
- #[linkage = "weak"]
- #[naked]
- extern "C" fn trampoline() -> ! {
- unsafe {
- asm!("mrs r0, MSP
- b $0"
- :
- : "i"(default_handler as extern "C" fn(&ExceptionFrame) -> !)
- :
- : "volatile");
-
- intrinsics::unreachable()
- }
+// If we are not targeting a specific device we bind all the potential device specific interrupts
+// to the default handler
+#[cfg(all(not(feature = "device"), not(armv6m)))]
+#[doc(hidden)]
+#[link_section = ".vector_table.interrupts"]
+#[no_mangle]
+pub static __INTERRUPTS: [unsafe extern "C" fn(); 240] = [{
+ extern "C" {
+ fn DefaultHandler();
}
- #[used]
- static KEEP: extern "C" fn() -> ! = trampoline;
-}
+ DefaultHandler
+}; 240];
-// make sure the compiler emits the DEFAULT_HANDLER symbol so the linker can
-// find it!
-#[cfg(target_arch = "arm")]
-#[used]
-static KEEP: extern "C" fn(&ExceptionFrame) -> ! = default_handler;
+// ARMv6-M can only have a maximum of 32 device specific interrupts
+#[cfg(all(not(feature = "device"), armv6m))]
+#[doc(hidden)]
+#[link_section = ".vector_table.interrupts"]
+#[no_mangle]
+pub static __INTERRUPTS: [unsafe extern "C" fn(); 32] = [{
+ extern "C" {
+ fn DefaultHandler();
+ }
+
+ DefaultHandler
+}; 32];
-/// This macro lets you override the default exception handler
+/// Macro to set or override a processor core exception handler
///
-/// The first and only argument to this macro is the path to the function that
-/// will be used as the default handler. That function must have signature
-/// `fn()`
+/// **NOTE** This macro must be invoked from an accessible module, ideally from the root of the
+/// crate.
///
-/// # Examples
+/// # Syntax
///
/// ``` ignore
-/// default_handler!(foo::bar);
+/// exception!(
+/// // Name of the exception
+/// $Name:ident,
///
-/// mod foo {
-/// pub fn bar() {
-/// ::cortex_m::asm::bkpt();
-/// loop {}
-/// }
-/// }
+/// // Path to the exception handler (a function)
+/// $handler:path,
+///
+/// // Optional, state preserved across invocations of the handler
+/// state: $State:ty = $initial_state:expr,
+/// );
/// ```
-#[macro_export]
-macro_rules! default_handler {
- ($path:path) => {
- #[allow(non_snake_case)]
- #[doc(hidden)]
- #[no_mangle]
- pub unsafe extern "C" fn DEFAULT_HANDLER() {
- // type checking
- let f: fn() = $path;
- f();
- }
- }
-}
-
-/// Fault and system exceptions
-#[allow(non_camel_case_types)]
-#[doc(hidden)]
-pub enum Exception {
- /// Non-maskable interrupt
- NMI,
- /// All class of fault.
- HARD_FAULT,
- /// Memory management.
- MEN_MANAGE,
- /// Pre-fetch fault, memory access fault.
- BUS_FAULT,
- /// Undefined instruction or illegal state.
- USAGE_FAULT,
- /// System service call via SWI instruction
- SVCALL,
- /// Debug monitor
- #[cfg(not(armv6m))]
- DEBUG_MONITOR,
- /// Pendable request for system service
- PENDSV,
- /// System tick timer
- SYS_TICK,
-}
-
-/// Assigns a handler to an exception
///
-/// This macro takes two arguments: the name of an exception and the path to the
-/// function that will be used as the handler of that exception. That function
-/// must have signature `fn()`.
+/// where `$Name` can be one of:
///
-/// Optionally, a third argument may be used to declare exception local data.
-/// The handler will have exclusive access to these *local* variables on each
-/// invocation. If the third argument is used then the signature of the handler
-/// function must be `fn(&mut $NAME::Locals)` where `$NAME` is the first
-/// argument passed to the macro.
+/// - `*`
+/// - `NonMaskableInt`
+/// - `HardFault`
+/// - `MemoryManagement` (a)
+/// - `BusFault` (a)
+/// - `UsageFault` (a)
+/// - `SecureFault` (b)
+/// - `SVCall`
+/// - `DebugMonitor` (a)
+/// - `PendSV`
+/// - `SysTick`
///
-/// # Example
+/// (a) Not available on Cortex-M0 variants (`thumbv6m-none-eabi`)
///
-/// ``` ignore
-/// exception!(MEM_MANAGE, mpu_fault);
+/// (b) Only available on ARMv8-M
+///
+/// # Usage
+///
+/// `exception!(HardFault, ..)` sets the hard fault handler. The handler must have signature
+/// `fn(&ExceptionFrame) -> !`. This handler is not allowed to return as that can cause undefined
+/// behavior. It's mandatory to set the `HardFault` handler somewhere in the dependency graph of an
+/// application.
///
-/// fn mpu_fault() {
-/// panic!("Oh no! Something went wrong");
+/// `exception!(*, ..)` sets the *default* handler. All exceptions which have not been assigned a
+/// handler will be serviced by this handler. This handler must have signature `fn(irqn: i16)`.
+/// `irqn` is the IRQ number (cf. CMSIS); `irqn` will be a negative number when the handler is
+/// servicing a core exception; `irqn` will be a positive number when the handler is servicing a
+/// device specific exception (interrupt). It's mandatory to set the default handler somewhere
+/// in the dependency graph of an application.
+///
+/// `exception!($Exception, ..)` overrides the default handler for `$Exception`. All exceptions,
+/// except for `HardFault`, can be assigned some `$State`.
+///
+/// # Examples
+///
+/// - Setting the `HardFault` handler
+///
+/// ```
+/// #[macro_use(exception)]
+/// extern crate cortex_m_rt as rt;
+///
+/// use rt::ExceptionFrame;
+///
+/// exception!(HardFault, hard_fault);
+///
+/// fn hard_fault(ef: &ExceptionFrame) -> ! {
+/// // prints the exception frame as a panic message
+/// panic!("{:#?}", ef);
/// }
///
-/// exception!(SYS_TICK, periodic, locals: {
-/// counter: u32 = 0;
-/// });
+/// # fn main() {}
+/// ```
+///
+/// - Setting the default handler
+///
+/// ```
+/// #[macro_use(exception)]
+/// extern crate cortex_m_rt as rt;
+///
+/// exception!(*, default_handler);
///
-/// fn periodic(locals: &mut SYS_TICK::Locals) {
-/// locals.counter += 1;
-/// println!("This function has been called {} times", locals.counter);
+/// fn default_handler(irqn: i16) {
+/// println!("IRQn = {}", irqn);
/// }
+///
+/// # fn main() {}
+/// ```
+///
+/// - Overriding the `SysTick` handler
+///
+/// ```
+/// #[macro_use(exception)]
+/// extern crate cortex_m_rt as rt;
+///
+/// exception!(SysTick, sys_tick, state: u32 = 0);
+///
+/// fn sys_tick(count: &mut u32) {
+/// println!("count = {}", *count);
+///
+/// *count += 1;
+/// }
+///
+/// # fn main() {}
/// ```
#[macro_export]
macro_rules! exception {
- ($NAME:ident, $path:path, locals: {
- $($lvar:ident:$lty:ident = $lval:expr;)+
- }) => {
- #[allow(non_snake_case)]
- mod $NAME {
- pub struct Locals {
- $(
- pub $lvar: $lty,
- )+
- }
+ (* , $handler:path) => {
+ #[allow(unsafe_code)]
+ #[deny(private_no_mangle_fns)] // raise an error if this item is not accessible
+ #[no_mangle]
+ pub unsafe extern "C" fn DefaultHandler() {
+ extern crate core;
+
+ // validate the signature of the user provided handler
+ let f: fn(i16) = $handler;
+
+ const SCB_ICSR: *const u32 = 0xE000_ED04 as *const u32;
+
+ // NOTE not volatile so the compiler can opt the load operation away if the value is
+ // unused
+ f(core::ptr::read(SCB_ICSR) as u8 as i16 - 16)
}
+ };
- #[allow(non_snake_case)]
- #[doc(hidden)]
+ (HardFault, $handler:path) => {
+ #[allow(unsafe_code)]
+ #[deny(private_no_mangle_fns)] // raise an error if this item is not accessible
#[no_mangle]
- pub unsafe extern "C" fn $NAME() {
- // check that the handler exists
- let _ = $crate::Exception::$NAME;
-
- static mut LOCALS: self::$NAME::Locals = self::$NAME::Locals {
- $(
- $lvar: $lval,
- )*
- };
-
- // type checking
- let f: fn(&mut self::$NAME::Locals) = $path;
- f(&mut LOCALS);
+ pub unsafe extern "C" fn UserHardFault(ef: &$crate::ExceptionFrame) {
+ // validate the signature of the user provided handler
+ let f: fn(&$crate::ExceptionFrame) -> ! = $handler;
+
+ f(ef)
}
};
- ($NAME:ident, $path:path) => {
- #[allow(non_snake_case)]
- #[doc(hidden)]
+
+ ($Name:ident, $handler:path,state: $State:ty = $initial_state:expr) => {
+ #[allow(unsafe_code)]
+ #[deny(private_no_mangle_fns)] // raise an error if this item is not accessible
#[no_mangle]
- pub unsafe extern "C" fn $NAME() {
- // check that the handler exists
- let _ = $crate::Exception::$NAME;
+ pub unsafe extern "C" fn $Name() {
+ static mut STATE: $State = $initial_state;
- // type checking
- let f: fn() = $path;
- f();
+ // check that this exception exists
+ let _ = $crate::Exception::$Name;
+
+ // validate the signature of the user provided handler
+ let f: fn(&mut $State) = $handler;
+
+ f(&mut STATE)
}
- }
+ };
+
+ ($Name:ident, $handler:path) => {
+ #[allow(unsafe_code)]
+ #[deny(private_no_mangle_fns)] // raise an error if this item is not accessible
+ #[no_mangle]
+ pub unsafe extern "C" fn $Name() {
+ // check that this exception exists
+ let _ = $crate::Exception::$Name;
+
+ // validate the signature of the user provided handler
+ let f: fn() = $handler;
+
+ f()
+ }
+ };
}